1
|
Hirota A, Kouduka M, Fukuda A, Miyakawa K, Sakuma K, Ozaki Y, Ishii E, Suzuki Y. Biofilm Formation on Excavation Damaged Zone Fractures in Deep Neogene Sedimentary Rock. MICROBIAL ECOLOGY 2024; 87:132. [PMID: 39436423 PMCID: PMC11496357 DOI: 10.1007/s00248-024-02451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024]
Abstract
Deep underground galleries are used to access the deep biosphere in addition to mining and other engineering applications, such as geological disposal of radioactive waste. Fracture networks developed in the excavation damaged zone (EDZ) are concerned with accelerating mass transport, where microbial colonization might be possible due to the availability of space and nutrients. In this study, microbial biofilms at EDZ fractures were investigated by drilling from a 350-m-deep gallery and subsequent borehole logging at the Horonobe Underground Research Laboratory (URL). By using microscopic and spectroscopic techniques, the dense colonization of microbial cells was demonstrated at the surfaces of the EDZ fractures with high hydraulic conductivity. 16S rRNA gene sequence analysis revealed the dominance of gammaproteobacterial lineages, the cultivated members of which are aerobic methanotrophs. The near-complete genomes from Horonobe groundwater, affiliated with the methanotrophic lineages, were fully equipped with genes involved in aerobic methanotrophy. Although the mediation of aerobic methanotrophy remains to be demonstrated, microbial O2 production was supported by the presence of genes in the near-complete genomes, such as catalase and superoxide dismutase that produce O2 from reactive oxygen species and a nitric oxide reductase gene with the substitutions of amino acids in motifs. It is concluded that the EDZ fractures provide energetically favorable subsurface habitats for microorganisms.
Collapse
Affiliation(s)
- Akinari Hirota
- Regulatory Standard and Research Department, Secretariat of Nuclear Regulation Authority (S/NRA/R), 1-9-9, Roppongi, Minato-Ku, Tokyo, 106-8450, Japan
| | - Mariko Kouduka
- Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, Japan
| | - Akari Fukuda
- Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, Japan
| | - Kazuya Miyakawa
- Horonobe Underground Research Center, Japan Atomic Energy Agency, 432-2 Hokushin, Horonobe-Cho, Hokkaido, 098-3224, Japan
| | - Keisuke Sakuma
- Nuclear Safety Research Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai-Mura, Naka-Gun, Ibaraki, 319-1195, Japan
| | - Yusuke Ozaki
- Horonobe Underground Research Center, Japan Atomic Energy Agency, 432-2 Hokushin, Horonobe-Cho, Hokkaido, 098-3224, Japan
| | - Eiichi Ishii
- Nuclear Safety Research Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai-Mura, Naka-Gun, Ibaraki, 319-1195, Japan
| | - Yohey Suzuki
- Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, Japan.
| |
Collapse
|
2
|
Podosokorskaya OA, Petrova NF, Tikhonova EN, Klyukina AA, Elcheninov AG. Rosettibacter primus gen. nov., sp. nov., and Rosettibacter firmus sp. nov., facultatively anaerobic moderately thermophilic bacteria of the class Ignavibacteria from hot springs of North Ossetia. Syst Appl Microbiol 2024; 47:126528. [PMID: 38959749 DOI: 10.1016/j.syapm.2024.126528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
A novel facultatively anaerobic moderately thermophilic bacteria, strains 4137-MeT and 4148-MeT, were isolated from hot springs of Karmadon and Ursdon, respectively (North Ossetia, Russian Federation). Gram-negative, motile rods were present singly, in pairs, rosettes, and aggregates, or formed biofilms. Both strains grew optimally at 50-55 °C, pH 7.0 and did not require sodium chloride or yeast extract for growth. They were chemoorganoheterotrophs, growing on mono-, di- and polysaccharides (cellulose, starch, xylan, lichenan, galactan, xyloglucan, mannan, xanthan gum, guar gum) as well as proteinaceous substrates (gelatin, peptone, beef and yeast extract). Growth under anaerobic conditions was observed in presence and absence of external electron acceptors. Sulfur, thiosulfate, arsenate, Fe-citrate, and ferrihydrite were reduced with acetate, starch, or yeast extract as electron donors. The respiratory quinone was MK-7. Major cellular fatty acids of both strains were iso-C15:0, anteiso-C17:0, C15:0, iso-C16:0 and additionally iso-C17:0 for strain 4137-MeT. The size of the genome and genomic DNA G + C content of strain 4137-MeT were 3.24 Mb. and 29.9 %, respectively; for strain 4148-MeT - 3.33 Mb and 30.7 %. According to the 16S rRNA gene sequence and conserved protein sequences phylogenies, strains 4137-MeT and 4148-MeT represented a distinct lineage of the family Melioribacteraceae within the class Ignavibacteria. Based on phylogenetic analysis and phenotypic features, the novel isolates were assigned to a novel genus, for which the name Rosettibacter gen. nov. is proposed. Strain 4148-MeT represents its type species Rosettibacter primus sp. nov., while strain 4137-MeT represents a new species Rosettibacter firmus sp. nov.
Collapse
Affiliation(s)
- Olga A Podosokorskaya
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology RAS, 7/2 Prospekt 60-letiya Oktyabrya, 117312 Moscow, Russia.
| | - Nika F Petrova
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology RAS, 7/2 Prospekt 60-letiya Oktyabrya, 117312 Moscow, Russia
| | - Ekaterina N Tikhonova
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology RAS, 7/2 Prospekt 60-letiya Oktyabrya, 117312 Moscow, Russia
| | - Alexandra A Klyukina
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology RAS, 7/2 Prospekt 60-letiya Oktyabrya, 117312 Moscow, Russia
| | - Alexander G Elcheninov
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology RAS, 7/2 Prospekt 60-letiya Oktyabrya, 117312 Moscow, Russia
| |
Collapse
|
3
|
Visser AN, Martin JD, Osenbrück K, Rügner H, Grathwohl P, Kappler A. In situ incubation of iron(II)-bearing minerals and Fe(0) reveals insights into metabolic flexibility of chemolithotrophic bacteria in a nitrate polluted karst aquifer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172062. [PMID: 38554974 DOI: 10.1016/j.scitotenv.2024.172062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Groundwater nitrate pollution is a major reason for deteriorating water quality and threatens human and animal health. Yet, mitigating groundwater contamination naturally is often complicated since most aquifers are limited in bioavailable carbon. Since metabolically flexible microbes might have advantages for survival, this study presents a detailed description and first results on our modification of the BacTrap© method, aiming to determine the prevailing microbial community's potential to utilize chemolithotrophic pathways. Our microbial trapping devices (MTDs) were amended with four different iron sources and incubated in seven groundwater monitoring wells for ∼3 months to promote growth of nitrate-reducing Fe(II)-oxidizing bacteria (NRFeOxB) in a nitrate-contaminated karst aquifer. Phylogenetic analysis based on 16S rRNA gene sequences implies that the identity of the iron source influenced the microbial community's composition. In addition, high throughput amplicon sequencing revealed increased relative 16S rRNA gene abundances of OTUs affiliated to genera such as Thiobacillus, Rhodobacter, Pseudomonas, Albidiferax, and Sideroxydans. MTD-derived enrichments set up with Fe(II)/nitrate/acetate to isolate potential NRFeOxB, were dominated by e.g., Acidovorax spp., Paracoccus spp. and Propionivibrio spp. MTDs are a cost-effective approach for investigating microorganisms in groundwater and our data not only solidifies the MTD's capacity to provide insights into the metabolic flexibility of the aquifer's microbial community, but also substantiates its metabolic potential for anaerobic Fe(II) oxidation.
Collapse
Affiliation(s)
- Anna-Neva Visser
- GeoZentrum Nordbayern, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Germany; Department of Geosciences, University of Tübingen, Germany.
| | - Joseph D Martin
- Department of Biology, Terrestrial Ecology, University of Copenhagen, Denmark
| | - Karsten Osenbrück
- Department of Geosciences, University of Tübingen, Germany; Federal Institute for Geosciences and Natural Resources (BGR), Hannover, Germany
| | - Hermann Rügner
- Department of Geosciences, University of Tübingen, Germany
| | | | | |
Collapse
|
4
|
Bell E, Lamminmäki T, Alneberg J, Qian C, Xiong W, Hettich RL, Frutschi M, Bernier-Latmani R. Active anaerobic methane oxidation and sulfur disproportionation in the deep terrestrial subsurface. THE ISME JOURNAL 2022; 16:1583-1593. [PMID: 35173296 PMCID: PMC9123182 DOI: 10.1038/s41396-022-01207-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/19/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Microbial life is widespread in the terrestrial subsurface and present down to several kilometers depth, but the energy sources that fuel metabolism in deep oligotrophic and anoxic environments remain unclear. In the deep crystalline bedrock of the Fennoscandian Shield at Olkiluoto, Finland, opposing gradients of abiotic methane and ancient seawater-derived sulfate create a terrestrial sulfate-methane transition zone (SMTZ). We used chemical and isotopic data coupled to genome-resolved metaproteogenomics to demonstrate active life and, for the first time, provide direct evidence of active anaerobic oxidation of methane (AOM) in a deep terrestrial bedrock. Proteins from Methanoperedens (formerly ANME-2d) are readily identifiable despite the low abundance (≤1%) of this genus and confirm the occurrence of AOM. This finding is supported by 13C-depleted dissolved inorganic carbon. Proteins from Desulfocapsaceae and Desulfurivibrionaceae, in addition to 34S-enriched sulfate, suggest that these organisms use inorganic sulfur compounds as both electron donor and acceptor. Zerovalent sulfur in the groundwater may derive from abiotic rock interactions, or from a non-obligate syntrophy with Methanoperedens, potentially linking methane and sulfur cycles in Olkiluoto groundwater. Finally, putative episymbionts from the candidate phyla radiation (CPR) and DPANN archaea represented a significant diversity in the groundwater (26/84 genomes) with roles in sulfur and carbon cycling. Our results highlight AOM and sulfur disproportionation as active metabolisms and show that methane and sulfur fuel microbial activity in the deep terrestrial subsurface.
Collapse
Affiliation(s)
- Emma Bell
- Environmental Microbiology Laboratory, Environmental Engineering Institute, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland.
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| | | | - Johannes Alneberg
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, SE-17121, Sweden
| | - Chen Qian
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Weili Xiong
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Robert L Hettich
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Manon Frutschi
- Environmental Microbiology Laboratory, Environmental Engineering Institute, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Rizlan Bernier-Latmani
- Environmental Microbiology Laboratory, Environmental Engineering Institute, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland.
| |
Collapse
|
5
|
Takamiya H, Kouduka M, Suzuki Y. The Deep Rocky Biosphere: New Geomicrobiological Insights and Prospects. Front Microbiol 2021; 12:785743. [PMID: 34917063 PMCID: PMC8670094 DOI: 10.3389/fmicb.2021.785743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/08/2021] [Indexed: 12/02/2022] Open
Abstract
Rocks that react with liquid water are widespread but spatiotemporally limited throughout the solar system, except for Earth. Rock-forming minerals with high iron content and accessory minerals with high amounts of radioactive elements are essential to support rock-hosted microbial life by supplying organics, molecular hydrogen, and/or oxidants. Recent technological advances have broadened our understanding of the rocky biosphere, where microbial inhabitation appears to be difficult without nutrient and energy inputs from minerals. In particular, microbial proliferation in igneous rock basements has been revealed using innovative geomicrobiological techniques. These recent findings have dramatically changed our perspective on the nature and the extent of microbial life in the rocky biosphere, microbial interactions with minerals, and the influence of external factors on habitability. This study aimed to gather information from scientific and/or technological innovations, such as omics-based and single-cell level characterizations, targeting deep rocky habitats of organisms with minimal dependence on photosynthesis. By synthesizing pieces of rock-hosted life, we can explore the evo-phylogeny and ecophysiology of microbial life on Earth and the life’s potential on other planetary bodies.
Collapse
Affiliation(s)
- Hinako Takamiya
- Department of Earth and Planetary Science, The University of Tokyo, Bunkyo, Japan
| | - Mariko Kouduka
- Department of Earth and Planetary Science, The University of Tokyo, Bunkyo, Japan
| | - Yohey Suzuki
- Department of Earth and Planetary Science, The University of Tokyo, Bunkyo, Japan
| |
Collapse
|
6
|
Sanz JL, Rodriguez N, Escudero C, Carrizo D, Amils R. Biological production of H 2 , CH 4 and CO 2 in the deep subsurface of the Iberian Pyrite Belt. Environ Microbiol 2021; 23:3913-3922. [PMID: 33973338 DOI: 10.1111/1462-2920.15561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 11/26/2022]
Abstract
Most of the terrestrial deep subsurfaces are oligotrophic environments in which some gases, mainly H2 , CH4 and CO2 , play an important role as energy and/or carbon sources. In this work, we assessed their biotic and abiotic origin in samples from subsurface hard-rock cores of the Iberian Pyrite Belt (IPB) at three different depths (414, 497 and 520 m). One set of samples was sterilized (abiotic control) and all samples were incubated under anaerobic conditions. Our results showed that H2 , CH4 and CO2 remained low and constant in the sterilized controls while their levels were 4, 4.1 and 2.5 times higher respectively, in the unsterilized samples compared to the abiotic controls. The δ13 CCH4 -values measured in the samples (range -31.2 to -43.0 ‰) reveals carbon isotopic signatures that are within the range for biological methane production. Possible microorganisms responsible for the biotic production of the gases were assessed by CARD-FISH. The analysis of sequenced genomes of detected microorganisms within the subsurface of the IPB allowed to identify possible metabolic activities involved in H2 (Rhodoplanes, Shewanella and Desulfosporosinus), CH4 (Methanobacteriales) and CO2 production. The obtained results suggest that part of the H2 , CH4 and CO2 detected in the deep subsurface has a biological origin.
Collapse
Affiliation(s)
- Jose L Sanz
- Molecular Biology Department, Universidad Autónoma de Madrid, Madrid, Spain
| | - Nuria Rodriguez
- Centro de Astrobiología (INTA-CSIC), Torrejón de Ardoz, 28850, Spain
| | - Cristina Escudero
- Centro de Astrobiología (INTA-CSIC), Torrejón de Ardoz, 28850, Spain.,Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Daniel Carrizo
- Centro de Astrobiología (INTA-CSIC), Torrejón de Ardoz, 28850, Spain
| | - Ricardo Amils
- Centro de Astrobiología (INTA-CSIC), Torrejón de Ardoz, 28850, Spain.,Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Universidad Autónoma de Madrid, Madrid, 28049, Spain
| |
Collapse
|
7
|
Bourrain M, Suzuki MT, Calvez A, West NJ, Lions J, Lebaron P. In-depth prospection of Avène Thermal Spring Water reveals an uncommon and stable microbial community. J Eur Acad Dermatol Venereol 2021; 34 Suppl 5:8-14. [PMID: 32870559 DOI: 10.1111/jdv.16599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/24/2020] [Accepted: 04/30/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Avène Thermal Spring Water (TSW) exhibits therapeutic properties in the treatment of skin pathologies. Arising from a dolomitic aquifer system, its physico-chemical properties are well-established and its bacteriological quality regularly monitored. The microbiota of this aquifer have been characterized. OBJECTIVES We aimed to describe the structure of the bacterial community inhabiting the deep aquifer and to examine its dynamics over time. METHODS The Avène TSW was collected at the catchment point and filtered through 0.1 µm pore size filters. The sampling was carried out every 3 months to generate a 4-year time series. The DNA extracted from filters was analysed using high-throughput 16S rRNA gene amplicon sequencing, and the microorganisms and their contribution were characterized by the taxonomic assignment of sequence variants generated from each sample. RESULTS Bacteria were distributed into 39 phyla. Nitrospirae and Proteobacteria were the most prevalent, accounting for 38% and 23% of the total community on average, respectively. A stable pattern was observed throughout the study. A few bacterial species were always detected, forming a core community of likely chemolithoautotrophic organisms which might use energy sources and nutrients produced from water-bedrock interactions. Most of the species were distantly related to organisms described to date. CONCLUSIONS Avène TSW provided by the deep aquifer system harbours a unique microbial community, shaped by the physico-chemical characteristics of the deep environment. Its remarkable stability over time has revealed a high level of confinement of the water resource.
Collapse
Affiliation(s)
- M Bourrain
- Pierre Fabre Dermo-Cosmétique R&D Center, Toulouse, France
| | - M T Suzuki
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, Observatoire Océanologique, Banyuls-sur-mer, France
| | - A Calvez
- Pierre Fabre Dermo-Cosmétique R&D Center, Toulouse, France
| | - N J West
- Sorbonne Université, CNRS, Observatoire Océanologique de Banyuls, Banyuls-sur-mer, France
| | - J Lions
- Pierre Fabre Dermo-Cosmétique R&D Center, Toulouse, France
| | - P Lebaron
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, Observatoire Océanologique, Banyuls-sur-mer, France
| |
Collapse
|
8
|
Mullin SW, Wanger G, Kruger BR, Sackett JD, Hamilton-Brehm SD, Bhartia R, Amend JP, Moser DP, Orphan VJ. Patterns of in situ Mineral Colonization by Microorganisms in a ~60°C Deep Continental Subsurface Aquifer. Front Microbiol 2020; 11:536535. [PMID: 33329414 PMCID: PMC7711152 DOI: 10.3389/fmicb.2020.536535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 09/24/2020] [Indexed: 11/13/2022] Open
Abstract
The microbial ecology of the deep biosphere is difficult to characterize, owing in part to sampling challenges and poorly understood response mechanisms to environmental change. Pre-drilled wells, including oil wells or boreholes, offer convenient access, but sampling is frequently limited to the water alone, which may provide only a partial view of the native diversity. Mineral heterogeneity demonstrably affects colonization by deep biosphere microorganisms, but the connections between the mineral-associated and planktonic communities remain unclear. To understand the substrate effects on microbial colonization and the community response to changes in organic carbon, we conducted an 18-month series of in situ experiments in a warm (57°C), anoxic, fractured carbonate aquifer at 752 m depth using replicate open, screened cartridges containing different solid substrates, with a proteinaceous organic matter perturbation halfway through this series. Samples from these cartridges were analyzed microscopically and by Illumina (iTag) 16S rRNA gene libraries to characterize changes in mineralogy and the diversity of the colonizing microbial community. The substrate-attached and planktonic communities were significantly different in our data, with some taxa (e.g., Candidate Division KB-1) rare or undetectable in the first fraction and abundant in the other. The substrate-attached community composition also varied significantly with mineralogy, such as with two Rhodocyclaceae OTUs, one of which was abundant on carbonate minerals and the other on silicic substrates. Secondary sulfide mineral formation, including iron sulfide framboids, was observed on two sets of incubated carbonates. Notably, microorganisms were attached to the framboids, which were correlated with abundant Sulfurovum and Desulfotomaculum sp. sequences in our analysis. Upon organic matter perturbation, mineral-associated microbial diversity differences were temporarily masked by the dominance of putative heterotrophic taxa in all samples, including OTUs identified as Caulobacter, Methyloversatilis, and Pseudomonas. Subsequent experimental deployments included a methanogen-dominated stage (Methanobacteriales and Methanomicrobiales) 6 months after the perturbation and a return to an assemblage similar to the pre-perturbation community after 9 months. Substrate-associated community differences were again significant within these subsequent phases, however, demonstrating the value of in situ time course experiments to capture a fraction of the microbial assemblage that is frequently difficult to observe in pre-drilled wells.
Collapse
Affiliation(s)
- Sean W Mullin
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, United States
| | - Greg Wanger
- Jet Propulsion Laboratory, Pasadena, CA, United States
| | - Brittany R Kruger
- Department of Microbiology, Southern Illinois University Carbondale, Carbondale, IL, United States
| | - Joshua D Sackett
- Division of Hydrologic Sciences, Desert Research Institute, Las Vegas, NV, United States
| | - Scott D Hamilton-Brehm
- Department of Microbiology, Southern Illinois University Carbondale, Carbondale, IL, United States
| | - Rohit Bhartia
- Jet Propulsion Laboratory, Pasadena, CA, United States
| | - Jan P Amend
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Duane P Moser
- Division of Hydrologic Sciences, Desert Research Institute, Las Vegas, NV, United States
| | - Victoria J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
9
|
Kirs M, Kisand V, Nelson CE, Dudoit T, Moravcik PS. Distinct bacterial communities in tropical island aquifers. PLoS One 2020; 15:e0232265. [PMID: 32353009 PMCID: PMC7192444 DOI: 10.1371/journal.pone.0232265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 04/10/2020] [Indexed: 11/23/2022] Open
Abstract
The groundwater biome is a poorly characterized habitat hypothesized to harbor uniquely diverse bacterial communities; the degree to which these communities differ from associated soils is a central question in environmental microbiology. We characterized the Bacterial community composition in 37 aquifer and 32 surface soil samples across the island of O‘ahu, Hawaiʻi. Several bacterial phyla (Acetothermia, Omnitrophica, Parcubacteria, Peregrinibacteria) relatively abundant in the aquifer samples were rare to absent in the soils. Immense bacterial diversity detected in the deep aquifers indicates that these environments are not as homogenous as expected, but provide various niches and energy sources for wide variety of bacteria. A small proportion of OTUs were widespread in all the basal (0.63%) and all the dike aquifer (0.31%) samples. However, these core bacteria comprised an average of 31.8% (ranging 16.2%-62.0%) and 15.4% (0.1%-31.5%) of all sequences isolated from the basal and dike aquifers respectively. Bacterial community composition correlated significantly with the sodium, sulfate, potassium, total dissolved solids, nitrate, conductivity, and pH in the basal aquifers, while phosphate and bicarbonate levels were also highly important when dike water samples were included in the analyses. This was consistent with high relative abundance of putative chemolithoautoroph taxa in the aquifer communities relative to soils. Targeted molecular and culture-based fecal indicator microbial analyses indicated good water quality of aquifers. The dominance of unique, deeply branching lineages in tropical aquifers emphasizes a large adaptive potential in O‘ahu’s aquifers; variability among groundwater samples suggests that aquifer habitats are surprisingly variable potentially harboring a variety of chemolithotrophic energy sources. Although parallel analyses of conventional and alternative indicators indicated good groundwater quality, this study calls for groundwater monitoring programs which would consider public as well as ecosystem health.
Collapse
Affiliation(s)
- Marek Kirs
- Water Resources Research Center, University of Hawaiʻi at Mānoa, Honolulu, HI, United States of America
- * E-mail:
| | - Veljo Kisand
- Institute of Technology, Tartu University, Tartu, Estonia
| | - Craig E. Nelson
- Department of Oceanography and UH Sea Grant, Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawaiʻi at Mānoa, Honolulu, HI, United States of America
| | - Tineill Dudoit
- Water Resources Research Center, University of Hawaiʻi at Mānoa, Honolulu, HI, United States of America
| | - Philip S. Moravcik
- Water Resources Research Center, University of Hawaiʻi at Mānoa, Honolulu, HI, United States of America
| |
Collapse
|
10
|
Dutta A, Sar P, Sarkar J, Dutta Gupta S, Gupta A, Bose H, Mukherjee A, Roy S. Archaeal Communities in Deep Terrestrial Subsurface Underneath the Deccan Traps, India. Front Microbiol 2019; 10:1362. [PMID: 31379755 PMCID: PMC6646420 DOI: 10.3389/fmicb.2019.01362] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 05/31/2019] [Indexed: 11/13/2022] Open
Abstract
Archaeal community structure and potential functions within the deep, aphotic, oligotrophic, hot, igneous provinces of ∼65 Myr old basalt and its Archean granitic basement was explored through archaeal 16S rRNA gene amplicon sequencing from extracted environmental DNA of rocks. Rock core samples from three distinct horizons, basaltic (BS), transition (weathered granites) (TZ) and granitic (GR) showed limited organic carbon (4–48 mg/kg) and varied concentrations (<1.0–5000 mg/kg) of sulfate, nitrate, nitrite, iron and metal oxides. Quantitative PCR estimated the presence of nearly 103–104 archaeal cells per gram of rock. Archaeal communities within BS and GR horizons were distinct. The absence of any common OTU across the samples indicated restricted dispersal of archaeal cells. Younger, relatively organic carbon- and Fe2O3-rich BS rocks harbor Euryarchaeota, along with varied proportions of Thaumarchaeota and Crenarchaeota. Extreme acid loving, thermotolerant sulfur respiring Thermoplasmataceae, heterotrophic, ferrous-/H-sulfide oxidizing Ferroplasmaceae and Halobacteriaceae were more abundant and closely interrelated within BS rocks. Samples from the GR horizon represent a unique composition with higher proportions of Thaumarchaeota and uneven distribution of Euryarchaeota and Bathyarchaeota affiliated to Methanomicrobia, SAGMCG-1, FHMa11 terrestrial group, AK59 and unclassified taxa. Acetoclastic methanogenic Methanomicrobia, autotrophic SAGMCG-1 and MCG of Thaumarcheaota could be identified as the signature groups within the organic carbon lean GR horizon. Sulfur-oxidizing Sulfolobaceae was relatively more abundant in sulfate-rich amygdaloidal basalt and migmatitic gneiss samples. Methane-oxidizing ANME-3 populations were found to be ubiquitous, but their abundance varied greatly between the analyzed samples. Changes in diversity pattern among the BS and GR horizons highlighted the significance of local rock geochemistry, particularly the availability of organic carbon, Fe2O3 and other nutrients as well as physical constraints (temperature and pressure) in a niche-specific colonization of extremophilic archaeal communities. The study provided the first deep sequencing-based illustration of an intricate association between diverse extremophilic groups (acidophile-halophile-methanogenic), capable of sulfur/iron/methane metabolism and thus shed new light on their potential role in biogeochemical cycles and energy flow in deep biosphere hosted by hot, oligotrophic igneous crust.
Collapse
Affiliation(s)
- Avishek Dutta
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India.,School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Pinaki Sar
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Jayeeta Sarkar
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Srimanti Dutta Gupta
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Abhishek Gupta
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Himadri Bose
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Abhijit Mukherjee
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India.,Department of Geology and Geophysics, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Sukanta Roy
- Ministry of Earth Sciences, Borehole Geophysics Research Laboratory, Karad, India.,CSIR-National Geophysical Research Institute, Hyderabad, India
| |
Collapse
|
11
|
Exploration of deep terrestrial subsurface microbiome in Late Cretaceous Deccan traps and underlying Archean basement, India. Sci Rep 2018; 8:17459. [PMID: 30498254 PMCID: PMC6265293 DOI: 10.1038/s41598-018-35940-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 11/05/2018] [Indexed: 11/08/2022] Open
Abstract
Scientific deep drilling at Koyna, western India provides a unique opportunity to explore microbial life within deep biosphere hosted by ~65 Myr old Deccan basalt and Archaean granitic basement. Characteristic low organic carbon content, mafic/felsic nature but distinct trend in sulfate and nitrate concentrations demarcates the basaltic and granitic zones as distinct ecological habitats. Quantitative PCR indicates a depth independent distribution of microorganisms predominated by bacteria. Abundance of dsrB and mcrA genes are relatively higher (at least one order of magnitude) in basalt compared to granite. Bacterial communities are dominated by Alpha-, Beta-, Gammaproteobacteria, Actinobacteria and Firmicutes, whereas Euryarchaeota is the major archaeal group. Strong correlation among the abundance of autotrophic and heterotrophic taxa is noted. Bacteria known for nitrite, sulfur and hydrogen oxidation represent the autotrophs. Fermentative, nitrate/sulfate reducing and methane metabolising microorganisms represent the heterotrophs. Lack of shared operational taxonomic units and distinct clustering of major taxa indicate possible community isolation. Shotgun metagenomics corroborate that chemolithoautotrophic assimilation of carbon coupled with fermentation and anaerobic respiration drive this deep biosphere. This first report on the geomicrobiology of the subsurface of Deccan traps provides an unprecedented opportunity to understand microbial composition and function in the terrestrial, igneous rock-hosted, deep biosphere.
Collapse
|
12
|
Bell E, Lamminmäki T, Alneberg J, Andersson AF, Qian C, Xiong W, Hettich RL, Balmer L, Frutschi M, Sommer G, Bernier-Latmani R. Biogeochemical Cycling by a Low-Diversity Microbial Community in Deep Groundwater. Front Microbiol 2018; 9:2129. [PMID: 30245678 PMCID: PMC6137086 DOI: 10.3389/fmicb.2018.02129] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/20/2018] [Indexed: 11/13/2022] Open
Abstract
Olkiluoto, an island on the south-west coast of Finland, will host a deep geological repository for the storage of spent nuclear fuel. Microbially induced corrosion from the generation of sulphide is therefore a concern as it could potentially compromise the longevity of the copper waste canisters. Groundwater at Olkiluoto is geochemically stratified with depth and elevated concentrations of sulphide are observed when sulphate-rich and methane-rich groundwaters mix. Particularly high sulphide is observed in methane-rich groundwater from a fracture at 530.6 mbsl, where mixing with sulphate-rich groundwater occurred as the result of an open drill hole connecting two different fractures at different depths. To determine the electron donors fuelling sulphidogenesis, we combined geochemical, isotopic, metagenomic and metaproteomic analyses. This revealed a low diversity microbial community fuelled by hydrogen and organic carbon. Sulphur and carbon isotopes of sulphate and dissolved inorganic carbon, respectively, confirmed that sulphate reduction was ongoing and that CO2 came from the degradation of organic matter. The results demonstrate the impact of introducing sulphate to a methane-rich groundwater with limited electron acceptors and provide insight into extant metabolisms in the terrestrial subsurface.
Collapse
Affiliation(s)
- Emma Bell
- Environmental Microbiology Laboratory, Environmental Engineering Institute, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Johannes Alneberg
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Anders F Andersson
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Chen Qian
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Weili Xiong
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Robert L Hettich
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Louise Balmer
- Environmental Microbiology Laboratory, Environmental Engineering Institute, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Manon Frutschi
- Environmental Microbiology Laboratory, Environmental Engineering Institute, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Guillaume Sommer
- Environmental Microbiology Laboratory, Environmental Engineering Institute, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Rizlan Bernier-Latmani
- Environmental Microbiology Laboratory, Environmental Engineering Institute, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
13
|
Lopez-Fernandez M, Broman E, Turner S, Wu X, Bertilsson S, Dopson M. Investigation of viable taxa in the deep terrestrial biosphere suggests high rates of nutrient recycling. FEMS Microbiol Ecol 2018; 94:5040220. [PMID: 29931252 PMCID: PMC6030916 DOI: 10.1093/femsec/fiy121] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/15/2018] [Indexed: 11/14/2022] Open
Abstract
The deep biosphere is the largest 'bioreactor' on earth, and microbes inhabiting this biome profoundly influence global nutrient and energy cycles. An important question for deep biosphere microbiology is whether or not specific populations are viable. To address this, we used quantitative PCR and high throughput 16S rRNA gene sequencing of total and viable cells (i.e. with an intact cellular membrane) from three groundwaters with different ages and chemical constituents. There were no statistically significant differences in 16S rRNA gene abundances and microbial diversity between total and viable communities. This suggests that populations were adapted to prevailing oligotrophic conditions and that non-viable cells are rapidly degraded and recycled into new biomass. With higher concentrations of organic carbon, the modern marine and undefined mixed waters hosted a community with a larger range of predicted growth strategies than the ultra-oligotrophic old saline water. These strategies included fermentative and potentially symbiotic lifestyles by candidate phyla that typically have streamlined genomes. In contrast, the old saline waters had more 16S rRNA gene sequences in previously cultured lineages able to oxidize hydrogen and fix carbon dioxide. This matches the paradigm of a hydrogen and carbon dioxide-fed chemolithoautotrophic deep biosphere.
Collapse
Affiliation(s)
- Margarita Lopez-Fernandez
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Barlastgatan 11, Kalmar, Sweden
| | - Elias Broman
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Barlastgatan 11, Kalmar, Sweden
| | - Stephanie Turner
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Barlastgatan 11, Kalmar, Sweden
| | - Xiaofen Wu
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Barlastgatan 11, Kalmar, Sweden
| | - Stefan Bertilsson
- Department of Ecology and Genetics, Limnology and Science for Life Laboratory, Uppsala University, Norbyvägen 18D, Uppsala, Sweden
| | - Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Barlastgatan 11, Kalmar, Sweden
| |
Collapse
|
14
|
Ancient Microbial Activity in Deep Hydraulically Conductive Fracture Zones within the Forsmark Target Area for Geological Nuclear Waste Disposal, Sweden. GEOSCIENCES 2018. [DOI: 10.3390/geosciences8060211] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
15
|
Escudero C, Oggerin M, Amils R. The deep continental subsurface: the dark biosphere. Int Microbiol 2018; 21:3-14. [DOI: 10.1007/s10123-018-0009-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 11/28/2022]
|
16
|
Abstract
Secondary ion mass spectrometry (SIMS) has become an increasingly utilized tool in biologically relevant studies. Of these, high lateral resolution methodologies using the NanoSIMS 50/50L have been especially powerful within many biological fields over the past decade. Here, the authors provide a review of this technology, sample preparation and analysis considerations, examples of recent biological studies, data analyses, and current outlooks. Specifically, the authors offer an overview of SIMS and development of the NanoSIMS. The authors describe the major experimental factors that should be considered prior to NanoSIMS analysis and then provide information on best practices for data analysis and image generation, which includes an in-depth discussion of appropriate colormaps. Additionally, the authors provide an open-source method for data representation that allows simultaneous visualization of secondary electron and ion information within a single image. Finally, the authors present a perspective on the future of this technology and where they think it will have the greatest impact in near future.
Collapse
|
17
|
Ino K, Hernsdorf AW, Konno U, Kouduka M, Yanagawa K, Kato S, Sunamura M, Hirota A, Togo YS, Ito K, Fukuda A, Iwatsuki T, Mizuno T, Komatsu DD, Tsunogai U, Ishimura T, Amano Y, Thomas BC, Banfield JF, Suzuki Y. Ecological and genomic profiling of anaerobic methane-oxidizing archaea in a deep granitic environment. ISME JOURNAL 2017; 12:31-47. [PMID: 28885627 DOI: 10.1038/ismej.2017.140] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 07/06/2017] [Accepted: 07/25/2017] [Indexed: 01/14/2023]
Abstract
Recent single-gene-based surveys of deep continental aquifers demonstrated the widespread occurrence of archaea related to Candidatus Methanoperedens nitroreducens (ANME-2d) known to mediate anaerobic oxidation of methane (AOM). However, it is unclear whether ANME-2d mediates AOM in the deep continental biosphere. In this study, we found the dominance of ANME-2d in groundwater enriched in sulfate and methane from a 300-m deep underground borehole in granitic rock. A near-complete genome of one representative species of the ANME-2d obtained from the underground borehole has most of functional genes required for AOM and assimilatory sulfate reduction. The genome of the subsurface ANME-2d is different from those of other members of ANME-2d by lacking functional genes encoding nitrate and nitrite reductases and multiheme cytochromes. In addition, the subsurface ANME-2d genome contains a membrane-bound NiFe hydrogenase gene putatively involved in respiratory H2 oxidation, which is different from those of other methanotrophic archaea. Short-term incubation of microbial cells collected from the granitic groundwater with 13C-labeled methane also demonstrates that AOM is linked to microbial sulfate reduction. Given the prominence of granitic continental crust and sulfate and methane in terrestrial subsurface fluids, we conclude that AOM may be widespread in the deep continental biosphere.
Collapse
Affiliation(s)
- Kohei Ino
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Alex W Hernsdorf
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Uta Konno
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Mariko Kouduka
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Katsunori Yanagawa
- Graduate School of Environmental Engineering, The University of Kitakyushu, Kitakyushu, Fukuoka, Japan
| | - Shingo Kato
- Ore Genesis Research Unit, Project Team for Development of New-generation Research Protocol for Submarine Resources, JAMSTEC (Japan Agency for Marine-Earth Science and Technology), Yokosuka City, Kanagawa, Japan
| | - Michinari Sunamura
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Akinari Hirota
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Yoko S Togo
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Kazumasa Ito
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Akari Fukuda
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan.,Japan Atomic Energy Agency, Naka-gun, Ibaraki, Japan
| | | | | | - Daisuke D Komatsu
- Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Urumu Tsunogai
- Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Toyoho Ishimura
- National Institute of Technology, Ibaraki College, Hitachinaka-shi, Ibaraki, Japan
| | - Yuki Amano
- Japan Atomic Energy Agency, Naka-gun, Ibaraki, Japan
| | - Brian C Thomas
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Jillian F Banfield
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.,Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yohey Suzuki
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|