1
|
Girija GK, Tseng LC, Muthu P, Chen YL, Ho YN, Hwang JS. Microbiome flexibility enhances the resilience of the potentially invasive coral Tubastraea aurea to abrupt environmental changes: Insights from a shallow water hydrothermal vent transplantation study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176792. [PMID: 39389143 DOI: 10.1016/j.scitotenv.2024.176792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/18/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
To comprehend the effects of potentially invasive coral Tubastraea aurea on marine ecosystems, it is crucial to understand their adaptive strategies to survive environmental changes and perturbations. Therefore, a cross-transplantation study was conducted to assess the microbiome's role in the resilience of T. aurea to sudden environmental changes.Hydrographic analyses revealed distinct ecological conditions at two sites: a hydrothermal vent (HV) site, characterized by harsh environmental conditions serving as a natural laboratory for future oceanic changes, and a regular coastal site Fulong (FU). Both sites showed significant differences in pH, temperature, and dissolved oxygen. Using Oxford Nanopore Technologies, we examined bacterial dynamics in coral tissue, mucus and ambient sediment samples following cross-transplantation experiments. We observed a rapid shift in dominant bacterial groups post-transplantation with transplanted corals acquiring microbiomes similar to native corals from their respective sites within 16 days. The bacteria Endozoicomonas euniceicola and Ruegeria profundi were dominant in both native and transplanted corals, suggesting their critical role in coral resilience. Furthermore, the enrichment of certain bacterial taxa post-transplantation suggests that opportunistic species also contribute to host acclimatization. Functional profiling data indicated that there was site-specific adaptation because corals had acquired beneficial bacterial assemblages to assist them cope with environmental stressors. More specifically, there was a switch towards sulfur and nitrogen metabolism in corals that moved to high sulfidic environments, while corals transplanted into normal coastal environments showed enriched photoautotrophic processes due to their symbionts. Our study underscored the highly flexible microbiome of T. aurea and its pivotal role in facilitating host resilience to environmental perturbations, particularly in the context of its potential invasiveness. Hence, these findings contribute to the understanding of coral-microbiome dynamics and emphasize the necessity of considering microbially-mediated resilience in managing potentially invasive coral species in marine ecosystems around the world, especially as ocean conditions continue to change.
Collapse
Affiliation(s)
- Gowri Krishna Girija
- Institute of Marine Biology, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Li-Chun Tseng
- Institute of Marine Biology, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Priyanka Muthu
- Institute of Marine Biology, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Yu-Ling Chen
- Institute of Marine Biology, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Ying-Ning Ho
- Institute of Marine Biology, National Taiwan Ocean University, Keelung 202301, Taiwan; Centre of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202301, Taiwan; Taiwan Ocean Genome Center, National Taiwan Ocean University, Keelung 202301, Taiwan.
| | - Jiang-Shiou Hwang
- Institute of Marine Biology, National Taiwan Ocean University, Keelung 202301, Taiwan; Centre of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202301, Taiwan.
| |
Collapse
|
2
|
Neu AT, Torchin ME, Allen EE, Roy K. Microbiome divergence of marine gastropod species separated by the Isthmus of Panama. Appl Environ Microbiol 2024; 90:e0100324. [PMID: 39480095 PMCID: PMC11614449 DOI: 10.1128/aem.01003-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/22/2024] [Indexed: 11/02/2024] Open
Abstract
The rise of the Isthmus of Panama separated the populations of many marine organisms, which then diverged into new geminate sister species currently living in the Eastern Pacific Ocean and the Caribbean Sea. However, we know very little about how such evolutionary divergences of host species have shaped the compositions of their microbiomes. Here, we compared the microbiomes of whole-body and shell-surface samples of geminate species of marine gastropods in the genera Cerithium and Cerithideopsis to those of congeneric outgroups. Our results suggest that the effects of ~3 million years of separation and isolation on microbiome composition varied among host genera and between sample types within the same hosts. In the whole-body samples, microbiome compositions of geminate species pairs tended to be similar, likely due to host filtering, although the strength of this relationship varied among the two groups and across similarity metrics. Shell-surface microbiomes show contrasting patterns, with co-divergence between the host taxa and a small number of microbial clades evident in Cerithideopsis but not Cerithium. These results suggest that (i) isolation of host populations after the rise of the Isthmus of Panama affected microbiomes of geminate hosts in a complex and host-specific manner, and (ii) host-associated microbial taxa respond differently to vicariance events than the hosts themselves.IMPORTANCEWhile considerable work has been done on evolutionary divergences of marine species in response to the rise of the Isthmus of Panama, which separated two previously connected oceans, how this event shaped the microbiomes of these marine hosts remains poorly known. Using whole-body and shell-surface microbiomes of closely related gastropod species from opposite sides of the Isthmus, we show that divergences of microbial taxa after the formation of the Isthmus are often not concordant with those of their gastropod hosts. Our results show that evolutionary responses of marine gastropod-associated microbiomes to major environmental perturbations are complex and are shaped more by local environments than host evolutionary history.
Collapse
Affiliation(s)
- Alexander T. Neu
- Department of Ecology,
Behavior and Evolution, School of Biological Sciences, University of
California San Diego, La
Jolla, California, USA
- Smithsonian Tropical
Research Institute, Ancon,
Balboa, Panama
| | - Mark E. Torchin
- Smithsonian Tropical
Research Institute, Ancon,
Balboa, Panama
| | - Eric E. Allen
- Department of
Molecular Biology, School of Biological Sciences, University of
California San Diego, La
Jolla, California, USA
- Marine Biology
Research Division, Scripps Institution of Oceanography, University of
California San Diego, La
Jolla, California, USA
| | - Kaustuv Roy
- Department of Ecology,
Behavior and Evolution, School of Biological Sciences, University of
California San Diego, La
Jolla, California, USA
| |
Collapse
|
3
|
Miller TC, Bentlage B. Seasonal dynamics and environmental drivers of tissue and mucus microbiomes in the staghorn coral Acropora pulchra. PeerJ 2024; 12:e17421. [PMID: 38827308 PMCID: PMC11144401 DOI: 10.7717/peerj.17421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/28/2024] [Indexed: 06/04/2024] Open
Abstract
Background Rainfall-induced coastal runoff represents an important environmental impact in near-shore coral reefs that may affect coral-associated bacterial microbiomes. Shifts in microbiome community composition and function can stress corals and ultimately cause mortality and reef declines. Impacts of environmental stress may be site specific and differ between coral microbiome compartments (e.g., tissue versus mucus). Coastal runoff and associated water pollution represent a major stressor for near-shore reef-ecosystems in Guam, Micronesia. Methods Acropora pulchra colonies growing on the West Hagåtña reef flat in Guam were sampled over a period of 8 months spanning the 2021 wet and dry seasons. To examine bacterial microbiome diversity and composition, samples of A. pulchra tissue and mucus were collected during late April, early July, late September, and at the end of December. Samples were collected from populations in two different habitat zones, near the reef crest (farshore) and close to shore (nearshore). Seawater samples were collected during the same time period to evaluate microbiome dynamics of the waters surrounding coral colonies. Tissue, mucus, and seawater microbiomes were characterized using 16S DNA metabarcoding in conjunction with Illumina sequencing. In addition, water samples were collected to determine fecal indicator bacteria (FIB) concentrations as an indicator of water pollution. Water temperatures were recorded using data loggers and precipitation data obtained from a nearby rain gauge. The correlation structure of environmental parameters (temperature and rainfall), FIB concentrations, and A. pulchra microbiome diversity was evaluated using a structural equation model. Beta diversity analyses were used to investigate spatio-temporal trends of microbiome composition. Results Acropora pulchra microbiome diversity differed between tissues and mucus, with mucus microbiome diversity being similar to the surrounding seawater. Rainfall and associated fluctuations of FIB concentrations were correlated with changes in tissue and mucus microbiomes, indicating their role as drivers of A. pulchra microbiome diversity. A. pulchra tissue microbiome composition remained relatively stable throughout dry and wet seasons; tissues were dominated by Endozoicomonadaceae, coral endosymbionts and putative indicators of coral health. In nearshore A. pulchra tissue microbiomes, Simkaniaceae, putative obligate coral endosymbionts, were more abundant than in A. pulchra colonies growing near the reef crest (farshore). A. pulchra mucus microbiomes were more diverse during the wet season than the dry season, a distinction that was also associated with drastic shifts in microbiome composition. This study highlights the seasonal dynamics of coral microbiomes and demonstrates that microbiome diversity and composition may differ between coral tissues and the surface mucus layer.
Collapse
Affiliation(s)
- Therese C. Miller
- Marine Laboratory, University of Guam, Mangilao, Guam, USA
- Institute of Marine Science, University of Auckland, Auckland, New Zealand
- Cawthron Institute, Nelson, New Zealand
| | | |
Collapse
|
4
|
Howard RD, Schul MD, Rodriguez Bravo LM, Altieri AH, Meyer JL. Shifts in the coral microbiome in response to in situ experimental deoxygenation. Appl Environ Microbiol 2023; 89:e0057723. [PMID: 37916820 PMCID: PMC10686059 DOI: 10.1128/aem.00577-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/12/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Marine hypoxia is a threat for corals but has remained understudied in tropical regions where coral reefs are abundant. Though microbial symbioses can alleviate the effects of ecological stress, we do not yet understand the taxonomic or functional response of the coral microbiome to hypoxia. In this study, we experimentally lowered oxygen levels around Siderastrea siderea and Agaricia lamarcki colonies in situ to observe changes in the coral microbiome in response to deoxygenation. Our results show that hypoxia triggers a stochastic change of the microbiome overall, with some bacterial families changing deterministically after just 48 hours of exposure. These families represent an increase in anaerobic and opportunistic taxa in the microbiomes of both coral species. Thus, marine deoxygenation destabilizes the coral microbiome and increases bacterial opportunism. This work provides novel and fundamental knowledge of the microbial response in coral during hypoxia and may provide insight into holobiont function during stress.
Collapse
Affiliation(s)
- Rachel D. Howard
- Department of Soil, Water, and Ecosystem Sciences, University of Florida, Gainesville, Florida, USA
| | - Monica D. Schul
- Department of Soil, Water, and Ecosystem Sciences, University of Florida, Gainesville, Florida, USA
| | - Lucia M. Rodriguez Bravo
- Smithsonian Tropical Research Institute, Balboa, Ancon, Panama
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Andrew H. Altieri
- Smithsonian Tropical Research Institute, Balboa, Ancon, Panama
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, USA
| | - Julie L. Meyer
- Department of Soil, Water, and Ecosystem Sciences, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
5
|
Pei PT, Liu L, Jing XL, Liu XL, Sun LY, Gao C, Cui XH, Wang J, Ma ZL, Song SY, Sun ZH, Wang CY. Meta-analysis reveals variations in microbial communities from diverse stony coral taxa at different geographical distances. Front Microbiol 2023; 14:1087750. [PMID: 37520377 PMCID: PMC10374221 DOI: 10.3389/fmicb.2023.1087750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 06/28/2023] [Indexed: 08/01/2023] Open
Abstract
Coral-associated microbial communities play a vital role in underpinning the health and resilience of reef ecosystems. Previous studies have demonstrated that the microbial communities of corals are affected by multiple factors, mainly focusing on host species and geolocation. However, up-to-date, insight into how the coral microbiota is structured by vast geographic distance with rich taxa is deficient. In the present study, the coral microbiota in six stony coral species collected from the coastal area of three countries, including United States of America (USA), Australia and Fiji, was used for analysis. It was found that the geographic influence on the coral microbiota was stronger than the coral host influence, even though both were significant. Interestingly, the contribution of the deterministic process to bacterial community composition increased as geographical distance grew. A total of 65 differentially abundant features of functions in coral microbial communities were identified to be associated with three geolocations. While in the same coastal area of USA, the similar relationship of coral microbiota was consistent with the phylogenetic relationship of coral hosts. In contrast to the phylum Proteobacteria, which was most abundant in other coral species in USA, Cyanobacteria was the most abundant phylum in Orbicella faveolata. The above findings may help to better understand the multiple natural driving forces shaping the coral microbial community to contribute to defining the healthy baseline of the coral microbiome.
Collapse
Affiliation(s)
- Peng-Tao Pei
- Key Laboratory of Marine Drugs, The Ministry of Education of China, Institute of Evolution and Marine Biodiversity, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- School of Pharmacy, Fujian Health College, Fuzhou, China
- Single-Cell Center, Chinese Academy of Science Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Lu Liu
- School of Pharmacy, Fujian Health College, Fuzhou, China
- Single-Cell Center, Chinese Academy of Science Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Li Jing
- High Performance Computing and System Simulation Platform, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Xiao-Lu Liu
- Single-Cell Center, Chinese Academy of Science Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lu-Yang Sun
- Single-Cell Center, Chinese Academy of Science Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chen Gao
- Single-Cell Center, Chinese Academy of Science Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Xiao-Han Cui
- Single-Cell Center, Chinese Academy of Science Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- Single-Cell Center, Chinese Academy of Science Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Department of Mathematics, Ocean University of China, Qingdao, China
| | - Zhong-Lian Ma
- Key Laboratory of Marine Drugs, The Ministry of Education of China, Institute of Evolution and Marine Biodiversity, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Shu-Yue Song
- Key Laboratory of Marine Drugs, The Ministry of Education of China, Institute of Evolution and Marine Biodiversity, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Zhi-Hua Sun
- Department of Mathematics, Ocean University of China, Qingdao, China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, Institute of Evolution and Marine Biodiversity, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| |
Collapse
|
6
|
Corinaldesi C, Varrella S, Tangherlini M, Dell'Anno A, Canensi S, Cerrano C, Danovaro R. Changes in coral forest microbiomes predict the impact of marine heatwaves on habitat-forming species down to mesophotic depths. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153701. [PMID: 35134420 DOI: 10.1016/j.scitotenv.2022.153701] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Global warming is causing the increase in intensity and frequency of heatwaves, which are often associated with mass mortality events of marine organisms from shallow and mesophotic rocky habitats, including gorgonians and other sessile organisms. We investigated the microbiome responses of the gorgonians Paramuricea clavata, Eunicella cavolini, and the red coral Corallium rubrum to the episodic temperature anomalies detected in the North Western Mediterranean, during August 2011. Although the investigated corals showed no signs of visible necrosis, the abundance of associated Bacteria and Archaea increased with increasing seawater temperature, suggesting their temperature-dependent proliferation. Coral microbiomes were highly sensitive to thermal anomaly amplitude and exhibited increased bacterial diversity to greater thermal shifts. This effect was explained by the decline of dominant bacterial members and the increase of new, rare and opportunistic taxa, including pathogens, revealing a direct effect of heatwave-induced alteration of the microbiomes and not a secondary consequence of coral necrosis.
Collapse
Affiliation(s)
- Cinzia Corinaldesi
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Stefano Varrella
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Michael Tangherlini
- Stazione Zoologica Anton Dohrn, Fano Marine Centre, Viale Adriatico 1-N, 61032 Fano, Italy
| | - Antonio Dell'Anno
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Sara Canensi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Carlo Cerrano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Roberto Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| |
Collapse
|
7
|
Haydon TD, Suggett DJ, Siboni N, Kahlke T, Camp EF, Seymour JR. Temporal Variation in the Microbiome of Tropical and Temperate Octocorals. MICROBIAL ECOLOGY 2022; 83:1073-1087. [PMID: 34331071 DOI: 10.1007/s00248-021-01823-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Bacterial members of the coral holobiont play an important role in determining coral fitness. However, most knowledge of the coral microbiome has come from reef-building scleractinian corals, with far less known about the nature and importance of the microbiome of octocorals (subclass Octocorallia), which contribute significantly to reef biodiversity and functional complexity. We examined the diversity and structure of the bacterial component of octocoral microbiomes over summer and winter, with a focus on two temperate (Erythropodium hicksoni, Capnella gaboensis; Sydney Harbour) and two tropical (Sinularia sp., Sarcophyton sp.; Heron Island) species common to reefs in eastern Australia. Bacterial communities associated with these octocorals were also compared to common temperate (Plesiastrea versipora) and tropical (Acropora aspera) hard corals from the same reefs. Using 16S rRNA amplicon sequencing, bacterial diversity was found to be heterogeneous among octocorals, but we observed changes in composition between summer and winter for some species (C. gaboensis and Sinularia sp.), but not for others (E. hicksoni and Sarcophyton sp.). Bacterial community structure differed significantly between all octocoral species within both the temperate and tropical environments. However, on a seasonal basis, those differences were less pronounced. The microbiomes of C. gaboensis and Sinularia sp. were dominated by bacteria belonging to the genus Endozoicomonas, which were a key conserved feature of their core microbiomes. In contrast to previous studies, our analysis revealed that Endozoicomonas phylotypes are shared across different octocoral species, inhabiting different environments. Together, our data demonstrates that octocorals harbour a broad diversity of bacterial partners, some of which comprise 'core microbiomes' that potentially impart important functional roles to their hosts.
Collapse
Affiliation(s)
- Trent D Haydon
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - David J Suggett
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Nachshon Siboni
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Tim Kahlke
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Emma F Camp
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Justin R Seymour
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| |
Collapse
|
8
|
Briggs AA, Brown AL, Osenberg CW. Local versus site-level effects of algae on coral microbial communities. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210035. [PMID: 34540243 PMCID: PMC8441125 DOI: 10.1098/rsos.210035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Microbes influence ecological processes, including the dynamics and health of macro-organisms and their interactions with other species. In coral reefs, microbes mediate negative effects of algae on corals when corals are in contact with algae. However, it is unknown whether these effects extend to larger spatial scales, such as at sites with high algal densities. We investigated how local algal contact and site-level macroalgal cover influenced coral microbial communities in a field study at two islands in French Polynesia, Mo'orea and Mangareva. At 5 sites at each island, we sampled prokaryotic microbial communities (microbiomes) associated with corals, macroalgae, turf algae and water, with coral samples taken from individuals that were isolated from or in contact with turf or macroalgae. Algal contact and macroalgal cover had antagonistic effects on coral microbiome alpha and beta diversity. Additionally, coral microbiomes shifted and became more similar to macroalgal microbiomes at sites with high macroalgal cover and with algal contact, although the microbial taxa that changed varied by island. Our results indicate that coral microbiomes can be affected by algae outside of the coral's immediate vicinity, and local- and site-level effects of algae can obscure each other's effects when both scales are not considered.
Collapse
Affiliation(s)
- Amy A. Briggs
- Odum School of Ecology, University of Georgia, Athens, GA, USA
| | - Anya L. Brown
- Odum School of Ecology, University of Georgia, Athens, GA, USA
- Woods Hole Oceanographic Institution, Woods Hole, MA, USA
- School of Natural Resources and Environment, University of Florida, USA
| | | |
Collapse
|
9
|
Pootakham W, Mhuantong W, Yoocha T, Sangsrakru D, Kongkachana W, Sonthirod C, Naktang C, Jomchai N, U-Thoomporn S, Yeemin T, Pengsakun S, Sutthacheep M, Tangphatsornruang S. Taxonomic profiling of Symbiodiniaceae and bacterial communities associated with Indo-Pacific corals in the Gulf of Thailand using PacBio sequencing of full-length ITS and 16S rRNA genes. Genomics 2021; 113:2717-2729. [PMID: 34089786 DOI: 10.1016/j.ygeno.2021.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/28/2021] [Accepted: 06/01/2021] [Indexed: 11/15/2022]
Abstract
Corals live with complex assemblages of microbes including bacteria, the dinoflagellate Symbiodiniaceae, fungi and viruses in a coral holobiont. These coral-associated microorganisms play an important role in their host fitness and survival. Here, we investigated the structure and diversity of algal and bacterial communities associated with five Indo-Pacific coral species, using full-length 16S rRNA and internal transcribed spacer sequences. While the dinoflagellate communities associated with Poriteslutea were dominated with Symbiodiniaceae genus Cladocopium, the other four coral hosts were associated mainly with members of the Durusdinium genus, suggesting that host species was one of the underlying factors influencing the structure and composition of dinoflagellate communities associated with corals in the Gulf of Thailand. Alphaproteobacteria dominated the microbiomes of Pocillopora spp. while Pavonafrondifera and P. lutea were associated primarily with Gammaproteobacteria. Finally, we demonstrated a superior performance of full-length 16S rRNA sequences in achieving species-resolution taxonomic classification of coral-associated microbiota.
Collapse
Affiliation(s)
- Wirulda Pootakham
- National Omics Center (NOC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand.
| | - Wuttichai Mhuantong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Thippawan Yoocha
- National Omics Center (NOC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Duangjai Sangsrakru
- National Omics Center (NOC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Wasitthee Kongkachana
- National Omics Center (NOC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Chutima Sonthirod
- National Omics Center (NOC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Chaiwat Naktang
- National Omics Center (NOC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Nukoon Jomchai
- National Omics Center (NOC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Sonicha U-Thoomporn
- National Omics Center (NOC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Thammasak Yeemin
- Marine Biodiversity Research Group, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Sittiporn Pengsakun
- Marine Biodiversity Research Group, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Makamas Sutthacheep
- Marine Biodiversity Research Group, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | | |
Collapse
|
10
|
Doering T, Wall M, Putchim L, Rattanawongwan T, Schroeder R, Hentschel U, Roik A. Towards enhancing coral heat tolerance: a "microbiome transplantation" treatment using inoculations of homogenized coral tissues. MICROBIOME 2021; 9:102. [PMID: 33957989 PMCID: PMC8103578 DOI: 10.1186/s40168-021-01053-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/18/2021] [Indexed: 05/21/2023]
Abstract
BACKGROUND Microbiome manipulation could enhance heat tolerance and help corals survive the pressures of ocean warming. We conducted coral microbiome transplantation (CMT) experiments using the reef-building corals, Pocillopora and Porites, and investigated whether this technique can benefit coral heat resistance while modifying the bacterial microbiome. Initially, heat-tolerant donors were identified in the wild. We then used fresh homogenates made from coral donor tissues to inoculate conspecific, heat-susceptible recipients and documented their bleaching responses and microbiomes by 16S rRNA gene metabarcoding. RESULTS Recipients of both coral species bleached at lower rates compared to the control group when exposed to short-term heat stress (34 °C). One hundred twelve (Pocillopora sp.) and sixteen (Porites sp.) donor-specific bacterial species were identified in the microbiomes of recipients indicating transmission of bacteria. The amplicon sequence variants of the majority of these transmitted bacteria belonged to known, putatively symbiotic bacterial taxa of corals and were linked to the observed beneficial effect on the coral stress response. Microbiome dynamics in our experiments support the notion that microbiome community evenness and dominance of one or few bacterial species, rather than host-species identity, were drivers for microbiome stability in a holobiont context. CONCLUSIONS Our results suggest that coral recipients likely favor the uptake of putative bacterial symbionts, recommending to include these taxonomic groups in future coral probiotics screening efforts. Our study suggests a scenario where these donor-specific bacterial symbionts might have been more efficient in supporting the recipients to resist heat stress compared to the native symbionts present in the control group. These findings urgently call for further experimental investigation of the mechanisms of action underlying the beneficial effect of CMT and for field-based long-term studies testing the persistence of the effect. Video abstract.
Collapse
Affiliation(s)
- Talisa Doering
- GEOMAR, Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Marlene Wall
- GEOMAR, Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Lalita Putchim
- Phuket Marine Biological Center (PMBC), Phuket, Thailand
| | | | | | - Ute Hentschel
- GEOMAR, Helmholtz Centre for Ocean Research, Kiel, Germany
- Christian-Albrechts University of Kiel, Kiel, Germany
| | - Anna Roik
- GEOMAR, Helmholtz Centre for Ocean Research, Kiel, Germany.
| |
Collapse
|
11
|
Dunphy CM, Vollmer SV, Gouhier TC. Host-microbial systems as glass cannons: Explaining microbiome stability in corals exposed to extrinsic perturbations. J Anim Ecol 2021; 90:1044-1057. [PMID: 33666231 DOI: 10.1111/1365-2656.13466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/25/2021] [Indexed: 01/04/2023]
Abstract
Although stability is relatively well understood in macro-organisms, much less is known about its drivers in host-microbial systems where processes operating at multiple levels of biological organisation jointly regulate the microbiome. We conducted an experiment to examine the microbiome stability of three Caribbean corals (Acropora cervicornis, Pseudodiploria strigosa and Porites astreoides) by placing them in aquaria and exposing them to a pulse perturbation consisting of a large dose of broad-spectrum antibiotics before transplanting them into the field. We found that coral hosts harboured persistent, species-specific microbiomes. Stability was generally high but variable across coral species, with A. cervicornis microbiomes displaying the lowest community turnover in both the non-perturbed and the perturbed field transplants. Interestingly, the microbiome of P. astreoides was stable in the non-perturbed field transplants, but unstable in the perturbed field transplants. A mathematical model of host-microbial dynamics helped resolve this paradox by showing that when microbiome regulation is driven by host sanctioning, both resistance and resilience to invasion are low and can lead to instability despite the high direct costs bourne by corals. Conversely, when microbiome regulation is mainly associated with microbial processes, both resistance and resilience to invasion are high and promote stability at no direct cost to corals. We suggest that corals that are mainly regulated by microbial processes can be likened to 'glass cannons' because the high stability they exhibit in the field is due to their microbiome's potent suppression of invasive microbes. However, these corals are susceptible to destabilisation when exposed to perturbations that target the vulnerable members of their microbiomes who are responsible for mounting such powerful attacks against invasive microbes. The differential patterns of stability exhibited by P. astreoides across perturbed and non-perturbed field transplants suggest it is a 'glass cannon' whose microbiome is regulated by microbial processes, whereas A. cervicornis' consistent patterns of stability suggest that its microbiome is mainly regulated by host-level processes. Our results show that understanding how processes that operate at multiple levels of biological organisation interact to regulate microbiomes is critical for predicting the effects of environmental perturbations on host-microbial systems.
Collapse
Affiliation(s)
| | | | - Tarik C Gouhier
- Marine Science Center, Northeastern University, Nahant, MA, USA
| |
Collapse
|
12
|
Vega Thurber R, Mydlarz LD, Brandt M, Harvell D, Weil E, Raymundo L, Willis BL, Langevin S, Tracy AM, Littman R, Kemp KM, Dawkins P, Prager KC, Garren M, Lamb J. Deciphering Coral Disease Dynamics: Integrating Host, Microbiome, and the Changing Environment. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.575927] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Diseases of tropical reef organisms is an intensive area of study, but despite significant advances in methodology and the global knowledge base, identifying the proximate causes of disease outbreaks remains difficult. The dynamics of infectious wildlife diseases are known to be influenced by shifting interactions among the host, pathogen, and other members of the microbiome, and a collective body of work clearly demonstrates that this is also the case for the main foundation species on reefs, corals. Yet, among wildlife, outbreaks of coral diseases stand out as being driven largely by a changing environment. These outbreaks contributed not only to significant losses of coral species but also to whole ecosystem regime shifts. Here we suggest that to better decipher the disease dynamics of corals, we must integrate more holistic and modern paradigms that consider multiple and variable interactions among the three major players in epizootics: the host, its associated microbiome, and the environment. In this perspective, we discuss how expanding the pathogen component of the classic host-pathogen-environment disease triad to incorporate shifts in the microbiome leading to dysbiosis provides a better model for understanding coral disease dynamics. We outline and discuss issues arising when evaluating each component of this trio and make suggestions for bridging gaps between them. We further suggest that to best tackle these challenges, researchers must adjust standard paradigms, like the classic one pathogen-one disease model, that, to date, have been ineffectual at uncovering many of the emergent properties of coral reef disease dynamics. Lastly, we make recommendations for ways forward in the fields of marine disease ecology and the future of coral reef conservation and restoration given these observations.
Collapse
|
13
|
Klinges G, Maher RL, Vega Thurber RL, Muller EM. Parasitic 'Candidatus Aquarickettsia rohweri' is a marker of disease susceptibility in Acropora cervicornis but is lost during thermal stress. Environ Microbiol 2020; 22:5341-5355. [PMID: 32975356 PMCID: PMC7820986 DOI: 10.1111/1462-2920.15245] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/16/2020] [Accepted: 09/20/2020] [Indexed: 01/04/2023]
Abstract
Holobiont phenotype results from a combination of host and symbiont genotypes as well as from prevailing environmental conditions that alter the relationships among symbiotic members. Corals exemplify this concept, where shifts in the algal symbiont community can lead to some corals becoming more or less thermally tolerant. Despite linkage between coral bleaching and disease, the roles of symbiotic bacteria in holobiont resistance and susceptibility to disease remains less well understood. This study thus characterizes the microbiome of disease-resistant and -susceptible Acropora cervicornis coral genotypes (hereafter referred to simply as 'genotypes') before and after high temperature-mediated bleaching. We found that the intracellular bacterial parasite 'Ca. Aquarickettsia rohweri' was strikingly abundant in disease-susceptible genotypes. Disease-resistant genotypes, however, had notably more diverse and even communities, with correspondingly low abundances of 'Ca. Aquarickettsia'. Bleaching caused a dramatic reduction of 'Ca. Aquarickettsia' within disease-susceptible corals and led to an increase in bacterial community dispersion, as well as the proliferation of opportunists. Our data support the hypothesis that 'Ca. Aquarickettsia' species increase coral disease risk through two mechanisms: (i) the creation of host nutritional deficiencies leading to a compromised host-symbiont state and (ii) the opening of niche space for potential pathogens during thermal stress.
Collapse
Affiliation(s)
- Grace Klinges
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - Rebecca L Maher
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - Rebecca L Vega Thurber
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - Erinn M Muller
- Mote Marine Laboratory, 1600 Ken Thompson Pkwy, Sarasota, FL, 34236, USA
| |
Collapse
|
14
|
Wainwright BJ, Zahn GL, Afiq-Rosli L, Tanzil JTI, Huang D. Host age is not a consistent predictor of microbial diversity in the coral Porites lutea. Sci Rep 2020; 10:14376. [PMID: 32873814 PMCID: PMC7463248 DOI: 10.1038/s41598-020-71117-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 08/07/2020] [Indexed: 12/19/2022] Open
Abstract
Corals harbour diverse microbial communities that can change in composition as the host grows in age and size. Larger and older colonies have been shown to host a higher diversity of microbial taxa and this has been suggested to be a consequence of their more numerous, complex and varied micro-niches available. However, the effects of host age on community structure and diversity of microbial associates remain equivocal in the few studies performed to date. To test this relationship more robustly, we use established techniques to accurately determine coral host age by quantifying annual skeletal banding patterns, and utilise high-throughput sequencing to comprehensively characterise the microbiome of the common reef-building coral, Porites lutea. Our results indicate no clear link between coral age and microbial diversity or richness. Different sites display distinct age-dependent diversity patterns, with more anthropogenically impacted reefs appearing to show a winnowing of microbial diversity with host age, possibly a consequence of corals adapting to degraded environments. Less impacted sites do not show a signature of winnowing, and we observe increases in microbial richness and diversity as the host ages. Furthermore, we demonstrate that corals of a similar age from the same reef can show very different microbial richness and diversity.
Collapse
Affiliation(s)
| | - Geoffrey L Zahn
- Biology Department, Utah Valley University, 800 W. University Parkway, Orem, UT, 84058, USA
| | - Lutfi Afiq-Rosli
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore
- Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore, 119227, Singapore
| | - Jani T I Tanzil
- Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore, 119227, Singapore
| | - Danwei Huang
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore
- Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore, 119227, Singapore
| |
Collapse
|
15
|
Miller N, Maneval P, Manfrino C, Frazer TK, Meyer JL. Spatial distribution of microbial communities among colonies and genotypes in nursery-reared Acropora cervicornis. PeerJ 2020; 8:e9635. [PMID: 32913671 PMCID: PMC7456258 DOI: 10.7717/peerj.9635] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022] Open
Abstract
Background The architecturally important coral species Acropora cervicornis and A. palmata were historically common in the Caribbean, but have declined precipitously since the early 1980s. Substantial resources are currently being dedicated to coral gardening and the subsequent outplanting of asexually reproduced colonies of Acropora, activities that provide abundant biomass for both restoration efforts and for experimental studies to better understand the ecology of these critically endangered coral species. Methods We characterized the bacterial and archaeal community composition of A. cervicornis corals in a Caribbean nursery to determine the heterogeneity of the microbiome within and among colonies. Samples were taken from three distinct locations (basal branch, intermediate branch, and branch tip) from colonies of three different coral genotypes. Results Overall, microbial community composition was similar among colonies due to high relative abundances of the Rickettsiales genus MD3-55 (Candidatus Aquarickettsia) in nearly all samples. While microbial communities were not different among locations within the same colony, they were significantly different between coral genotypes. These findings suggest that sampling from any one location on a coral host is likely to provide a representative sample of the microbial community for the entire colony. Our results also suggest that subtle differences in microbiome composition may be influenced by the coral host, where different coral genotypes host slightly different microbiomes. Finally, this study provides baseline data for future studies seeking to understand the microbiome of nursery-reared A. cervicornis and its roles in coral health, adaptability, and resilience.
Collapse
Affiliation(s)
- Nicole Miller
- School of Natural Resources and Environment, University of Florida, Gainesville, FL, United States of America
| | - Paul Maneval
- School of Natural Resources and Environment, University of Florida, Gainesville, FL, United States of America.,Little Cayman Research Center, Central Caribbean Marine Institute, Little Cayman, Cayman Islands
| | - Carrie Manfrino
- Little Cayman Research Center, Central Caribbean Marine Institute, Little Cayman, Cayman Islands
| | - Thomas K Frazer
- School of Natural Resources and Environment, University of Florida, Gainesville, FL, United States of America
| | - Julie L Meyer
- Soil and Water Sciences Department, Genetics Institute, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|
16
|
Su H, Xiao Z, Yu K, Huang Q, Wang G, Wang Y, Liang J, Huang W, Huang X, Wei F, Chen B. Diversity of cultivable protease-producing bacteria and their extracellular proteases associated to scleractinian corals. PeerJ 2020; 8:e9055. [PMID: 32411529 PMCID: PMC7210813 DOI: 10.7717/peerj.9055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 04/03/2020] [Indexed: 01/15/2023] Open
Abstract
Protease-producing bacteria play a vital role in degrading organic nitrogen in marine environments. However, the diversity of the bacteria and extracellular proteases has seldom been addressed, especially in communities of coral reefs. In this study, 136 extracellular protease-producing bacterial strains were isolated from seven genera of scleractinian corals from Luhuitou fringing reef, and their protease types were characterized. The massive coral had more cultivable protease-producing bacteria than branching or foliose corals. The abundance of cultivable protease-producing bacteria reached 106 CFU g−1 of coral. Phylogenetic analysis of 16S rRNA gene sequences revealed that the isolates were assigned to 24 genera, from which 20 corresponded to the phyla Firmicutes and Proteobacteria. Bacillus and Fictibacillus were retrieved from all coral samples. Moreover, Vibrio and Pseudovibrio were most prevalent in massive or foliose coral Platygyra and Montipora. In contrast, 11 genera were each identified in only one isolate. Nearly all the extracellular proteases from the bacteria were serine proteases or metalloproteases; 45.83% of isolates also released cysteine or aspartic proteases. These proteases had different hydrolytic ability against different substrates. This study represents a novel insight on the diversity of cultivable protease-producing bacteria and their extracellular proteases in scleractinian corals.
Collapse
Affiliation(s)
- Hongfei Su
- Coral Reef Research Center of China, Guangxi University, Nanning, Guangxi, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, Guangxi, China.,School of Marine Sciences, Guangxi University, Nanning, Guangxi, China
| | - Zhenlun Xiao
- Coral Reef Research Center of China, Guangxi University, Nanning, Guangxi, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, Guangxi, China.,School of Marine Sciences, Guangxi University, Nanning, Guangxi, China
| | - Kefu Yu
- Coral Reef Research Center of China, Guangxi University, Nanning, Guangxi, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, Guangxi, China.,School of Marine Sciences, Guangxi University, Nanning, Guangxi, China
| | - Qinyu Huang
- School of Marine Sciences, Guangxi University, Nanning, Guangxi, China
| | - Guanghua Wang
- Coral Reef Research Center of China, Guangxi University, Nanning, Guangxi, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, Guangxi, China.,School of Marine Sciences, Guangxi University, Nanning, Guangxi, China
| | - Yinghui Wang
- Coral Reef Research Center of China, Guangxi University, Nanning, Guangxi, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, Guangxi, China.,School of Marine Sciences, Guangxi University, Nanning, Guangxi, China
| | - Jiayuan Liang
- Coral Reef Research Center of China, Guangxi University, Nanning, Guangxi, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, Guangxi, China.,School of Marine Sciences, Guangxi University, Nanning, Guangxi, China
| | - Wen Huang
- Coral Reef Research Center of China, Guangxi University, Nanning, Guangxi, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, Guangxi, China.,School of Marine Sciences, Guangxi University, Nanning, Guangxi, China
| | - Xueyong Huang
- Coral Reef Research Center of China, Guangxi University, Nanning, Guangxi, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, Guangxi, China.,School of Marine Sciences, Guangxi University, Nanning, Guangxi, China
| | - Fen Wei
- Coral Reef Research Center of China, Guangxi University, Nanning, Guangxi, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, Guangxi, China.,School of Marine Sciences, Guangxi University, Nanning, Guangxi, China
| | - Biao Chen
- Coral Reef Research Center of China, Guangxi University, Nanning, Guangxi, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
17
|
Lima LFO, Weissman M, Reed M, Papudeshi B, Alker AT, Morris MM, Edwards RA, de Putron SJ, Vaidya NK, Dinsdale EA. Modeling of the Coral Microbiome: the Influence of Temperature and Microbial Network. mBio 2020; 11:e02691-19. [PMID: 32127450 PMCID: PMC7064765 DOI: 10.1128/mbio.02691-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/14/2020] [Indexed: 12/12/2022] Open
Abstract
Host-associated microbial communities are shaped by extrinsic and intrinsic factors to the holobiont organism. Environmental factors and microbe-microbe interactions act simultaneously on the microbial community structure, making the microbiome dynamics challenging to predict. The coral microbiome is essential to the health of coral reefs and sensitive to environmental changes. Here, we develop a dynamic model to determine the microbial community structure associated with the surface mucus layer (SML) of corals using temperature as an extrinsic factor and microbial network as an intrinsic factor. The model was validated by comparing the predicted relative abundances of microbial taxa to the relative abundances of microbial taxa from the sample data. The SML microbiome from Pseudodiploria strigosa was collected across reef zones in Bermuda, where inner and outer reefs are exposed to distinct thermal profiles. A shotgun metagenomics approach was used to describe the taxonomic composition and the microbial network of the coral SML microbiome. By simulating the annual temperature fluctuations at each reef zone, the model output is statistically identical to the observed data. The model was further applied to six scenarios that combined different profiles of temperature and microbial network to investigate the influence of each of these two factors on the model accuracy. The SML microbiome was best predicted by model scenarios with the temperature profile that was closest to the local thermal environment, regardless of the microbial network profile. Our model shows that the SML microbiome of P. strigosa in Bermuda is primarily structured by seasonal fluctuations in temperature at a reef scale, while the microbial network is a secondary driver.IMPORTANCE Coral microbiome dysbiosis (i.e., shifts in the microbial community structure or complete loss of microbial symbionts) caused by environmental changes is a key player in the decline of coral health worldwide. Multiple factors in the water column and the surrounding biological community influence the dynamics of the coral microbiome. However, by including only temperature as an external factor, our model proved to be successful in describing the microbial community associated with the surface mucus layer (SML) of the coral P. strigosa The dynamic model developed and validated in this study is a potential tool to predict the coral microbiome under different temperature conditions.
Collapse
Affiliation(s)
- Laís F O Lima
- Department of Biology, San Diego State University, San Diego, California, USA
- College of Biological Sciences, University of California Davis, Davis, California, USA
| | - Maya Weissman
- Department of Mathematics and Statistics, San Diego State University, San Diego, California, USA
| | - Micheal Reed
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Bhavya Papudeshi
- National Center for Genome Analysis Support, Pervasive Institute of Technology, Indiana University, Bloomington, Indiana, USA
| | - Amanda T Alker
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Megan M Morris
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Robert A Edwards
- Department of Biology, San Diego State University, San Diego, California, USA
- Viral Information Institute, San Diego State University, San Diego, California, USA
| | | | - Naveen K Vaidya
- Department of Mathematics and Statistics, San Diego State University, San Diego, California, USA
- Viral Information Institute, San Diego State University, San Diego, California, USA
| | - Elizabeth A Dinsdale
- Department of Biology, San Diego State University, San Diego, California, USA
- Viral Information Institute, San Diego State University, San Diego, California, USA
| |
Collapse
|
18
|
Rosales SM, Miller MW, Williams DE, Traylor-Knowles N, Young B, Serrano XM. Microbiome differences in disease-resistant vs. susceptible Acropora corals subjected to disease challenge assays. Sci Rep 2019; 9:18279. [PMID: 31797896 PMCID: PMC6892807 DOI: 10.1038/s41598-019-54855-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/07/2019] [Indexed: 12/17/2022] Open
Abstract
In recent decades coral gardening has become increasingly popular to restore degraded reef ecosystems. However, the growth and survivorship of nursery-reared outplanted corals are highly variable. Scientists are trying to identify genotypes that show signs of disease resistance and leverage these genotypes in restoring more resilient populations. In a previous study, a field disease grafting assay was conducted on nursery-reared Acropora cervicornis and Acropora palmata to quantify relative disease susceptibility. In this study, we further evaluate this field assay by investigating putative disease-causing agents and the microbiome of corals with disease-resistant phenotypes. We conducted 16S rRNA gene high-throughput sequencing on A. cervicornis and A. palmata that were grafted (inoculated) with a diseased A. cervicornis fragment. We found that independent of health state, A. cervicornis and A. palmata had distinct alpha and beta diversity patterns from one another and distinct dominant bacteria. In addition, despite different microbiome patterns between both inoculated coral species, the genus Sphingomonadaceae was significantly found in both diseased coral species. Additionally, a core bacteria member from the order Myxococcales was found at relatively higher abundances in corals with lower rates of disease development following grafting. In all, we identified Sphingomonadaceae as a putative coral pathogen and a bacterium from the order Myxococcales associated with corals that showed disease resistant phenotypes.
Collapse
Affiliation(s)
- Stephanie M Rosales
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanographic and Atmospheric Administration, Miami, Florida, USA.
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida, USA.
| | - Margaret W Miller
- SECORE International, Miami, FL, 33145, USA
- Southeast Fisheries Science Center, NOAA-National Marine Fisheries Service, Miami, FL, USA
| | - Dana E Williams
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida, USA
- Southeast Fisheries Science Center, NOAA-National Marine Fisheries Service, Miami, FL, USA
| | - Nikki Traylor-Knowles
- University of Miami, Rosenstiel School of Marine and Atmospheric Sciences, Miami, USA
| | - Benjamin Young
- University of Miami, Rosenstiel School of Marine and Atmospheric Sciences, Miami, USA
| | - Xaymara M Serrano
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanographic and Atmospheric Administration, Miami, Florida, USA
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida, USA
| |
Collapse
|
19
|
Meyer JL, Castellanos-Gell J, Aeby GS, Häse CC, Ushijima B, Paul VJ. Microbial Community Shifts Associated With the Ongoing Stony Coral Tissue Loss Disease Outbreak on the Florida Reef Tract. Front Microbiol 2019; 10:2244. [PMID: 31608047 PMCID: PMC6769089 DOI: 10.3389/fmicb.2019.02244] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 09/12/2019] [Indexed: 12/31/2022] Open
Abstract
As many as 22 of the 45 coral species on the Florida Reef Tract are currently affected by stony coral tissue loss disease (SCTLD). The ongoing disease outbreak was first observed in 2014 in Southeast Florida near Miami and as of early 2019 has been documented from the northernmost reaches of the reef tract in Martin County down to Key West. We examined the microbiota associated with disease lesions and apparently healthy tissue on diseased colonies of Montastraea cavernosa, Orbicella faveolata, Diploria labyrinthiformis, and Dichocoenia stokesii. Analysis of differentially abundant taxa between disease lesions and apparently healthy tissue identified five unique amplicon sequence variants enriched in the diseased tissue in three of the coral species (all except O. faveolata), namely an unclassified genus of Flavobacteriales and sequences identified as Fusibacter (Clostridiales), Planktotalea (Rhodobacterales), Algicola (Alteromonadales), and Vibrio (Vibrionales). In addition, several groups of likely opportunistic or saprophytic colonizers such as Epsilonbacteraeota, Patescibacteria, Clostridiales, Bacteroidetes, and Rhodobacterales were also enriched in SCTLD disease lesions. This work represents the first microbiological characterization of SCTLD, as an initial step toward identifying the potential pathogen(s) responsible for SCTLD.
Collapse
Affiliation(s)
- Julie L. Meyer
- Soil and Water Sciences Department, University of Florida, Gainesville, FL, United States
| | - Jessy Castellanos-Gell
- Soil and Water Sciences Department, University of Florida, Gainesville, FL, United States
| | - Greta S. Aeby
- Smithsonian Marine Station, Fort Pierce, FL, United States
| | - Claudia C. Häse
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
| | - Blake Ushijima
- Smithsonian Marine Station, Fort Pierce, FL, United States
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
| | | |
Collapse
|
20
|
Pootakham W, Mhuantong W, Yoocha T, Putchim L, Jomchai N, Sonthirod C, Naktang C, Kongkachana W, Tangphatsornruang S. Heat-induced shift in coral microbiome reveals several members of the Rhodobacteraceae family as indicator species for thermal stress in Porites lutea. Microbiologyopen 2019; 8:e935. [PMID: 31544365 PMCID: PMC6925168 DOI: 10.1002/mbo3.935] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/25/2019] [Accepted: 08/28/2019] [Indexed: 02/01/2023] Open
Abstract
The coral holobiont is a complex ecosystem consisting of coral animals and a highly diverse consortium of associated microorganisms including algae, fungi, and bacteria. Several studies have highlighted the importance of coral‐associated bacteria and their potential roles in promoting the host fitness and survival. Recently, dynamics of coral‐associated microbiomes have been demonstrated to be linked to patterns of coral heat tolerance. Here, we examined the effect of elevated seawater temperature on the structure and diversity of bacterial populations associated with Porites lutea, using full‐length 16S rRNA sequences obtained from Pacific Biosciences circular consensus sequencing. We observed a significant increase in alpha diversity indices and a distinct shift in microbiome composition during thermal stress. There was a marked decline in the apparent relative abundance of Gammaproteobacteria family Endozoicomonadaceae after P. lutea had been exposed to elevated seawater temperature. Concomitantly, the bacterial community structure shifted toward the predominance of Alphaproteobacteria family Rhodobacteraceae. Interestingly, we did not observe an increase in relative abundance of Vibrio‐related sequences in our heat‐stressed samples even though the appearance of Vibrio spp. has often been detected in parallel with the increase in the relative abundance of Rhodobacteraceae during thermal bleaching in other coral species. The ability of full‐length 16S rRNA sequences in resolving taxonomic uncertainty of associated bacteria at a species level enabled us to identify 24 robust indicator bacterial species for thermally stressed corals. It is worth noting that the majority of those indicator species were members of the family Rhodobacteraceae. The comparison of bacterial community structure and diversity between corals in ambient water temperature and thermally stressed corals may provide a better understanding on how bacteria symbionts contribute to the resilience of their coral hosts to ocean warming.
Collapse
Affiliation(s)
- Wirulda Pootakham
- National Omics Center, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Wuttichai Mhuantong
- Enzyme Technology Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Thippawan Yoocha
- National Omics Center, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | | | - Nukoon Jomchai
- National Omics Center, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Chutima Sonthirod
- National Omics Center, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Chaiwat Naktang
- National Omics Center, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Wasitthee Kongkachana
- National Omics Center, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Sithichoke Tangphatsornruang
- National Omics Center, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| |
Collapse
|
21
|
Damjanovic K, van Oppen MJH, Menéndez P, Blackall LL. Experimental Inoculation of Coral Recruits With Marine Bacteria Indicates Scope for Microbiome Manipulation in Acropora tenuis and Platygyra daedalea. Front Microbiol 2019; 10:1702. [PMID: 31396197 PMCID: PMC6668565 DOI: 10.3389/fmicb.2019.01702] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/10/2019] [Indexed: 12/19/2022] Open
Abstract
Coral-associated microorganisms are essential for maintaining the health of the coral holobiont by participating in nutrient cycling and protecting the coral host from pathogens. Under stressful conditions, disruption of the coral prokaryotic microbiome is linked to increased susceptibility to diseases and mortality. Inoculation of corals with beneficial microbes could confer enhanced stress tolerance to the host and may be a powerful tool to help corals thrive under challenging environmental conditions. Here, we explored the feasibility of coral early life stage microbiome manipulation by repeatedly inoculating coral recruits with a bacterial cocktail generated in the laboratory. Co-culturing the two species Acropora tenuis and Platygyra daedalea allowed us to simultaneously investigate the effect of host factors on the coral microbiome. Inoculation cocktails were regularly prepared from freshly grown pure bacterial cultures, which were hence assumed viable, and characterized via the optical density measurement of each individual strain put in suspension. Coral early recruits were inoculated seven times over 3 weeks and sampled once 36 h following the last inoculation event. At this time point, the cumulative inoculations with the bacterial cocktails had a strong effect on the bacterial community composition in recruits of both coral species. While the location of bacterial cells within the coral hosts was not assessed, metabarcoding using the 16S rRNA gene revealed that two and six of the seven bacterial strains administered through the cocktails were significantly enriched in inoculated recruits of A. tenuis and P. daedalea, respectively, compared to control recruits. Despite being reared in the same environment, A. tenuis and P. daedalea established significantly different bacterial communities, both in terms of taxonomic composition and diversity measurements. These findings indicate that coral host factors as well as the environmental bacterial pool play a role in shaping coral-associated bacterial community composition. Host factors may include microbe transmission mode (horizontal versus maternal) and host specificity. While the long-term stability of taxa included in the bacterial inocula as members of the host-associated microbiome remains to be evaluated, our results provide support for the feasibility of coral microbiome manipulation, at least in a laboratory setting.
Collapse
Affiliation(s)
- Katarina Damjanovic
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia.,Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Madeleine J H van Oppen
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia.,Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Patricia Menéndez
- Australian Institute of Marine Science, Townsville, QLD, Australia.,School of Mathematics and Physics, University of Queensland, Saint Lucia, QLD, Australia
| | - Linda L Blackall
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
22
|
Coral bacterial community structure responds to environmental change in a host-specific manner. Nat Commun 2019; 10:3092. [PMID: 31300639 PMCID: PMC6626051 DOI: 10.1038/s41467-019-10969-5] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 06/12/2019] [Indexed: 01/09/2023] Open
Abstract
The global decline of coral reefs heightens the need to understand how corals respond to changing environmental conditions. Corals are metaorganisms, so-called holobionts, and restructuring of the associated bacterial community has been suggested as a means of holobiont adaptation. However, the potential for restructuring of bacterial communities across coral species in different environments has not been systematically investigated. Here we show that bacterial community structure responds in a coral host-specific manner upon cross-transplantation between reef sites with differing levels of anthropogenic impact. The coral Acropora hemprichii harbors a highly flexible microbiome that differs between each level of anthropogenic impact to which the corals had been transplanted. In contrast, the microbiome of the coral Pocillopora verrucosa remains remarkably stable. Interestingly, upon cross-transplantation to unaffected sites, we find that microbiomes become indistinguishable from back-transplanted controls, suggesting the ability of microbiomes to recover. It remains unclear whether differences to associate with bacteria flexibly reflects different holobiont adaptation mechanisms to respond to environmental change. The flexibility of corals to associate with different bacteria in different environments has not been systematically investigated. Here, the authors study bacterial community dynamics for two coral species and show that bacterial community structure responds to environmental changes in a host-specific manner.
Collapse
|
23
|
van Oppen MJH, Blackall LL. Coral microbiome dynamics, functions and design in a changing world. Nat Rev Microbiol 2019; 17:557-567. [DOI: 10.1038/s41579-019-0223-4] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2019] [Indexed: 12/20/2022]
|
24
|
Dunphy CM, Gouhier TC, Chu ND, Vollmer SV. Structure and stability of the coral microbiome in space and time. Sci Rep 2019; 9:6785. [PMID: 31043671 PMCID: PMC6494856 DOI: 10.1038/s41598-019-43268-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 04/18/2019] [Indexed: 11/09/2022] Open
Abstract
Although it is well established that the microbial communities inhabiting corals perform key functions that promote the health and persistence of their hosts, little is known about their spatial structure and temporal stability. We examined the natural variability of microbial communities associated with six Caribbean coral species from three genera at four reef sites over one year. We identified differences in microbial community composition between coral genera and species that persisted across space and time, suggesting that local host identity likely plays a dominant role in structuring the microbiome. However, we found that microbial community dissimilarity increased with geographical distance, which indicates that regional processes such as dispersal limitation and spatiotemporal environmental heterogeneity also influence microbial community composition. In addition, network analysis revealed that the strength of host identity varied across coral host genera, with species from the genus Acropora having the most influence over their microbial community. Overall, our results demonstrate that despite high levels of microbial diversity, coral species are characterized by signature microbiomes that are stable in both space and time.
Collapse
Affiliation(s)
- Courtney M Dunphy
- Marine Science Center, Northeastern University, 430 Nahant Road, Nahant, MA, 01908, USA.
| | - Tarik C Gouhier
- Marine Science Center, Northeastern University, 430 Nahant Road, Nahant, MA, 01908, USA
| | - Nathaniel D Chu
- Marine Science Center, Northeastern University, 430 Nahant Road, Nahant, MA, 01908, USA.,Microbiology Graduate Program, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Steven V Vollmer
- Marine Science Center, Northeastern University, 430 Nahant Road, Nahant, MA, 01908, USA
| |
Collapse
|
25
|
Shelyakin PV, Garushyants SK, Nikitin MA, Mudrova SV, Berumen M, Speksnijder AGCL, Hoeksema BW, Fontaneto D, Gelfand MS, Ivanenko VN. Microbiomes of gall-inducing copepod crustaceans from the corals Stylophora pistillata (Scleractinia) and Gorgonia ventalina (Alcyonacea). Sci Rep 2018; 8:11563. [PMID: 30069039 PMCID: PMC6070567 DOI: 10.1038/s41598-018-29953-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/18/2018] [Indexed: 12/31/2022] Open
Abstract
Corals harbor complex and diverse microbial communities that strongly impact host fitness and resistance to diseases, but these microbes themselves can be influenced by stresses, like those caused by the presence of macroscopic symbionts. In addition to directly influencing the host, symbionts may transmit pathogenic microbial communities. We analyzed two coral gall-forming copepod systems by using 16S rRNA gene metagenomic sequencing: (1) the sea fan Gorgonia ventalina with copepods of the genus Sphaerippe from the Caribbean and (2) the scleractinian coral Stylophora pistillata with copepods of the genus Spaniomolgus from the Saudi Arabian part of the Red Sea. We show that bacterial communities in these two systems were substantially different with Actinobacteria, Alphaproteobacteria, and Betaproteobacteria more prevalent in samples from Gorgonia ventalina, and Gammaproteobacteria in Stylophora pistillata. In Stylophora pistillata, normal coral microbiomes were enriched with the common coral symbiont Endozoicomonas and some unclassified bacteria, while copepod and gall-tissue microbiomes were highly enriched with the family ME2 (Oceanospirillales) or Rhodobacteraceae. In Gorgonia ventalina, no bacterial group had significantly different prevalence in the normal coral tissues, copepods, and injured tissues. The total microbiome composition of polyps injured by copepods was different. Contrary to our expectations, the microbial community composition of the injured gall tissues was not directly affected by the microbiome of the gall-forming symbiont copepods.
Collapse
Affiliation(s)
- Pavel V Shelyakin
- Kharkevich Institute for Information Transmission Problems RAS, B. Karetny per. 19, Moscow, 127051, Russia.,Vavilov Institute of General Genetics RAS, Gubkina str. 3, Moscow, 119333, Russia
| | - Sofya K Garushyants
- Kharkevich Institute for Information Transmission Problems RAS, B. Karetny per. 19, Moscow, 127051, Russia.,Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Nobel str. 1, Moscow, 121205, Russia
| | - Mikhail A Nikitin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Sofya V Mudrova
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Michael Berumen
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | | | - Bert W Hoeksema
- Naturalis Biodiversity Center, Leiden, 2332 AA, The Netherlands
| | - Diego Fontaneto
- National Research Council, Institute of Ecosystem Study, Verbania, 28922, Italy
| | - Mikhail S Gelfand
- Kharkevich Institute for Information Transmission Problems RAS, B. Karetny per. 19, Moscow, 127051, Russia.,Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Nobel str. 1, Moscow, 121205, Russia.,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russia.,Faculty of Computer Science, Higher School of Economics, Kochnovsky pr. 3, Moscow, 125319, Russia
| | - Viatcheslav N Ivanenko
- Naturalis Biodiversity Center, Leiden, 2332 AA, The Netherlands. .,Department of Invertebrate Zoology, Biological Faculty, Lomonosov Moscow State University, Moscow, 119992, Russia.
| |
Collapse
|
26
|
R L Morlighem JÉ, Huang C, Liao Q, Braga Gomes P, Daniel Pérez C, de Brandão Prieto-da-Silva ÁR, Ming-Yuen Lee S, Rádis-Baptista G. The Holo-Transcriptome of the Zoantharian Protopalythoa variabilis (Cnidaria: Anthozoa): A Plentiful Source of Enzymes for Potential Application in Green Chemistry, Industrial and Pharmaceutical Biotechnology. Mar Drugs 2018; 16:E207. [PMID: 29899267 PMCID: PMC6025448 DOI: 10.3390/md16060207] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/05/2018] [Accepted: 06/08/2018] [Indexed: 02/08/2023] Open
Abstract
Marine invertebrates, such as sponges, tunicates and cnidarians (zoantharians and scleractinian corals), form functional assemblages, known as holobionts, with numerous microbes. This type of species-specific symbiotic association can be a repository of myriad valuable low molecular weight organic compounds, bioactive peptides and enzymes. The zoantharian Protopalythoa variabilis (Cnidaria: Anthozoa) is one such example of a marine holobiont that inhabits the coastal reefs of the tropical Atlantic coast and is an interesting source of secondary metabolites and biologically active polypeptides. In the present study, we analyzed the entire holo-transcriptome of P. variabilis, looking for enzyme precursors expressed in the zoantharian-microbiota assemblage that are potentially useful as industrial biocatalysts and biopharmaceuticals. In addition to hundreds of predicted enzymes that fit into the classes of hydrolases, oxidoreductases and transferases that were found, novel enzyme precursors with multiple activities in single structures and enzymes with incomplete Enzyme Commission numbers were revealed. Our results indicated the predictive expression of thirteen multifunctional enzymes and 694 enzyme sequences with partially characterized activities, distributed in 23 sub-subclasses. These predicted enzyme structures and activities can prospectively be harnessed for applications in diverse areas of industrial and pharmaceutical biotechnology.
Collapse
Affiliation(s)
- Jean-Étienne R L Morlighem
- Northeast Biotechnology Network (RENORBIO), Post-Graduation Program in Biotechnology, Federal University of Ceará, Fortaleza 60440-900, Brazil.
- Laboratory of Biochemistry and Biotechnology, Institute for Marine Sciences, Federal University of Ceará, Fortaleza 60165-081, Brazil.
| | - Chen Huang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau 519020, China.
| | - Qiwen Liao
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau 519020, China.
| | - Paula Braga Gomes
- Department of Biology, Federal Rural University of Pernambuco, Recife 52171-900, Brazil.
| | - Carlos Daniel Pérez
- Academic Center in Vitória, Federal University of Pernambuco, Vitória de Santo Antão 50670-901, Pernambuco, Brazil.
| | | | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau 519020, China.
| | - Gandhi Rádis-Baptista
- Northeast Biotechnology Network (RENORBIO), Post-Graduation Program in Biotechnology, Federal University of Ceará, Fortaleza 60440-900, Brazil.
- Laboratory of Biochemistry and Biotechnology, Institute for Marine Sciences, Federal University of Ceará, Fortaleza 60165-081, Brazil.
| |
Collapse
|
27
|
Abundance and Multilocus Sequence Analysis of Vibrio Bacteria Associated with Diseased Elkhorn Coral (Acropora palmata) of the Florida Keys. Appl Environ Microbiol 2018; 84:AEM.01035-17. [PMID: 29079623 DOI: 10.1128/aem.01035-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 10/24/2017] [Indexed: 11/20/2022] Open
Abstract
The critically endangered elkhorn coral (Acropora palmata) is affected by white pox disease (WPX) throughout the Florida Reef Tract and wider Caribbean. The bacterium Serratia marcescens was previously identified as one etiologic agent of WPX but is no longer consistently detected in contemporary outbreaks. It is now believed that multiple etiologic agents cause WPX; however, to date, no other potential pathogens have been thoroughly investigated. This study examined the association of Vibrio bacteria with WPX occurrence from August 2012 to 2014 at Looe Key Reef in the Florida Keys, USA. The concentration of cultivable Vibrio was consistently greater in WPX samples than in healthy samples. The abundance of Vibrio bacteria relative to total bacteria was four times higher in samples from WPX lesions than in adjacent apparently healthy regions of diseased corals based on quantitative PCR (qPCR). Multilocus sequence analysis (MLSA) was used to assess the diversity of 69 Vibrio isolates collected from diseased and apparently healthy A. palmata colonies and the surrounding seawater. Vibrio species with known pathogenicity to corals were detected in both apparently healthy and diseased samples. While the causative agent(s) of contemporary WPX outbreaks remains elusive, our results suggest that Vibrio spp. may be part of a nonspecific heterotrophic bacterial bloom rather than acting as primary pathogens. This study highlights the need for highly resolved temporal sampling in situ to further elucidate the role of Vibrio during WPX onset and progression.IMPORTANCE Coral diseases are increasing worldwide and are now considered a major contributor to coral reef decline. In particular, the Caribbean has been noted as a coral disease hot spot, owing to the dramatic loss of framework-building acroporid corals due to tissue loss diseases. The pathogenesis of contemporary white pox disease (WPX) outbreaks in Acropora palmata remains poorly understood. This study investigates the association of Vibrio bacteria with WPX.
Collapse
|
28
|
Damjanovic K, Blackall LL, Webster NS, van Oppen MJH. The contribution of microbial biotechnology to mitigating coral reef degradation. Microb Biotechnol 2017; 10:1236-1243. [PMID: 28696067 PMCID: PMC5609283 DOI: 10.1111/1751-7915.12769] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 06/13/2017] [Indexed: 12/14/2022] Open
Abstract
The decline of coral reefs due to anthropogenic disturbances is having devastating impacts on biodiversity and ecosystem services. Here we highlight the potential and challenges of microbial manipulation strategies to enhance coral tolerance to stress and contribute to coral reef restoration and protection.
![]()
Collapse
Affiliation(s)
- Katarina Damjanovic
- School of BioSciences, The University of Melbourne, Parkville, Vic., 3010, Australia.,Australian Institute of Marine Science, PMB No 3, Townsville MC, 4810, Qld, Australia
| | - Linda L Blackall
- School of BioSciences, The University of Melbourne, Parkville, Vic., 3010, Australia
| | - Nicole S Webster
- Australian Institute of Marine Science, PMB No 3, Townsville MC, 4810, Qld, Australia.,Australian Centre for Ecogenomics, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Madeleine J H van Oppen
- School of BioSciences, The University of Melbourne, Parkville, Vic., 3010, Australia.,Australian Institute of Marine Science, PMB No 3, Townsville MC, 4810, Qld, Australia
| |
Collapse
|
29
|
Pootakham W, Mhuantong W, Yoocha T, Putchim L, Sonthirod C, Naktang C, Thongtham N, Tangphatsornruang S. High resolution profiling of coral-associated bacterial communities using full-length 16S rRNA sequence data from PacBio SMRT sequencing system. Sci Rep 2017; 7:2774. [PMID: 28584301 PMCID: PMC5459821 DOI: 10.1038/s41598-017-03139-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/24/2017] [Indexed: 02/01/2023] Open
Abstract
Coral reefs are a complex ecosystem consisting of coral animals and a vast array of associated symbionts including the dinoflagellate Symbiodinium, fungi, viruses and bacteria. Several studies have highlighted the importance of coral-associated bacteria and their fundamental roles in fitness and survival of the host animal. The scleractinian coral Porites lutea is one of the dominant reef-builders in the Indo-West Pacific. Currently, very little is known about the composition and structure of bacterial communities across P. lutea reefs. The purpose of this study is twofold: to demonstrate the advantages of using PacBio circular consensus sequencing technology in microbial community studies and to investigate the diversity and structure of P. lutea-associated microbiome in the Indo-Pacific. This is the first metagenomic study of marine environmental samples that utilises the PacBio sequencing system to capture full-length 16S rRNA sequences. We observed geographically distinct coral-associated microbial profiles between samples from the Gulf of Thailand and Andaman Sea. Despite the geographical and environmental impacts on the coral-host interactions, we identified a conserved community of bacteria that were present consistently across diverse reef habitats. Finally, we demonstrated the superior performance of full-length 16S rRNA sequences in resolving taxonomic uncertainty of coral associates at the species level.
Collapse
Affiliation(s)
- Wirulda Pootakham
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand.
| | - Wuttichai Mhuantong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Thippawan Yoocha
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Lalita Putchim
- Phuket Marine Biological Center, Phuket, 83000, Thailand
| | - Chutima Sonthirod
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Chaiwat Naktang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | | | - Sithichoke Tangphatsornruang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| |
Collapse
|
30
|
Brown T, Otero C, Grajales A, Rodriguez E, Rodriguez-Lanetty M. Worldwide exploration of the microbiome harbored by the cnidarian model, Exaiptasia pallida (Agassiz in Verrill, 1864) indicates a lack of bacterial association specificity at a lower taxonomic rank. PeerJ 2017; 5:e3235. [PMID: 28533949 PMCID: PMC5436572 DOI: 10.7717/peerj.3235] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 03/27/2017] [Indexed: 02/01/2023] Open
Abstract
Examination of host-microbe interactions in early diverging metazoans, such as cnidarians, is of great interest from an evolutionary perspective to understand how host-microbial consortia have evolved. To address this problem, we analyzed whether the bacterial community associated with the cosmopolitan and model sea anemone Exaiptasia pallida shows specific patterns across worldwide populations ranging from the Caribbean Sea, and the Atlantic and Pacific oceans. By comparing sequences of the V1–V3 hypervariable regions of the bacterial 16S rRNA gene, we revealed that anemones host a complex and diverse microbial community. When examined at the phylum level, bacterial diversity and abundance associated with E. pallida are broadly conserved across geographic space with samples, containing largely Proteobacteria and Bacteroides. However, the species-level makeup within these phyla differs drastically across space suggesting a high-level core microbiome with local adaptation of the constituents. Indeed, no bacterial OTU was ubiquitously found in all anemones samples. We also revealed changes in the microbial community structure after rearing anemone specimens in captivity within a period of four months. Furthermore, the variation in bacterial community assemblages across geographical locations did not correlate with the composition of microalgal Symbiodinium symbionts. Our findings contrast with the postulation that cnidarian hosts might actively select and maintain species-specific microbial communities that could have resulted from an intimate co-evolution process. The fact that E. pallida is likely an introduced species in most sampled localities suggests that this microbial turnover is a relatively rapid process. Our findings suggest that environmental settings, not host specificity, seem to dictate bacterial community structure associated with this sea anemone. More than maintaining a specific composition of bacterial species some cnidarians associate with a wide range of bacterial species as long as they provide the same physiological benefits towards the maintenance of a healthy host. The examination of the previously uncharacterized bacterial community associated with the cnidarian sea anemone model E. pallida is the first global-scale study of its kind.
Collapse
Affiliation(s)
- Tanya Brown
- Biological Sciences, Florida International University, Miami, FL, USA
| | - Christopher Otero
- Biological Sciences, Florida International University, Miami, FL, USA
| | - Alejandro Grajales
- Invertebrate Zoology, American Museum of Natural History, New York, NY, USA
| | | | | |
Collapse
|
31
|
Peixoto RS, Rosado PM, Leite DCDA, Rosado AS, Bourne DG. Beneficial Microorganisms for Corals (BMC): Proposed Mechanisms for Coral Health and Resilience. Front Microbiol 2017; 8:341. [PMID: 28326066 PMCID: PMC5339234 DOI: 10.3389/fmicb.2017.00341] [Citation(s) in RCA: 245] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/17/2017] [Indexed: 12/21/2022] Open
Abstract
The symbiotic association between the coral animal and its endosymbiotic dinoflagellate partner Symbiodinium is central to the success of corals. However, an array of other microorganisms associated with coral (i.e., Bacteria, Archaea, Fungi, and viruses) have a complex and intricate role in maintaining homeostasis between corals and Symbiodinium. Corals are sensitive to shifts in the surrounding environmental conditions. One of the most widely reported responses of coral to stressful environmental conditions is bleaching. During this event, corals expel Symbiodinium cells from their gastrodermal tissues upon experiencing extended seawater temperatures above their thermal threshold. An array of other environmental stressors can also destabilize the coral microbiome, resulting in compromised health of the host, which may include disease and mortality in the worst scenario. However, the exact mechanisms by which the coral microbiome supports coral health and increases resilience are poorly understood. Earlier studies of coral microbiology proposed a coral probiotic hypothesis, wherein a dynamic relationship exists between corals and their symbiotic microorganisms, selecting for the coral holobiont that is best suited for the prevailing environmental conditions. Here, we discuss the microbial-host relationships within the coral holobiont, along with their potential roles in maintaining coral health. We propose the term BMC (Beneficial Microorganisms for Corals) to define (specific) symbionts that promote coral health. This term and concept are analogous to the term Plant Growth Promoting Rhizosphere (PGPR), which has been widely explored and manipulated in the agricultural industry for microorganisms that inhabit the rhizosphere and directly or indirectly promote plant growth and development through the production of regulatory signals, antibiotics and nutrients. Additionally, we propose and discuss the potential mechanisms of the effects of BMC on corals, suggesting strategies for the use of this knowledge to manipulate the microbiome, reversing dysbiosis to restore and protect coral reefs. This may include developing and using BMC consortia as environmental "probiotics" to improve coral resistance after bleaching events and/or the use of BMC with other strategies such as human-assisted acclimation/adaption to shifting environmental conditions.
Collapse
Affiliation(s)
- Raquel S. Peixoto
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
- Instituto Museu Aquário Marinho do Rio de Janeiro-AquaRio (IMAM/AquaRio) – Rio de Janeiro Marine Aquarium Research CenterRio de Janeiro, Brazil
| | - Phillipe M. Rosado
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
- Instituto Museu Aquário Marinho do Rio de Janeiro-AquaRio (IMAM/AquaRio) – Rio de Janeiro Marine Aquarium Research CenterRio de Janeiro, Brazil
| | | | - Alexandre S. Rosado
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
- Instituto Museu Aquário Marinho do Rio de Janeiro-AquaRio (IMAM/AquaRio) – Rio de Janeiro Marine Aquarium Research CenterRio de Janeiro, Brazil
| | - David G. Bourne
- College of Science and Engineering, James Cook University, TownsvilleQLD, Australia
- Australian Institute of Marine Science, TownsvilleQLD, Australia
| |
Collapse
|
32
|
Hernandez-Agreda A, Gates RD, Ainsworth TD. Defining the Core Microbiome in Corals’ Microbial Soup. Trends Microbiol 2017; 25:125-140. [DOI: 10.1016/j.tim.2016.11.003] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 10/21/2016] [Accepted: 11/02/2016] [Indexed: 02/07/2023]
|