1
|
Ding MQ, Ding J, Zhang ZR, Li MX, Cui CH, Pang JW, Xing DF, Ren NQ, Wu WM, Yang SS. Biodegradation of various grades of polyethylene microplastics by Tenebrio molitor and Tenebrio obscurus larvae: Effects on their physiology. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120832. [PMID: 38599089 DOI: 10.1016/j.jenvman.2024.120832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/20/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Polyethylene (PE) is the most productive plastic product and includes three major polymers including high-density polyethylene (HDPE), linear low-density polyethylene (LLDPE) and low-density polyethylene (LDPE) variation in the PE depends on the branching of the polymer chain and its crystallinity. Tenebrio obscurus and Tenebrio molitor larvae biodegrade PE. We subsequently tested larval physiology, gut microbiome, oxidative stress, and PE degradation capability and degradation products under high-purity HDPE, LLDPE, and LDPE powders (<300 μm) diets for 21 days at 65 ± 5% humidity and 25 ± 0.5 °C. Our results demonstrated the specific PE consumption rates by T. molitor was 8.04-8.73 mg PE ∙ 100 larvae-1⋅day-1 and by T. obscurus was 7.68-9.31 for LDPE, LLDPE and HDPE, respectively. The larvae digested nearly 40% of the ingested three PE and showed similar survival rates and weight changes but their fat content decreased by 30-50% over 21-day period. All the PE-fed groups exhibited adverse effects, such as increased benzoquinone concentrations, intestinal tissue damage and elevated oxidative stress indicators, compared with bran-fed control. In the current study, the digestive tract or gut microbiome exhibited a high level of adaptability to PE exposure, altering the width of the gut microbial ecological niche and community diversity, revealing notable correlations between Tenebrio species and the physical and chemical properties (PCPs) of PE-MPs, with the gut microbiome and molecular weight change due to biodegradation. An ecotoxicological simulation by T.E.S.T. confirmed that PE degradation products were little ecotoxic to Daphnia magna and Rattus norvegicus providing important novel insights for future investigations into the environmentally-friendly approach of insect-mediated biodegradation of persistent plastics.
Collapse
Affiliation(s)
- Meng-Qi Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Zhi-Rong Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China
| | - Mei-Xi Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Chen-Hao Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Ji-Wei Pang
- China Energy Conservation and Environmental Protection Group, CECEP Digital Technology Co., Ltd., Beijing, 100089, China
| | - De-Feng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Center, Stanford University, Stanford, CA, 94305, USA
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
2
|
He YW, Deng Y, Miao Y, Chatterjee S, Tran TM, Tian J, Lindow S. DSF-family quorum sensing signal-mediated intraspecies, interspecies, and inter-kingdom communication. Trends Microbiol 2023; 31:36-50. [PMID: 35941062 DOI: 10.1016/j.tim.2022.07.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 11/28/2022]
Abstract
While most bacteria are unicellular microbes they communicate with each other and with their environments to adapt their behaviors. Quorum sensing (QS) is one of the best-studied cell-cell communication modes. QS signaling is not restricted to bacterial cell-to-cell communication - it also allows communication between bacteria and their eukaryotic hosts. The diffusible signal factor (DSF) family represents an intriguing type of QS signal with multiple roles found in diverse Gram-negative bacteria. Over the last decade, extensive progress has been made in understanding DSF-mediated communication among bacteria, fungi, insects, plants, and zebrafish. This review provides an update on these new developments with the aim of building a more comprehensive picture of DSF-mediated intraspecies, interspecies, and inter-kingdom communication.
Collapse
Affiliation(s)
- Ya-Wen He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yinyue Deng
- School of Pharmaceutical Science (Shenzhen), Sun Yat-Sen University, Shenzhen 518107, China
| | - Yansong Miao
- School of Biological Science, Nanyang Technological University, Singapore
| | | | - Tuan Minh Tran
- Department of Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Jing Tian
- The College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Steven Lindow
- Department of Plant and Microbial Biology, University of California Berkeley, CA 94720, USA
| |
Collapse
|
3
|
The BDSF quorum sensing receptor RpfR regulates Bep exopolysaccharide synthesis in Burkholderia cenocepacia via interaction with the transcriptional regulator BerB. NPJ Biofilms Microbiomes 2022; 8:93. [DOI: 10.1038/s41522-022-00356-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
Abstract
AbstractThe polysaccharide Bep is essential for in vitro biofilm formation of the opportunistic pathogen Burkholderia cenocepacia. We found that the Burkholderia diffusible signaling factor (BDSF) quorum sensing receptor RpfR is a negative regulator of the bep gene cluster in B. cenocepacia. An rpfR mutant formed wrinkled colonies, whereas additional mutations in the bep genes or known bep regulators like berA and berB restored the wild-type smooth colony morphology. We found that there is a good correlation between intracellular c-di-GMP levels and bep expression when the c-di-GMP level is increased or decreased through ectopic expression of a diguanylate cyclase or a c-di-GMP phosphodiesterase, respectively. However, when the intracellular c-di-GMP level is changed by site directed mutagenesis of the EAL or GGDEF domain of RpfR there is no correlation between intracellular c-di-GMP levels and bep expression. Except for rpfR, deletion mutants of all 25 c-di-GMP phosphodiesterase and diguanylate cyclase genes encoded by B. cenocepacia showed no change to berA and bep gene expression. Moreover, bacterial two-hybrid assays provided evidence that RpfR and BerB physically interact and give specificity to the regulation of the bep genes. We suggest a model where RpfR binds BerB at low c-di-GMP levels to sequester this RpoN-dependent activator to an RpfR/RpfF complex. If the c-di-GMP levels rise, possibly by the enzymatic action of RpfR, BerB binds c-di-GMP and is released from the RpfR/RpfF complex and associates with RpoN to activate transcription of berA, and the BerA protein subsequently activates transcription of the bep genes.
Collapse
|
4
|
Abstract
Burkholderia cenocepacia is a human opportunistic pathogen that mostly employs two types of quorum-sensing (QS) systems to regulate its various biological functions and pathogenicity: the cis-2-dodecenoic acid (BDSF) system and the N-acyl homoserine lactone (AHL) system. In this study, we reported that oridonin, which was screened from a collection of natural products, disrupted important B. cenocepacia phenotypes, including motility, biofilm formation, protease production, and virulence. Genetic and biochemical analyses showed that oridonin inhibited the production of BDSF and AHL signals by decreasing the expression of their synthase-encoding genes. Furthermore, we revealed that oridonin directly binds to the regulator RqpR of the two-component system RqpSR that dominates the above-mentioned QS systems to inhibit the expression of the BDSF and AHL signal synthase-encoding genes. Oridonin also binds to the transcriptional regulator CepR of the cep AHL system to inhibit its binding to the promoter of bclACB. These findings suggest that oridonin could potentially be developed as a new QS inhibitor against pathogenic B. cenocepacia. IMPORTANCE Burkholderia cenocepacia is an important human opportunistic pathogen that can cause life-threatening infections in susceptible individuals. It employs quorum-sensing (QS) systems to regulate biological functions and virulence. In this study, we have identified a lead compound, oridonin, that is capable of interfering with B. cenocepacia QS signaling and physiology. We demonstrate that oridonin suppressed cis-2-dodecenoic acid (BDSF) and N-acyl homoserine lactone (AHL) signal production and attenuated virulence in B. cenocepacia. Oridonin also impaired QS-regulated phenotypes in various Burkholderia species. These results suggest that oridonin could interfere with QS signaling in many Burkholderia species and might be developed as a new antibacterial agent.
Collapse
|
5
|
Ulrich K, Becker R, Behrendt U, Kube M, Schneck V, Ulrich A. Physiological and genomic characterisation of Luteimonas fraxinea sp. nov., a bacterial species associated with trees tolerant to ash dieback. Syst Appl Microbiol 2022; 45:126333. [DOI: 10.1016/j.syapm.2022.126333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 12/01/2022]
|
6
|
The cis-2-dodecenoic acid (BDSF) quorum sensing system in Burkholderia cenocepacia. Appl Environ Microbiol 2022; 88:e0234221. [PMID: 34985987 DOI: 10.1128/aem.02342-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has been demonstrated that quorum sensing (QS) is widely employed by bacterial cells to coordinately regulate various group behaviors. Diffusible signal factor (DSF)-type signals have emerged as a growing family of conserved cell-cell communication signals. In addition to the DSF signal initially identified in Xanthomonas campestris pv. campestris, Burkholderia diffusible signal factor (BDSF, cis-2-dodecenoic acid) has been recognized as a conserved DSF-type signal with specific characteristics in both signal perception and transduction from DSF signals. Here, we review the history and current progress of the research of this type of signal, especially focusing on its biosynthesis, signaling pathways, and biological functions. We also discuss and explore the huge potential of targeting this kind of QS system as a new therapeutic strategy to control bacterial infections and diseases.
Collapse
|
7
|
Methodological tools to study species of the genus Burkholderia. Appl Microbiol Biotechnol 2021; 105:9019-9034. [PMID: 34755214 PMCID: PMC8578011 DOI: 10.1007/s00253-021-11667-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/26/2022]
Abstract
Bacteria belonging to the Burkholderia genus are extremely versatile and diverse. They can be environmental isolates, opportunistic pathogens in cystic fibrosis, immunocompromised or chronic granulomatous disease patients, or cause disease in healthy people (e.g., Burkholderia pseudomallei) or animals (as in the case of Burkholderia mallei). Since the genus was separated from the Pseudomonas one in the 1990s, the methodological tools to study and characterize these bacteria are evolving fast. Here we reviewed the techniques used in the last few years to update the taxonomy of the genus, to study gene functions and regulations, to deepen the knowledge on the drug resistance which characterizes these bacteria, and to elucidate their mechanisms to establish infections. The availability of these tools significantly impacts the quality of research on Burkholderia and the choice of the most appropriated is fundamental for a precise characterization of the species of interest. Key points • Updated techniques to study the genus Burkholderia were reviewed. • Taxonomy, genomics, assays, and animal models were described. • A comprehensive overview on recent advances in Burkholderia studies was made.
Collapse
|
8
|
Diffusible signal factor signaling controls bioleaching activity and niche protection in the acidophilic, mineral-oxidizing leptospirilli. Sci Rep 2021; 11:16275. [PMID: 34381075 PMCID: PMC8357829 DOI: 10.1038/s41598-021-95324-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/21/2021] [Indexed: 11/08/2022] Open
Abstract
Bioleaching of metal sulfide ores involves acidophilic microbes that catalyze the chemical dissolution of the metal sulfide bond that is enhanced by attached and planktonic cell mediated oxidation of iron(II)-ions and inorganic sulfur compounds. Leptospirillum spp. often predominate in sulfide mineral-containing environments, including bioheaps for copper recovery from chalcopyrite, as they are effective primary mineral colonizers and oxidize iron(II)-ions efficiently. In this study, we demonstrated a functional diffusible signal factor interspecies quorum sensing signaling mechanism in Leptospirillum ferriphilum and Leptospirillum ferrooxidans that produces (Z)-11-methyl-2-dodecenoic acid when grown with pyrite as energy source. In addition, pure diffusible signal factor and extracts from supernatants of pyrite grown Leptospirillum spp. inhibited biological iron oxidation in various species, and that pyrite grown Leptospirillum cells were less affected than iron grown cells to self inhibition. Finally, transcriptional analyses for the inhibition of iron-grown L. ferriphilum cells due to diffusible signal factor was compared with the response to exposure of cells to N- acyl-homoserine-lactone type quorum sensing signal compounds. The data suggested that Leptospirillum spp. diffusible signal factor production is a strategy for niche protection and defense against other microbes and it is proposed that this may be exploited to inhibit unwanted acidophile species.
Collapse
|
9
|
Ulrich K, Kube M, Becker R, Schneck V, Ulrich A. Genomic Analysis of the Endophytic Stenotrophomonas Strain 169 Reveals Features Related to Plant-Growth Promotion and Stress Tolerance. Front Microbiol 2021; 12:687463. [PMID: 34220780 PMCID: PMC8245107 DOI: 10.3389/fmicb.2021.687463] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/20/2021] [Indexed: 11/15/2022] Open
Abstract
Plant-associated Stenotrophomonas isolates have great potential for plant growth promotion, especially under stress conditions, due to their ability to promote tolerance to abiotic stresses such as salinity or drought. The endophytic strain Stenotrophomonas sp. 169, isolated from a field-grown poplar, increased the growth of inoculated in vitro plants, with a particular effect on root development, and was able to stimulate the rooting of poplar cuttings in the greenhouse. The strain produced high amounts of the plant growth-stimulating hormone auxin under in vitro conditions. The comparison of the 16S rRNA gene sequences and the phylogenetic analysis of the core genomes showed a close relationship to Stenotrophomonas chelatiphaga and a clear separation from Stenotrophomonas maltophilia. Whole genome sequence analysis revealed functional genes potentially associated with attachment and plant colonization, growth promotion, and stress protection. In detail, an extensive set of genes for twitching motility, chemotaxis, flagella biosynthesis, and the ability to form biofilms, which are connected with host plant colonization, could be identified in the genome of strain 169. The production of indole-3-acetic acid and the presence of genes for auxin biosynthesis pathways and the spermidine pathway could explain the ability to promote plant growth. Furthermore, the genome contained genes encoding for features related to the production of different osmoprotective molecules and enzymes mediating the regulation of stress tolerance and the ability of bacteria to quickly adapt to changing environments. Overall, the results of physiological tests and genome analysis demonstrated the capability of endophytic strain 169 to promote plant growth. In contrast to related species, strain 169 can be considered non-pathogenic and suitable for biotechnology applications.
Collapse
Affiliation(s)
- Kristina Ulrich
- Johann Heinrich von Thünen Institute, Institute of Forest Genetics, Waldsieversdorf, Germany
| | | | - Regina Becker
- Leibniz Center for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Volker Schneck
- Johann Heinrich von Thünen Institute, Institute of Forest Genetics, Waldsieversdorf, Germany
| | - Andreas Ulrich
- Leibniz Center for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| |
Collapse
|
10
|
Harrison ZL, Awais R, Harris M, Raji B, Hoffman BC, Baker DL, Jennings JA. 2-Heptylcyclopropane-1-Carboxylic Acid Disperses and Inhibits Bacterial Biofilms. Front Microbiol 2021; 12:645180. [PMID: 34177826 PMCID: PMC8221421 DOI: 10.3389/fmicb.2021.645180] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/29/2021] [Indexed: 12/23/2022] Open
Abstract
Fatty-acid signaling molecules can inhibit biofilm formation, signal dispersal events, and revert dormant cells within biofilms to a metabolically active state. We synthesized 2-heptylcyclopropane-1-carboxylic acid (2CP), an analog of cis-2-decenoic acid (C2DA), which contains a cyclopropanated bond that may lock the signaling factor in an active state and prevent isomerization to its least active trans-configuration (T2DA). 2CP was compared to C2DA and T2DA for ability to disperse biofilms formed by Staphylococcus aureus and Pseudomonas aeruginosa. 2CP at 125 μg/ml dispersed approximately 100% of S. aureus cells compared to 25% for C2DA; both 2CP and C2DA had significantly less S. aureus biofilm remaining compared to T2DA, which achieved no significant dispersal. 2CP at 125 μg/ml dispersed approximately 60% of P. aeruginosa biofilms, whereas C2DA and T2DA at the same concentration dispersed 40%. When combined with antibiotics tobramycin, tetracycline, or levofloxacin, 2CP decreased the minimum concentration required for biofilm inhibition and eradication, demonstrating synergistic and additive responses for certain combinations. Furthermore, 2CP supported fibroblast viability above 80% for concentrations below 1 mg/ml. This study demonstrates that 2CP shows similar or improved efficacy in biofilm dispersion, inhibition, and eradication compared to C2DA and T2DA and thus may be promising for use in preventing infection for healthcare applications.
Collapse
Affiliation(s)
- Zoe L Harrison
- Department of Biomedical Engineering, University of Memphis, Memphis, TN, United States
| | - Rukhsana Awais
- Department of Biomedical Engineering, University of Memphis, Memphis, TN, United States
| | - Michael Harris
- Department of Biomedical Engineering, University of Memphis, Memphis, TN, United States
| | - Babatunde Raji
- Department of Chemistry, University of Memphis, Memphis, TN, United States
| | - Brian C Hoffman
- Department of Chemistry, University of Memphis, Memphis, TN, United States
| | - Daniel L Baker
- Department of Chemistry, University of Memphis, Memphis, TN, United States
| | | |
Collapse
|
11
|
Dias GM, de Sousa Pires A, Grilo VS, Castro MR, de Figueiredo Vilela L, Neves BC. Comparative genomics of Paraburkholderia kururiensis and its potential in bioremediation, biofertilization, and biocontrol of plant pathogens. Microbiologyopen 2019; 8:e00801. [PMID: 30811107 PMCID: PMC6692535 DOI: 10.1002/mbo3.801] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/19/2018] [Accepted: 12/29/2018] [Indexed: 12/23/2022] Open
Abstract
Burkholderia harbors versatile Gram-negative species and is β-Proteobacteria. Recently, it was proposed to split the genus in two main branches: one of animal and plant pathogens and another, Paraburkholderia, harboring environmental and plant-beneficial species. Currently, Paraburkholderia comprises more than 70 species with ability to occupy very diverse environmental niches. Herein, we sequenced and analyzed the genome of Paraburkholderia kururiensis type strain KP23T , and compared to P. kururiensis M130, isolated in Brazil, and P. kururiensis susbp. thiooxydans, from Korea. This study focused on the gene content of the three genomes with special emphasis on their potential of plant-association, biocontrol, and bioremediation. The comparative analyses revealed several genes related to plant benefits, including biosynthesis of IAA, ACC deaminase, multiple efflux pumps, dioxygenases, and degradation of aromatic compounds. Importantly, a range of genes for protein secretion systems (type III, IV, V, and VI) were characterized, potentially involved in P. kururiensis well documented ability to establish endophytic association with plants. These findings shed light onto bacteria-plant interaction mechanisms at molecular level, adding novel information that supports their potential application in bioremediation, biofertilization, and biocontrol of plant pathogens. P. kururiensis emerges as a promising model to investigate adaptation mechanisms in different ecological niches.
Collapse
Affiliation(s)
- Graciela M. Dias
- Department of BiochemistryChemistry InstituteFederal University of Rio de JaneiroRio de JaneiroBrazil
| | - Araceli de Sousa Pires
- Department of BiochemistryChemistry InstituteFederal University of Rio de JaneiroRio de JaneiroBrazil
| | - Vinicius S. Grilo
- Department of BiochemistryChemistry InstituteFederal University of Rio de JaneiroRio de JaneiroBrazil
| | - Michele R. Castro
- Department of BiochemistryChemistry InstituteFederal University of Rio de JaneiroRio de JaneiroBrazil
- Department of BiologyFederal Institute of Rio de JaneiroRio de JaneiroBrazil
| | | | - Bianca C. Neves
- Department of BiochemistryChemistry InstituteFederal University of Rio de JaneiroRio de JaneiroBrazil
| |
Collapse
|
12
|
Waldron EJ, Snyder D, Fernandez NL, Sileo E, Inoyama D, Freundlich JS, Waters CM, Cooper VS, Neiditch MB. Structural basis of DSF recognition by its receptor RpfR and its regulatory interaction with the DSF synthase RpfF. PLoS Biol 2019; 17:e3000123. [PMID: 30716063 PMCID: PMC6361424 DOI: 10.1371/journal.pbio.3000123] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/10/2019] [Indexed: 01/07/2023] Open
Abstract
The diffusible signal factors (DSFs) are a family of quorum-sensing autoinducers (AIs) produced and detected by numerous gram-negative bacteria. The DSF family AIs are fatty acids, differing in their acyl chain length, branching, and substitution but having in common a cis-2 double bond that is required for their activity. In both human and plant pathogens, DSFs regulate diverse phenotypes, including virulence factor expression, antibiotic resistance, and biofilm dispersal. Despite their widespread relevance to both human health and agriculture, the molecular basis of DSF recognition by their cellular receptors remained a mystery. Here, we report the first structure-function studies of the DSF receptor regulation of pathogenicity factor R (RpfR). We present the X-ray crystal structure of the RpfR DSF-binding domain in complex with the Burkholderia DSF (BDSF), which to our knowledge is the first structure of a DSF receptor in complex with its AI. To begin to understand the mechanistic role of the BDSF-RpfR contacts observed in the biologically important complex, we have also determined the X-ray crystal structure of the RpfR DSF-binding domain in complex with the inactive, saturated isomer of BDSF, dodecanoic acid (C12:0). In addition to these ligand-receptor complex structures, we report the discovery of a previously overlooked RpfR domain and show that it binds to and negatively regulates the DSF synthase regulation of pathogenicity factor F (RpfF). We have named this RpfR region the RpfF interaction (FI) domain, and we have determined its X-ray crystal structure alone and in complex with RpfF. These X-ray crystal structures, together with extensive complementary in vivo and in vitro functional studies, reveal the molecular basis of DSF recognition and the importance of the cis-2 double bond to DSF function. Finally, we show that throughout cellular growth, the production of BDSF by RpfF is post-translationally controlled by the RpfR N-terminal FI domain, affecting the cellular concentration of the bacterial second messenger bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP). Thus, in addition to describing the molecular basis for the binding and specificity of a DSF for its receptor, we describe a receptor-synthase interaction regulating bacterial quorum-sensing signaling and second messenger signal transduction.
Collapse
Affiliation(s)
- Evan J. Waldron
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers, State University of New Jersey, Newark, New Jersey, United States of America
| | - Daniel Snyder
- Department of Microbiology and Molecular Genetics, and Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Nicolas L. Fernandez
- Department of Microbiology and Molecular Genetics and the BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan, United States of America
| | - Emily Sileo
- Department of Microbiology and Molecular Genetics, and Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Daigo Inoyama
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School, Rutgers, State University of New Jersey, Newark, New Jersey, United States of America
| | - Joel S. Freundlich
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School, Rutgers, State University of New Jersey, Newark, New Jersey, United States of America
| | - Christopher M. Waters
- Department of Microbiology and Molecular Genetics and the BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan, United States of America
| | - Vaughn S. Cooper
- Department of Microbiology and Molecular Genetics, and Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Matthew B. Neiditch
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers, State University of New Jersey, Newark, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
13
|
Baccari C, Antonova E, Lindow S. Biological Control of Pierce's Disease of Grape by an Endophytic Bacterium. PHYTOPATHOLOGY 2019; 109:248-256. [PMID: 30540526 DOI: 10.1094/phyto-07-18-0245-fi] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Effective preventive measures and therapies are lacking for control of Pierce's disease of grape caused by the xylem-colonizing bacterium Xylella fastidiosa responsible for serious losses in grape production. In this study we explored the potential for endophytic bacteria to alter the disease process. While most endophytic bacteria found within grape did not grow or multiply when inoculated into mature grape vines, Paraburkholderia phytofirmans strain PsJN achieved population sizes as large as 106 cells/g and moved 1 m or more within 4 weeks after inoculation into vines. While X. fastidiosa achieved large population sizes and moved extensively in grape when inoculated alone, few viable cells were recovered from plants in which it was co-inoculated with strain PsJN and the incidence of leaves exhibiting scorching symptoms typical of Pierce's disease was consistently greatly reduced from that in control plants. Suppression of disease symptoms occurred not only when strain PsJN was co-inoculated with the pathogen by puncturing stems in the same site in plants, but also when inoculated at the same time but at different sites in the plant. Large population sizes of strain PsJN could be established in both leaf lamina and petioles by topical application of cell suspensions in 0.2% of an organo-silicon surfactant conferring low surface tension, and such treatments were as effective as direct puncture inoculations of this biocontrol strain in reducing disease severity. While inoculation of strain PsJN into plants by either method at the same time as or even 4 weeks after that of the pathogen resulted in large reductions in disease severity, much less disease control was conferred by inoculation of PsJN 4 weeks prior to that of the pathogen. The expression of grapevine PR1 and ETR1 within 3 weeks of inoculation was substantially higher in plants inoculated with both X. fastidiosa and strain PsJN compared with that in plants inoculated only with the pathogen or strain PsJN, suggesting that this biological control agent reduces disease by priming expression of innate disease resistance pathways in plants that otherwise would have exhibited minimal responses to the pathogen. Strain PsJN thus appears highly efficacious for the control of Pierce's disease when used as an eradicant treatment that can be easily made even by spray application.
Collapse
Affiliation(s)
- Clelia Baccari
- Department of Plant and Microbial Biology, University of California, Berkeley 94720
| | - Elena Antonova
- Department of Plant and Microbial Biology, University of California, Berkeley 94720
| | - Steven Lindow
- Department of Plant and Microbial Biology, University of California, Berkeley 94720
| |
Collapse
|
14
|
Identification of AHL- and BDSF-Controlled Proteins in Burkholderia cenocepacia by Proteomics. Methods Mol Biol 2018; 1673:193-202. [PMID: 29130174 DOI: 10.1007/978-1-4939-7309-5_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We used comparative proteome analysis to determine the target genes of the two quorum sensing (QS) circuits in the opportunistic pathogen Burkholderia cenocepacia: the N-acyl homoserine lactone (AHL)-based CepIR system and the BDSF (B urkholderia diffusible signal factor, cis-2-dodecenoic acid)-based RpfFR system. In this book chapter, we focus on the description of the practical procedure we currently use in the laboratory to perform a sensitive GeLC-MS/MS shotgun proteomics experiment; we also briefly describe the downstream bioinformatic data analysis.
Collapse
|
15
|
Jung HI, Kim YJ, Lee YJ, Lee HS, Lee JK, Kim SK. Mutation of the cyclic di-GMP phosphodiesterase gene in Burkholderia lata SK875 attenuates virulence and enhances biofilm formation. J Microbiol 2017; 55:800-808. [PMID: 28956352 DOI: 10.1007/s12275-017-7374-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/14/2017] [Accepted: 09/17/2017] [Indexed: 12/11/2022]
Abstract
Burkholderia sp. is a gram-negative bacterium that commonly exists in the environment, and can cause diseases in plants, animals, and humans. Here, a transposon mutant library of a Burkholderia lata isolate from a pig with swine respiratory disease in Korea was screened for strains showing attenuated virulence in Caenorhabditis elegans. One such mutant was obtained, and the Tn5 insertion junction was mapped to rpfR, a gene encoding a cyclic di-GMP phosphodiesterase that functions as a receptor. Mutation of rpfR caused a reduction in growth on CPG agar and swimming motility as well as a rough colony morphology on Congo red agar. TLC analysis showed reduced AHL secretion, which was in agreement with the results from plate-based and bioluminescence assays. The mutant strain produced significantly more biofilm detected by crystal violet staining than the parent strain. SEM of the mutant strain clearly showed that the overproduced biofilm contained a filamentous structure. These results suggest that the cyclic di-GMP phosphodiesterase RpfR plays an important role in quorum sensing modulation of the bacterial virulence and biofilm formation.
Collapse
Affiliation(s)
- Hae-In Jung
- Department of Animal Science and Technology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Yun-Jung Kim
- Department of Animal Science and Technology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Yun-Jung Lee
- Department of Animal Science and Technology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hee-Soo Lee
- National Veterinary Research and Quarantine Service, Anyang, 14033, Republic of Korea
| | - Jung-Kee Lee
- Department of Life Science and Genetic Engineering, Paichai University, Daejeon, 35345, Republic of Korea
| | - Soo-Ki Kim
- Department of Animal Science and Technology, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
16
|
Schmid N, Suppiger A, Steiner E, Pessi G, Kaever V, Fazli M, Tolker-Nielsen T, Jenal U, Eberl L. High intracellular c-di-GMP levels antagonize quorum sensing and virulence gene expression in Burkholderia cenocepacia H111. MICROBIOLOGY-SGM 2017; 163:754-764. [PMID: 28463102 DOI: 10.1099/mic.0.000452] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The opportunistic human pathogen Burkholderia cenocepacia H111 uses two chemically distinct signal molecules for controlling gene expression in a cell density-dependent manner: N-acyl-homoserine lactones (AHLs) and cis-2-dodecenoic acid (BDSF). Binding of BDSF to its cognate receptor RpfR lowers the intracellular c-di-GMP level, which in turn leads to differential expression of target genes. In this study we analysed the transcriptional profile of B. cenocepacia H111 upon artificially altering the cellular c-di-GMP level. One hundred and eleven genes were shown to be differentially expressed, 96 of which were downregulated at a high c-di-GMP concentration. Our analysis revealed that the BDSF, AHL and c-di-GMP regulons overlap for the regulation of 24 genes and that a high c-di-GMP level suppresses expression of AHL-regulated genes. Phenotypic analyses confirmed changes in the expression of virulence factors, the production of AHL signal molecules and the biosynthesis of different biofilm matrix components upon altered c-di-GMP levels. We also demonstrate that the intracellular c-di-GMP level determines the virulence of B. cenocepacia to Caenorhabditis elegans and Galleria mellonella.
Collapse
Affiliation(s)
- Nadine Schmid
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Angela Suppiger
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Elisabeth Steiner
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Gabriella Pessi
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Volkhard Kaever
- Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - Mustafa Fazli
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Tim Tolker-Nielsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Urs Jenal
- Focal Area of Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Leo Eberl
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Dow J. Diffusible signal factor-dependent quorum sensing in pathogenic bacteria and its exploitation for disease control. J Appl Microbiol 2016; 122:2-11. [DOI: 10.1111/jam.13307] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/16/2016] [Accepted: 09/23/2016] [Indexed: 12/25/2022]
Affiliation(s)
- J.M. Dow
- School of Microbiology; University College Cork; Cork Ireland
| |
Collapse
|
18
|
Ionescu M, Yokota K, Antonova E, Garcia A, Beaulieu E, Hayes T, Iavarone AT, Lindow SE. Promiscuous Diffusible Signal Factor Production and Responsiveness of the Xylella fastidiosa Rpf System. mBio 2016; 7:e01054-16. [PMID: 27435463 PMCID: PMC4958263 DOI: 10.1128/mbio.01054-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 06/16/2016] [Indexed: 01/30/2023] Open
Abstract
UNLABELLED Cell density-dependent regulation of gene expression in Xylella fastidiosa that is crucial to its switching between plant hosts and insect vectors is dependent on RpfF and its production of 2-enoic acids known as diffusible signal factor (DSF). We show that X. fastidiosa produces a particularly large variety of similar, relatively long-chain-length 2-enoic acids that are active in modulating gene expression. Both X. fastidiosa itself and a Pantoea agglomerans surrogate host harboring X. fastidiosa RpfF (XfRpfF) is capable of producing a variety of both saturated and unsaturated free fatty acids. However, only 2-cis unsaturated acids were found to be biologically active in X. fastidiosa X. fastidiosa produces, and is particularly responsive to, a novel DSF species, 2-cis-hexadecanoic acid that we term XfDSF2. It is also responsive to other, even longer 2-enoic acids to which other taxa such as Xanthomonas campestris are unresponsive. The 2-enoic acids that are produced by X. fastidiosa are strongly affected by the cellular growth environment, with XfDSF2 not detected in culture media in which 2-tetradecenoic acid (XfDSF1) had previously been found. X. fastidiosa is responsive to much lower concentrations of XfDSF2 than XfDSF1. Apparently competitive interactions can occur between various saturated and unsaturated fatty acids that block the function of those agonistic 2-enoic fatty acids. By altering the particular 2-enoic acids produced and the relative balance of free enoic and saturated fatty acids, X. fastidiosa might modulate the extent of DSF-mediated quorum sensing. IMPORTANCE X. fastidiosa, having a complicated lifestyle in which it moves and multiplies within plants but also must be vectored by insects, utilizes DSF-based quorum sensing to partition the expression of traits needed for these two processes within different cells in this population based on local cellular density. The finding that it can produce a variety of DSF species in a strongly environmentally context-dependent manner provides insight into how it coordinates the many genes under the control of DSF signaling to successfully associate with its two hosts. Since the new DSF variant XfDSF2 described here is much more active than the previously recognized DSF species, it should contribute to plant disease control, given that the susceptibility of plants can be greatly reduced by artificially elevating the levels of DSF in plants, creating "pathogen confusion," resulting in lower virulence.
Collapse
Affiliation(s)
- Michael Ionescu
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Kenji Yokota
- Department of Applied Biology and Chemistry, Tokyo University of Agriculture, Tokyo, Japan
| | - Elena Antonova
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Angelica Garcia
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Ellen Beaulieu
- Biosciences Division, SRI International, Menlo Park, California, USA
| | - Terry Hayes
- Biosciences Division, SRI International, Menlo Park, California, USA
| | - Anthony T Iavarone
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California, USA
| | - Steven E Lindow
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| |
Collapse
|