1
|
Liu Y, Wu J, Liu R, Li F, Xuan L, Wang Q, Li D, Chen X, Sun H, Li X, Jin C, Huang D, Li L, Tang G, Liu B. Vibrio cholerae virulence is blocked by chitosan oligosaccharide-mediated inhibition of ChsR activity. Nat Microbiol 2024; 9:2909-2922. [PMID: 39414933 DOI: 10.1038/s41564-024-01823-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/04/2024] [Indexed: 10/18/2024]
Abstract
Vibrio cholerae causes cholera, an important cause of death worldwide. A fuller understanding of how virulence is regulated offers the potential for developing virulence inhibitors, regarded as efficient therapeutic alternatives for cholera treatment. Here we show using competitive infections of wild-type and mutant bacteria that the regulator of chitosan utilization, ChsR, increases V. cholerae virulence in vivo. Mechanistically, RNA sequencing, chromatin immunoprecipitation with sequencing and molecular biology approaches revealed that ChsR directly upregulated the expression of the virulence regulator, TcpP, which promoted expression of the cholera toxin and the toxin co-regulated pilus, in response to low O2 levels in the small intestine. We also found that chitosan degradation products inhibit the ChsR-tcpP promoter interaction. Consistently, administration of chitosan oligosaccharide, particularly when delivered via sodium alginate microsphere carriers, reduced V. cholerae intestinal colonization and disease severity in mice by blocking the chsR-mediated pathway. These data reveal the potential of chitosan oligosaccharide as supplemental therapy for cholera treatment and prevention.
Collapse
Affiliation(s)
- Yutao Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Jialin Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Ruiying Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Fan Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Leyan Xuan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Qian Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Dan Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - XinTong Chen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Hao Sun
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Xiaoya Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Chen Jin
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Di Huang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Linxing Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Guosheng Tang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China.
| | - Bin Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China.
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, People's Republic of China.
- Nankai International Advanced Research Institute, Shenzhen, People's Republic of China.
| |
Collapse
|
2
|
Zhao S, Dou C, Zhang J, Huang L, Gao Y, Du B, Cui X, Zhao H, Xue G, Ke Y, Gan L, Feng J, Feng Y, Cui J, Yan C, Xu Z, Fu T, Yu Z, Yang Y, Yuan J, You F. Multiple factors trigger the formation and resuscitation of the VBNC state in alcohol-producing Klebsiella pneumoniae. Appl Environ Microbiol 2024; 90:e0055724. [PMID: 38953658 PMCID: PMC11267895 DOI: 10.1128/aem.00557-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/05/2024] [Indexed: 07/04/2024] Open
Abstract
Klebsiella pneumoniae can enter a viable but nonculturable (VBNC) state to survive in unfavorable environments. Our research found that high-, medium-, and low-alcohol-producing K. pneumoniae strains are associated with nonalcoholic fatty liver disease. However, the presence of the three Kpn strains has not been reported in the VBNC state or during resuscitation. In this study, the effects of different strains, salt concentrations, oxygen concentrations, temperatures, and nutrients in K. pneumoniae VBNC state were evaluated. The results showed that high-alcohol-producing K. pneumoniae induced a slower VBNC state than medium-alcohol-producing K. pneumoniae, and low-alcohol-producing K. pneumoniae. A high-salt concentration and micro-oxygen environment accelerated the loss of culturability. Simultaneously, both real-time quantitative PCR and droplet digital PCR were developed to compare the quantitative comparison of three Kpn strain VBNC states by counting single-copy gene numbers. At 22°C or 37°C, the number of culturable cells decreased significantly from about 108 to 105-106 CFU/mL. In addition, imipenem, ciprofloxacin, polymyxin, and phiW14 inhibited cell resuscitation but could not kill VBNC-state cells. These results revealed that the different environments evaluated play different roles in the VBNC induction process, and new effective strategies for eliminating VBNC-state cells need to be further studied. These findings provide a better understanding of VBNC-state occurrence, maintenance, detection, and absolute quantification, as well as metabolic studies of resuscitation resistance and ethanol production.IMPORTANCEBacteria may enter VBNC state under different harsh environments. Pathogenic VBNC bacteria cells in clinical and environmental samples pose a potential threat to public health because cells cannot be found by routine culture. The alcohol-producing Kpn VBNC state was not reported, and the influencing factors were unknown. The formation and recovery of VBNC state is a complete bacterial escape process. We evaluated the influence of multiple induction conditions on the formation of VBNC state and recovery from antibiotic and bacteriophage inhibition, and established a sensitive molecular method to enumerate the VBNC cells single-copy gene. The method can improve the sensitivity of pathogen detection in clinical, food, and environmental contamination monitoring, and outbreak warning. The study of the formation and recovery of VBNC-state cells under different stress environments will also promote the microbiological research on the development, adaptation, and resuscitation in VBNC-state ecology.
Collapse
Affiliation(s)
- Shuo Zhao
- School of Basic Medical Sciences, Peking University, Beijing, China
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Chenpu Dou
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
- Department of Neurosurgery, Children’s Hospital Capital Institute of Pediatrics, Beijing, China
| | - Jian Zhang
- Department of Neurosurgery, Children’s Hospital Capital Institute of Pediatrics, Beijing, China
| | - Lijuan Huang
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Yagang Gao
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Bing Du
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Xiaohu Cui
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Hanqing Zhao
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Guanhua Xue
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Yuehua Ke
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Lin Gan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Junxia Feng
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Yanling Feng
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Jinghua Cui
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Chao Yan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Ziying Xu
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Tongtong Fu
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Zihui Yu
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Yang Yang
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Jing Yuan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Fuping You
- School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
3
|
Zhu W, Liu J, Zhang Y, Zhao D, Li S, Dou H, Wang H, Xia X. The role of rcpA gene in regulating biofilm formation and virulence in Vibrio parahaemolyticus. Int J Food Microbiol 2024; 418:110714. [PMID: 38677238 DOI: 10.1016/j.ijfoodmicro.2024.110714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/14/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
Vibrio parahaemolyticus (V. parahaemolyticus) is a common seafood-borne pathogen that can colonize the intestine of host and cause gastroenteritis. Biofilm formation by V. parahaemolyticus enhances its persistence in various environments, which poses a series of threats to food safety. This work aims to investigate the function of rcpA gene in biofilm formation and virulence of V. parahaemolyticus. Deletion of rcpA significantly reduced motility, biofilm biomass, and extracellular polymeric substances, and inhibited biofilm formation on a variety of food and food contact surfaces. In mice infection model, mice infected with ∆rcpA strain exhibited a decreased rate of pathogen colonization, a lower level of inflammatory cytokines, and less tissue damage when compared to mice infected with wild type strain. RNA-seq analysis revealed that 374 genes were differentially expressed in the rcpA deletion mutant, which include genes related to quorum sensing, flagellar system, ribosome, type VI secretion system, biotin metabolism and transcriptional regulation. In conclusion, rcpA plays a role in determining biofilm formation and virulence of V. parahaemolyticus and further research is necessitated to fully understand its function in V. parahaemolyticus.
Collapse
Affiliation(s)
- Wenxiu Zhu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Jiaxiu Liu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Yingying Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dongyun Zhao
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Shugang Li
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Hanzheng Dou
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Haisong Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Xiaodong Xia
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| |
Collapse
|
4
|
Sun Y, Gao R, Liao X, Shen M, Chen X, Feng J, Ding T. Stress response of Salmonella Newport with various sequence types toward plasma-activated water: Viable but nonculturable state formation and outer membrane vesicle production. Curr Res Food Sci 2024; 8:100764. [PMID: 38779345 PMCID: PMC11109322 DOI: 10.1016/j.crfs.2024.100764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
This study aims to investigate the response of Salmonella Newport to plasma-activated water (PAW), a novel disinfectant that attracts attention due to its broad-spectrum antimicrobial efficacy and eco-friendliness. In this work, we demonstrated that S. Newport of different sequence types (STs) could be induced into the viable but nonculturable (VBNC) state by PAW treatment. Notably, a remarkable 99.96% of S. Newport ST45 strain entered the VBNC state after a 12-min PAW treatment, which was the fastest observed among the five S. Newport STs (ST31, ST45, ST46, ST166, ST2364). Secretion of outer membrane vesicles was observed in ST45, suggesting a potential strategy against PAW treatment. Genes related to oxidative stress (sodA, katE, trxA), outer membrane proteins (ompA, ompC, ompD, ompF) and virulence (pagC, sipC, sopE2) were upregulated in the PAW-treated S. Newport, especially in ST45. A reduction of 38-65% in intracellular ATP level after PAW treatment was observed, indicating a contributor to the formation of the VBNC state. In addition, a rapid method for detecting the proportion of VBNC cells in food products based on pagC was established. This study contributes to understanding the formation mechanism of the VBNC state in S. Newport under PAW stress and offers insights for controlling microbial risks in the food industry.
Collapse
Affiliation(s)
- Yuhao Sun
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China
| | - Rui Gao
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Xinyu Liao
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China
| | - Mofei Shen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Xiuqin Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Jinsong Feng
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Tian Ding
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China
| |
Collapse
|
5
|
Debnath A, Miyoshi SI. Effect of physicochemical and microbiological factors on the development of viable but non-culturable and resuscitation states of Vibrio cholerae. Arch Microbiol 2024; 206:224. [PMID: 38642319 DOI: 10.1007/s00203-024-03956-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Vibrio cholerae can endure harsh environmental conditions by transitioning into viable but non-culturable (VBNC) form and resuscitate upon return of appropriate conditions. METHOD In this study, we assessed the impact of physicochemical and microbiological factors, on the development of low temperature-induced VBNC state and subsequent recovery by temperature upshift. RESULTS In estuarine water, Vibrio cholerae exhibits a slower decline in culturability over a period of 77 days as compared to 10 days in fresh water. When variable cell numbers from different growth phases were used for VBNC induction, it was observed that the higher inoculum size (106-107 cfu ml-1) from the late log phase culture appears to be crucial for entering the VBNC state. Conversely, starved cells could enter the VBNC state with an initial inoculum of 104-105 cfu ml-1, followed by resuscitation as well. The addition of glucose, GlcNAc and mannitol differentially affects progression into VBNC, while the addition of tryptone, yeast extract and casamino acid facilitated early entry into the VBNC state and shortened the length of the recovery period. CONCLUSION Altogether these findings demonstrated that the ionic strength of water, inoculum size and the availability of nutrients played distinct roles during VBNC induction and resuscitation.
Collapse
Affiliation(s)
- Anusuya Debnath
- Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1, Tsushimanaka, Kita-ku, 700-8530, Japan.
- Department of Biotechnology, Brainware University, Kolkata, India.
| | - Shin-Ichi Miyoshi
- Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1, Tsushimanaka, Kita-ku, 700-8530, Japan
| |
Collapse
|
6
|
Li Y, Yan J, Li J, Xue X, Wang Y, Cao B. A novel quorum sensing regulator LuxT contributes to the virulence of Vibrio cholerae. Virulence 2023; 14:2274640. [PMID: 37908129 PMCID: PMC10621291 DOI: 10.1080/21505594.2023.2274640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/18/2023] [Indexed: 11/02/2023] Open
Abstract
Vibrio cholerae is a waterborne bacterium that primarily infects the human intestine and causes cholera fatality. Quorum sensing (QS) negatively regulates the expression of V. cholerae virulence gene. However, the primary associated mechanisms remain undetermined. This investigation identified a new QS regulator from the TetR family, LuxT, which increases V. cholerae virulence by directly inhibiting hapR expression. HapR is a master QS regulator that suppresses virulence cascade expression. The expression of luxT increased 4.8-fold in the small intestine of infant mice than in Luria-Bertani broth. ΔluxT mutant strain revealed a substantial defect in the colonizing ability of the small intestines. At low cell densities, the expression level of hapR was upregulated by luxT deletion, suggesting that LuxT can suppress hapR transcription. The electrophoretic mobility shift analysis revealed that LuxT directly binds to the hapR promoter region. Furthermore, luxT expression was upregulated by the two-component system ArcB/ArcA, which responses to changes in oxygen levels in response to the host's small intestine's anaerobic signals. In conclusion, this research reveals a novel cell density-mediated virulence regulation pathway and contributes to understanding the complex association between V. cholerae virulence and QS signals. This evidence furnishes new insights for future studies on cholerae's pathogenic mechanisms.
Collapse
Affiliation(s)
- Yuehua Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, China
| | - Junxiang Yan
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, China
| | - Jinghao Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, China
| | - Xinke Xue
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, China
| | - Ying Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, China
| | - Boyang Cao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, China
| |
Collapse
|
7
|
Yan J, Liu Q, Xue X, Li J, Li Y, Su Y, Cao B. The Response Regulator VC1795 of Vibrio Pathogenicity Island-2 Contributes to Intestinal Colonization by Vibrio cholerae. Int J Mol Sci 2023; 24:13523. [PMID: 37686329 PMCID: PMC10487451 DOI: 10.3390/ijms241713523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/20/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Vibrio cholerae is an intestinal pathogen that can cause severe diarrheal disease. The disease has afflicted millions of people since the 19th century and has aroused global concern. The Vibrio Pathogenicity Island-2 (VPI-2) is a 57.3 kb region, VC1758-VC1809, which is present in choleragenic V. cholerae. At present, little is known about the function of VC1795 in the VPI-2 of V. cholerae. In this study, the intestinal colonization ability of the ΔVC1795 strain was significantly reduced compared to that of the wild-type strain, and the colonization ability was restored to the wild-type strain after VC1795 gene replacement. This result indicated that the VC1795 gene plays a key role in the intestinal colonization and pathogenicity of V. cholerae. Then, we explored the upstream and downstream regulation mechanisms of the VC1795 gene. Cyclic adenylate receptor protein (CRP) was identified as being located upstream of VC1795 by a DNA pull-down assay and electrophoretic mobility shift assays (EMSAs) and negatively regulating the expression of VC1795. In addition, the results of Chromatin immunoprecipitation followed by sequencing (ChIP-seq), EMSAs, and Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) indicated that VC1795 directly negatively regulates the expression of its downstream gene, VC1794. Furthermore, by using qRT-PCR, we hypothesized that VC1795 indirectly positively regulates the toxin-coregulated pilus (TCP) cluster to influence the colonization ability of V. cholerae in intestinal tracts. In short, our findings support the key regulatory role of VC1795 in bacterial pathogenesis as well as lay the groundwork for the further determination of the complex regulatory network of VC1795 in bacteria.
Collapse
Affiliation(s)
- Junxiang Yan
- EDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin 300457, China
| | - Qian Liu
- EDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin 300457, China
| | - Xinke Xue
- EDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin 300457, China
| | - Jinghao Li
- EDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin 300457, China
| | - Yuehua Li
- EDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin 300457, China
| | - Yingying Su
- EDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin 300457, China
| | - Boyang Cao
- EDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin 300457, China
| |
Collapse
|
8
|
Cheng S, Li Z, Bai X, Feng J, Su R, Song L, Yang H, Zhan X, Xia X, Lü X, Shi C. The biochemical characteristics of viable but nonculturable state Yersinia enterocolitica induced by lactic acid stress and its presence in food systems. Food Res Int 2023; 170:113024. [PMID: 37316087 DOI: 10.1016/j.foodres.2023.113024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 06/16/2023]
Abstract
The viable but nonculturable (VBNC) state is adopted by many foodborne pathogenic bacteria to survive in adverse conditions. This study found that lactic acid, a widely used food preservative, can induce Yersinia enterocolitica to enter a VBNC state. Y. enterocolitica treated with 2 mg/mL lactic acid completely lost culturability within 20 min, and 10.137 ± 1.693 % of the cells entered a VBNC state. VBNC state cells could be recovered (resuscitated) in tryptic soy broth (TSB), 5 % (v/v) Tween80-TSB, and 2 mg/mL sodium pyruvate-TSB. In the VBNC state of Y. enterocolitica induced by lactic acid, the intracellular adenosine triphosphate (ATP) concentration and various enzyme activities were decreased, and the reactive oxygen species (ROS) level was elevated, compared with uninduced cells. The VBNC state cells were significantly more resistant to heat and simulated gastric fluid than uninduced cells, but their ability to survive in a high-osmotic-pressure environment was significantly less than that of uninduced cells. The VBNC state cells induced by lactic acid changed from long rod-like to short rod-like, with small vacuoles at the cell edges; the genetic material was loosened and the density of cytoplasm was increased. The VBNC state cells had decreased ability to adhere to and invade Caco-2 (human colorectal adenocarcinoma) cells. The transcription levels of genes related to adhesion, invasion, motility, and resistance to adverse environmental stress were downregulated in VBNC state cells relative to uninduced cells. In meat-based broth, all nine tested strains of Y. enterocolitica entered the VBNC state after lactic acid treatment; among these strains, only VBNC state cells of Y. enterocolitica CMCC 52207 and Isolate 36 could not be recovered. Therefore, this study is a wake-up call for food safety problems caused by VBNC state pathogens induced by lactic acid.
Collapse
Affiliation(s)
- Shuai Cheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhenye Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiangyang Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingqi Feng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruiying Su
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Luyi Song
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hui Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiangjun Zhan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaodong Xia
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116304, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
9
|
Ayibieke A, Nishiyama A, Senoh M, Hamabata T. Gene expression analysis during the conversion from a viable but nonculturable to culturable state in Vibrio cholerae. Gene 2023; 863:147289. [PMID: 36804851 DOI: 10.1016/j.gene.2023.147289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/26/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
We previously reported that Vibrio cholerae in a viable but non-culturable (VBNC) state can be converted to a culturable state by treatment with catalase. This finding enabled us to develop an assay system to observe the time course of the conversion from VBNC to culturable in V. cholerae. VBNC cells began to convert to culturable cells as early as 2 h after catalase supplementation. Gene expression in VBNC cells during catalase treatment was analyzed using RNA microarray. Many ribosomal DNA genes were stimulated 6 h post catalase exposure, suggesting that the conversion-driving signal started prior to 6 h. Focusing on the period prior to cell proliferation, we found that 16 genes might be involved in the conversion mechanism in V. cholerae, and they showed enhanced expression at 2 h and 4 h after catalase addition. These upregulated genes included phage shock proteins (pspA, B, and C), alternative sigma factor (rpoE) and its negative regulator (rseA), cobW C terminal domain-containing protein, damage-inducible helicase (dinG), cholerae toxin secretion protein epsM, HTH-type transcription regulator (iscR), mechanosensitive ion channel family protein, anthranilate synthase component I, fructose-specific IIBC component, molybdenum import ATP-binding protein (modC), LysE family translocator, putative organic hydroperoxide resistance protein, and a hypothetical protein. This study identified genes involved in the catalase-induced conversion of V. cholerae VBNC cells to a culturable state and provided valuable insights into the mechanisms involved in the conversion process.
Collapse
Affiliation(s)
- Alafate Ayibieke
- Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, 162-8655 Tokyo, Japan
| | - Ayae Nishiyama
- Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, 162-8655 Tokyo, Japan
| | - Mitsutoshi Senoh
- Department of Bacteriology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, 208-0011 Tokyo, Japan
| | - Takashi Hamabata
- Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, 162-8655 Tokyo, Japan.
| |
Collapse
|
10
|
Current Perspectives on Viable but Non-Culturable Foodborne Pathogenic Bacteria: A Review. Foods 2023; 12:foods12061179. [PMID: 36981106 PMCID: PMC10048424 DOI: 10.3390/foods12061179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 03/16/2023] Open
Abstract
Foodborne diseases caused by foodborne pathogens pose risks to food safety. Effective detection and efficient inactivation of pathogenic bacteria has always been a research hotspot in the field of food safety. Complicating these goals, bacteria can be induced to adopt a viable but non-culturable (VBNC) state under adverse external environmental stresses. When in the VBNC state, pathogens cannot form visible colonies during traditional culture but remain metabolically active and toxic. The resulting false negative results in growth-related assays can jeopardize food safety. This review summarizes the latest research on VBNC foodborne pathogens, including induction conditions, detection methods, mechanism of VBNC formation, and possible control strategies. It is hoped that this review can provide ideas and methods for future research on VBNC foodborne pathogenic bacteria.
Collapse
|
11
|
Bai K, Xu X, Wang X, Li Y, Yu C, Jiang N, Li J, Luo L. Transcriptional profiling of Xanthomonas campestris pv. campestris in viable but nonculturable state. BMC Genomics 2023; 24:105. [PMID: 36894875 PMCID: PMC9999588 DOI: 10.1186/s12864-023-09200-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/21/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Xanthomonas campestris pv. campestris (Xcc) is an important seed-borne plant pathogenic bacteria that can cause a serious threat to cruciferous crops. Bacteria can enter into the viable but non-culturable (VBNC) state under stress conditions, and cause potential risks to agricultural production because the VBNC bacterial cells will evade culture-based detection. However, little is known about the mechanism of VBNC. Our previous study showed that Xcc could be induced into VBNC state by copper ion (Cu2+). RESULTS Here, RNA-seq was performed to explore the mechanism of VBNC state. The results indicated that expression profiling was changed dramatically in the different VBNC stages (0 d, 1 d, 2 d and 10 d). Moreover, metabolism related pathways were enriched according to COG, GO and KEGG analysis of differentially expressed genes (DEGs). The DEGs associated with cell motility were down-regulated, whereas pathogenicity related genes were up-regulated. This study revealed that the high expression of genes related to stress response could trigger the active cells to VBNC state, while the genes involved in transcription and translation category, as well as transport and metabolism category, were ascribed to maintaining the VBNC state. CONCLUSION This study summarized not only the related pathways that might trigger and maintain VBNC state, but also the expression profiling of genes in different survival state of bacteria under stress. It provided a new kind of gene expression profile and new ideas for studying VBNC state mechanism in X. campestris pv. campestris.
Collapse
Affiliation(s)
- Kaihong Bai
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China.,Department of Plant Pathology, Key Laboratory of Seed Disease Testing and Control, MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Xiaoli Xu
- Department of Plant Pathology, Key Laboratory of Seed Disease Testing and Control, MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Xudong Wang
- Department of Plant Pathology, Key Laboratory of Seed Disease Testing and Control, MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Yao Li
- Department of Plant Pathology, Key Laboratory of Seed Disease Testing and Control, MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Chengxuan Yu
- Department of Plant Pathology, Key Laboratory of Seed Disease Testing and Control, MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Na Jiang
- Department of Plant Pathology, Key Laboratory of Seed Disease Testing and Control, MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Jianqiang Li
- Department of Plant Pathology, Key Laboratory of Seed Disease Testing and Control, MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Laixin Luo
- Department of Plant Pathology, Key Laboratory of Seed Disease Testing and Control, MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China.
| |
Collapse
|
12
|
Cai J, Zhou M, Zhang Y, Ma Y, Zhang Y, Wang Q. Identification of determinants for entering into a viable but nonculturable state in Vibrio alginolyticus by Tn-seq. Appl Microbiol Biotechnol 2023; 107:1813-1827. [PMID: 36729225 DOI: 10.1007/s00253-023-12376-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 02/03/2023]
Abstract
The viable but nonculturable (VBNC) state is a dormant state of nonsporulating bacteria that enhances survival in adverse environments. Systematic genome-wide research on the genetic basis of VBNC formation is warranted. In this study, we demonstrated that the marine bacterium Vibrio alginolyticus lost culturability but remained viable and entered into the VBNC state when exposed to low nutrient concentrations for prolonged periods of time. Using transposon-insertion sequencing (Tn-seq), we identified 635 determinants governing the formation of the VBNC state, including 322 genes with defective effects on VBNC formation and 313 genes contributing to entry into the VBNC state. Tn-seq analysis revealed that genes involved in various metabolic pathways were shown to have an inhibitory effect on VBNC formation, while genes related to chemotaxis or folate biosynthesis promoted entry into the VBNC state. Moreover, the effects of these genes on the formation of VBNC were validated with the growth of deletion mutants of eight selected genes under nutrient-limited conditions. Interestingly, fleQ and pyrI were identified as essential for entry into the VBNC state, and they affected the formation of the VBNC state independent of RpoE or ToxR regulation. Collectively, these results provide new insights into the mechanism of VBNC formation. KEY POINTS: • Vibrio alginolyticus has the ability to enter into the VBNC state under low nutrient conditions at low temperature. • The 635 determinants for entry into the VBNC state were systematically identified by transposon-insertion sequencing. • PyrI and FleQ were validated to play significant roles in the formation of the VBNC state.
Collapse
Affiliation(s)
- Jingxiao Cai
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, 200237, China
| | - Mengqing Zhou
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuanxing Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.,Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Yue Ma
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, 200237, China. .,Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China. .,Shanghai Collaborative Innovation Center for Biomanufacturing, 130 Meilong Road, Shanghai, 200237, China.
| | - Yibei Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, 200237, China. .,Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China.
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, 200237, China.,Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China.,Shanghai Collaborative Innovation Center for Biomanufacturing, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
13
|
Wu J, Liu Y, Li W, Li F, Liu R, Sun H, Qin J, Feng X, Huang D, Liu B. MlrA, a MerR family regulator in Vibrio cholerae, senses the anaerobic signal in the small intestine of the host to promote bacterial intestinal colonization. Gut Microbes 2022; 14:2143216. [PMID: 36369865 PMCID: PMC9662190 DOI: 10.1080/19490976.2022.2143216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Vibrio cholerae (V. cholerae), one of the most important bacterial pathogens in history, is a gram-negative motile bacterium that causes fatal pandemic disease in humans via oral ingestion of contaminated water or food. This process involves the coordinated actions of numerous regulatory factors. The MerR family regulators, which are widespread in prokaryotes, have been reported to be associated with pathogenicity. However, the role of the MerR family regulators in V. cholerae virulence remains unknown. Our study systematically investigated the influence of MerR family regulators on intestinal colonization of V. cholerae within the host. Among the five MerR family regulators, MlrA was found to significantly promote the colonization capacity of V. cholerae in infant mice. Furthermore, we revealed that MlrA increases bacterial intestinal colonization by directly enhancing the expression of tcpA, which encodes one of the most important virulence factors in V. cholerae, by binding to its promoter region. In addition, we revealed that during infection, mlrA is activated by anaerobic signals in the small intestine of the host through Fnr. In summary, our findings reveal a MlrA-mediated virulence regulation pathway that enables V. cholerae to sense environmental signals at the infection site to precisely activate virulence gene expression, thus providing useful insights into the pathogenic mechanisms of V. cholerae.
Collapse
Affiliation(s)
- Jialin Wu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Yutao Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China,Nankai International Advanced Research Institute, Nankai University Shenzhen, China
| | - Wendi Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Fan Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Ruiying Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Hao Sun
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Jingliang Qin
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Xiaohui Feng
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Di Huang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China,Nankai International Advanced Research Institute, Nankai University Shenzhen, China,Di Huang TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, China
| | - Bin Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China,Nankai International Advanced Research Institute, Nankai University Shenzhen, China,CONTACT Bin Liu TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, China
| |
Collapse
|
14
|
Gong X, Lu H, Wu J, Zhou Y, Yang L, Wang Y, Shen N, Jiang M. Enzymatic properties and biological activity of resuscitation-promoting factor B of Rhodococcus sp. (GX12401). Front Microbiol 2022; 13:965843. [PMID: 36274735 PMCID: PMC9580463 DOI: 10.3389/fmicb.2022.965843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
Resuscitation-promoting factor B (RpfB) is one of the five members of Rpf-like family in Mycobacteriales, which have the resuscitation-promoting activity. Most strains of Rhodococcus also have RpfB gene, but the study of rpfB gene in Rhodococcus is not thorough. Here, we amplified the rpfB gene of intact Rhodococcus sp. (GX12401) and cloned it into pET30a (+) expression vector. Then a recombinant form of soluble RpfB was expressed in Escherichia coli BL21. The soluble recombinant RpfB was purified by Ni–Sepharose affinity chromatography and molecular weight of the protein was 55 kDa, determined by 12% SDS–PAGE stained with Coomassie brilliant blue R-250. When 4-methylumbelliferyl-β-D-N,N′,N″-triacetylchitoside was used as enzyme substrate to test lysozyme activity, the recombinant protein RpfB had good stability and enzyme activity, and the lysozyme activity was low (4.74 U), among which Mg2+, Na+, Al3+ and DMSO could significantly increase the activity of RpfB. The purified recombinant protein was added to Rhodococcus VBNC cells, and the VBNC cells were resuscitated at the concentration of 1 picomolar concentrations, which increased by 18% compared with the control, while the cell resuscitation was inhibited at the concentration of 1,000 picomolar concentrations. Therefore, RpfB can improve the survival ability of Rhodococcus in extreme or harsh environment and enhance the corresponding biological activity.
Collapse
Affiliation(s)
- Xu Gong
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Huijiao Lu
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Jiafa Wu
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Yan Zhou
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Lifang Yang
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, China
| | - Yibing Wang
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Naikun Shen
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Mingguo Jiang
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
- *Correspondence: Mingguo Jiang,
| |
Collapse
|
15
|
The Role of ptsH in Stress Adaptation and Virulence in Cronobacter sakazakii BAA-894. Foods 2022; 11:foods11172680. [PMID: 36076869 PMCID: PMC9455513 DOI: 10.3390/foods11172680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/21/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Cronobacter sakazakii, an emerging foodborne pathogen that was isolated primarily from powdered infant formula, poses an important issue in food safety due to its high stress tolerance and pathogenicity. The Hpr (encoded by ptsH gene) has been shown to regulate carbon metabolism as well as stress response and virulence. However, the functional properties of ptsH in C. sakzakii have not been investigated. In this study, we clarified the role of ptsH in the C. sakzakii stress response and virulence, and explored its possible regulatory mechanism by RNA-seq. Compared with wild-type, the ΔptsH mutant showed a slower growth rate in the log phase but no difference in the stationary phase. Moreover, the resistance to heat stress (65 °C, 55 °C), simulated gastric fluid (pH = 2.5), biofilm formation and adhesion to HT-29 cells of ΔptsH mutant were significantly decreased, whereas the oxidative resistance (1, 5, 10 mM H2O2), osmotic resistance (10%, 15%, 20% NaCl), and superoxide dismutase activity were enhanced. Finally, RNA-seq analysis revealed the sulfur metabolism pathway is significantly upregulated in the ΔptsH mutant, but the bacterial secretion system pathway is dramatically downregulated. The qRT-PCR assay further demonstrated that the ΔptsH mutant has elevated levels of genes that are related to oxidative and osmotic stress (sodA, rpoS, cpxA/R, osmY). This study provides a great understanding of the role of ptsH in diverse stress responses and virulence in C. sakazakii, and it contributes to our understanding of the genetic determinant of stress resistance and pathogenicity of this important foodborne pathogen.
Collapse
|
16
|
Sun H, Zhu C, Fu X, Khattak S, Wang J, Liu Z, Kong Q, Mou H, Secundo F. Effects of intestinal microbiota on physiological metabolism and pathogenicity of Vibrio. Front Microbiol 2022; 13:947767. [PMID: 36081796 PMCID: PMC9445811 DOI: 10.3389/fmicb.2022.947767] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Vibrio species are disseminated broadly in the marine environment. Some of them can cause severe gastroenteritis by contaminating seafood and drinking water, such as Vibrio parahaemolyticus, Vibrio cholerae, and Vibrio vulnificus. However, their pathogenic mechanism still needs to be revealed to prevent and reduce morbidity. This review comprehensively introduces and discusses the common pathogenic process of Vibrio including adhesion, cell colonization and proliferation, and resistance to host immunity. Vibrio usually produces pathogenic factors including hemolysin, type-III secretion system, and adhesion proteins. Quorum sensing, a cell molecular communication system between the bacterial cells, plays an important role in Vibrio intestinal invasion and colonization. The human immune system can limit the virulence of Vibrio or even kill the bacteria through different responses. The intestinal microbiota is a key component of the immune system, but information on its effects on physiological metabolism and pathogenicity of Vibrio is seldom available. In this review, the effects of intestinal microorganisms and their metabolites on the invasion and colonization of common pathogenic Vibrio and VBNC status cells are discussed, which is conducive to finding the next-generation prebiotics. The strategy of dietary intervention is discussed for food safety control. Finally, future perspectives are proposed to prevent Vibrio infection in aquaculture.
Collapse
Affiliation(s)
- Han Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changliang Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xiaodan Fu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi, Nanchang University, Nanchang, China
| | - Shakir Khattak
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jingyu Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zhihao Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Qing Kong
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
- *Correspondence: Haijin Mou
| | - Francesco Secundo
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, CNR, Milan, Italy
- Francesco Secundo
| |
Collapse
|
17
|
Liu Y, Xu T, Wang Q, Huang J, Zhu Y, Liu X, Liu R, Yang B, Zhou K. Vibrio cholerae senses human enteric α-defensin 5 through a CarSR two-component system to promote bacterial pathogenicity. Commun Biol 2022; 5:559. [PMID: 35676416 PMCID: PMC9178039 DOI: 10.1038/s42003-022-03525-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/23/2022] [Indexed: 11/09/2022] Open
Abstract
Vibrio cholerae (V. cholerae) is an aquatic bacterium responsible for acute and fatal cholera outbreaks worldwide. When V. cholerae is ingested, the bacteria colonize the epithelium of the small intestine and stimulate the Paneth cells to produce large amounts of cationic antimicrobial peptides (CAMPs). Human defensin 5 (HD-5) is the most abundant CAMPs in the small intestine. However, the role of the V. cholerae response to HD-5 remains unclear. Here we show that HD-5 significantly upregulates virulence gene expression. Moreover, a two-component system, CarSR (or RstAB), is essential for V. cholerae virulence gene expression in the presence of HD-5. Finally, phosphorylated CarR can directly bind to the promoter region of TcpP, activating transcription of tcpP, which in turn activates downstream virulence genes to promote V. cholerae colonization. In conclusion, this study reveals a virulence-regulating pathway, in which the CarSR two-component regulatory system senses HD-5 to activate virulence genes expression in V. cholerae.
Collapse
Affiliation(s)
- Yutao Liu
- TEDA Institute of Biological Sciences and Biotechnology, TEDA, Nankai University, Tianjin, PR China
| | - Tingting Xu
- The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen Institute of Respiratory Diseases, Shenzhen, Guangdong, PR China
| | - Qian Wang
- TEDA Institute of Biological Sciences and Biotechnology, TEDA, Nankai University, Tianjin, PR China
| | - Junxi Huang
- The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen Institute of Respiratory Diseases, Shenzhen, Guangdong, PR China
| | - Yangfei Zhu
- The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Laboratory Department, Shenzhen People's Hospital, Shenzhen, Guangdong, PR China
| | - Xingmei Liu
- TEDA Institute of Biological Sciences and Biotechnology, TEDA, Nankai University, Tianjin, PR China
| | - Ruiying Liu
- TEDA Institute of Biological Sciences and Biotechnology, TEDA, Nankai University, Tianjin, PR China
| | - Bin Yang
- TEDA Institute of Biological Sciences and Biotechnology, TEDA, Nankai University, Tianjin, PR China.
| | - Kai Zhou
- The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen Institute of Respiratory Diseases, Shenzhen, Guangdong, PR China.
| |
Collapse
|
18
|
Chen C, Ao J, Wang L, Zhang J, Mo Y, Zhang Y, Zhao L. Characterisation of the molecular mechanisms of multiple antibiotic tolerance in growth‐arrested
Cronobacter sakazakii
under ampicillin exposure. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chuxin Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods College of Food Sciences South China Agricultural University Guangzhou Guangdong 510642 China
| | - Jialu Ao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods College of Food Sciences South China Agricultural University Guangzhou Guangdong 510642 China
| | - Li Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods College of Food Sciences South China Agricultural University Guangzhou Guangdong 510642 China
| | - Jingfeng Zhang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods College of Food Sciences South China Agricultural University Guangzhou Guangdong 510642 China
| | - Yunshao Mo
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods College of Food Sciences South China Agricultural University Guangzhou Guangdong 510642 China
| | - Yehui Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture Guangzhou Guangdong 510641 China
| | - Lichao Zhao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods College of Food Sciences South China Agricultural University Guangzhou Guangdong 510642 China
- Guangdong Laboratory for Lingnan Modern Agriculture Guangzhou Guangdong 510641 China
| |
Collapse
|
19
|
Li Y, Yan J, Guo X, Wang X, Liu F, Cao B. The global regulators ArcA and CytR collaboratively modulate Vibrio cholerae motility. BMC Microbiol 2022; 22:22. [PMID: 35021992 PMCID: PMC8753867 DOI: 10.1186/s12866-022-02435-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 01/05/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Vibrio cholerae, a Gram-negative bacterium, is highly motile owing to the presence of a single polar flagellum. The global anaerobiosis response regulator, ArcA regulates the expression of virulence factors and enhance biofilm formation in V. cholerae. However, the function of ArcA for the motility of V. cholerae is yet to be elucidated. CytR, which represses nucleoside uptake and catabolism, is known to play a chief role in V. cholerae pathogenesis and flagellar synthesis but the mechanism that CytR influences motility is unclear.
Results
In this study, we found that the ΔarcA mutant strain exhibited higher motility than the WT strain due to ArcA directly repressed flrA expression. We further discovered that CytR directly enhanced fliK expression, which explained why the ΔcytR mutant strain was retarded in motility. On the other hand, cytR was a direct ArcA target and cytR expression was directly repressed by ArcA. As expected, cytR expression was down-regulated.
Conclusions
Overall, ArcA plays a critical role in V. cholerae motility by regulating flrA expression directly and fliK indirectly in the manner of cytR.
Collapse
|
20
|
Ma Y, Zhang Y, Chen K, Zhang L, Zhang Y, Wang X, Xia X. The role of PhoP/PhoQ two component system in regulating stress adaptation in Cronobacter sakazakii. Food Microbiol 2021; 100:103851. [PMID: 34416955 DOI: 10.1016/j.fm.2021.103851] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 05/30/2021] [Accepted: 06/03/2021] [Indexed: 01/06/2023]
Abstract
Cronobacter sakazakii is an opportunistic foodborne bacterial pathogen that shows resistance to multiple stress conditions. The PhoP/PhoQ two component system is a key regulatory mechanism of stress response and virulence in various bacteria, but its role in C. sakazakii has not been thoroughly studied. In this study, we found the PhoP/PhoQ system in C. sakazakii ATCC BAA-894 enhanced bacterial growth in conditions with low Mg2+, acid pH, and the presence of polymyxin B. Moreover, the ΔphoPQ strain significantly reduced survival following exposure to heat, high osmotic pressure, oxidative or bile salts compared with WT strain. Furthermore, the RNA-seq analysis indicated that 1029 genes were upregulated and 979 genes were downregulated in ΔphoPQ strain. The bacterial secretion system, flagella assembly, beta-Lactam resistance and two-component system pathways were significantly downregulated, while the ABC transporters and microbial metabolism in diverse environments pathways were upregulated. qRT-PCR analysis further confirmed that twelve genes associated with stress tolerance were positively regulated by the PhoP/PhoQ system. Therefore, these findings suggest that the PhoP/PhoQ system is an important regulatory mechanism for C. sakazakii to resist various environmental stress.
Collapse
Affiliation(s)
- Yan Ma
- College of Food Science and Engineering, Sino-US Joint Research Center, Northwest A&F University, Shaanxi, 712100, China
| | - Yingying Zhang
- College of Food Science and Engineering, Sino-US Joint Research Center, Northwest A&F University, Shaanxi, 712100, China
| | - Ke Chen
- College of Food Science and Engineering, Sino-US Joint Research Center, Northwest A&F University, Shaanxi, 712100, China
| | - Lingzhu Zhang
- College of Food Science and Engineering, Sino-US Joint Research Center, Northwest A&F University, Shaanxi, 712100, China
| | - Yibei Zhang
- College of Food Science and Engineering, Sino-US Joint Research Center, Northwest A&F University, Shaanxi, 712100, China
| | - Xin Wang
- College of Food Science and Engineering, Sino-US Joint Research Center, Northwest A&F University, Shaanxi, 712100, China
| | - Xiaodong Xia
- College of Food Science and Engineering, Sino-US Joint Research Center, Northwest A&F University, Shaanxi, 712100, China; School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, 1 Qinggongyuan, Ganjingzi District, Dalian, Liaoning, 116034, China.
| |
Collapse
|
21
|
Liu Y, Liu B, Xu T, Wang Q, Li W, Wu J, Zheng X, Liu B, Liu R, Liu X, Guo X, Feng L, Wang L. A fructose/H + symporter controlled by a LacI-type regulator promotes survival of pandemic Vibrio cholerae in seawater. Nat Commun 2021; 12:4649. [PMID: 34330925 PMCID: PMC8324912 DOI: 10.1038/s41467-021-24971-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 07/13/2021] [Indexed: 02/07/2023] Open
Abstract
The bacterium Vibrio cholerae can colonize the human intestine and cause cholera, but spends much of its life cycle in seawater. The pathogen must adapt to substantial environmental changes when moving between seawater and the human intestine, including different availability of carbon sources such as fructose. Here, we use in vitro experiments as well as mouse intestinal colonization assays to study the mechanisms used by pandemic V. cholerae to adapt to these environmental changes. We show that a LacI-type regulator (FruI) and a fructose/H+ symporter (FruT) are important for fructose uptake at low fructose concentrations, as those found in seawater. FruT is downregulated by FruI, which is upregulated when O2 concentrations are low (as in the intestine) by ArcAB, a two-component system known to respond to changes in oxygen levels. As a result, the bacteria predominantly use FruT for fructose uptake under seawater conditions (low fructose, high O2), and use a known fructose phosphotransferase system (PTS, Fpr) for fructose uptake under conditions found in the intestine. PTS activity leads to reduced levels of intracellular cAMP, which in turn upregulate virulence genes. Our results indicate that the FruT/FruI system may be important for survival of pandemic V. cholerae in seawater.
Collapse
Affiliation(s)
- Yutao Liu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P.R. China
| | - Bin Liu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P.R. China
| | - Tingting Xu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P.R. China
- Shenzhen Institute of Respiratory Diseases, Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, P. R. China
| | - Qian Wang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P.R. China
| | - Wendi Li
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P.R. China
| | - Jialin Wu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P.R. China
| | - Xiaoyu Zheng
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P.R. China
| | - Bin Liu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P.R. China
| | - Ruiying Liu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P.R. China
| | - Xingmei Liu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P.R. China
| | - Xi Guo
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P.R. China
| | - Lu Feng
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China.
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China.
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P.R. China.
| | - Lei Wang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China.
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China.
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, P.R. China.
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, P. R. China.
| |
Collapse
|
22
|
Zhou A, Wang L, Zhang J, Yang X, Ou Z, Zhao L. Survival of viable but nonculturable Cronobacter sakazakii in macrophages contributes to infections. Microb Pathog 2021; 158:105064. [PMID: 34171399 DOI: 10.1016/j.micpath.2021.105064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/09/2021] [Accepted: 06/16/2021] [Indexed: 02/04/2023]
Abstract
Cronobacter sakazakii (C. sakazakii), a pathogen that exists in dry and low-moisture environments, such as powder infant formula (PIF), can enter a viable but nonculturable (VBNC) state under harsh conditions, which enables it to escape traditional detection methods and thus poses a potential public health risk. This study aimed at assessing the virulent nature of VBNC C. sakazakii. Our results showed that VBNC C. sakazakii induced intestinal inflammation in neonatal rats. However, the degree of inflammation was significantly lower than that of culturable bacteria due to decreasing endotoxin production, motility, adhesion, and invasion ability in the VBNC state. From the perspective of bacterial translocation, the numbers of C. sakazakii in the blood, liver, and spleen of rats treated with VBNC cells were in the same order of magnitude as those treated with its culturable counterpart and may lead to the same degree of bacteremia. According to the macrophage survival assays, the survival rate of VBNC C. sakazakii within macrophages was 4.7 times higher than that of culturable cells. Based on these findings, we hypothesize that VBNC C. sakazakii evaded the host immune defense system, penetrated the tissue barrier, and translocated to the bloodstream, liver, and spleen through macrophages. Thus, our study reveals that VBNC C. sakazakii could be a potential risk for infants' health.
Collapse
Affiliation(s)
- Aidi Zhou
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Wu Shan Road 483, Guangzhou 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, PR China
| | - Li Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Wu Shan Road 483, Guangzhou 510642, PR China.
| | - Jingfeng Zhang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Wu Shan Road 483, Guangzhou 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, PR China
| | - Xiaoqing Yang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Wu Shan Road 483, Guangzhou 510642, PR China
| | - Zhihua Ou
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Wu Shan Road 483, Guangzhou 510642, PR China
| | - Lichao Zhao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Wu Shan Road 483, Guangzhou 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, PR China.
| |
Collapse
|
23
|
Hamabata T, Senoh M, Iwaki M, Nishiyama A, Yamamoto A, Shibayama K. Induction and Resuscitation of Viable but Nonculturable Corynebacterium diphtheriae. Microorganisms 2021; 9:microorganisms9050927. [PMID: 33925877 PMCID: PMC8145655 DOI: 10.3390/microorganisms9050927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 01/07/2023] Open
Abstract
Many pathogenic bacteria, including Escherichia coli and Vibrio cholerae, can become viable but nonculturable (VBNC) following exposure to specific stress conditions. Corynebacterium diphtheriae, a known human pathogen causing diphtheria, has not previously been shown to enter the VBNC state. Here, we report that C. diphtheriae can become VBNC when exposed to low temperatures. Morphological differences in culturable and VBNC C. diphtheriae were examined using scanning electron microscopy. Culturable cells presented with a typical rod-shape, whereas VBNC cells showed a distorted shape with an expanded center. Cells could be transitioned from VBNC to culturable following treatment with catalase. This was further evaluated via RNA sequence-based transcriptomic analysis and reverse-transcription quantitative PCR of culturable, VBNC, and resuscitated VBNC cells following catalase treatment. As expected, many genes showed different behavior by resuscitation. The expression of both the diphtheria toxin and the repressor of diphtheria toxin genes remained largely unchanged under all four conditions (culturable, VBNC, VBNC after the addition of catalase, and resuscitated cells). This is the first study to demonstrate that C. diphtheriae can enter a VBNC state and that it can be rescued from this state via the addition of catalase. This study helps to expand our general understanding of VBNC, the pathogenicity of VBNC C. diphtheriae, and its environmental survival strategy.
Collapse
Affiliation(s)
- Takashi Hamabata
- Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; (T.H.); (A.N.)
| | - Mitsutoshi Senoh
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo 208-0011, Japan;
- Correspondence: ; Tel.: +81-42-561-0771
| | - Masaaki Iwaki
- Management Department of Biosafety and Laboratory Animal, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (M.I.); (A.Y.)
| | - Ayae Nishiyama
- Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; (T.H.); (A.N.)
| | - Akihiko Yamamoto
- Management Department of Biosafety and Laboratory Animal, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (M.I.); (A.Y.)
| | - Keigo Shibayama
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo 208-0011, Japan;
| |
Collapse
|
24
|
Cra and cAMP Receptor Protein Have Opposing Roles in the Regulation of fruB in Vibrio cholerae. J Bacteriol 2021; 203:JB.00044-21. [PMID: 33649152 PMCID: PMC8088597 DOI: 10.1128/jb.00044-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 02/23/2021] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae is the causative agent of cholera disease. While current treatments of care are accessible, we still lack an understanding of the molecular mechanisms that allow V. cholerae to survive in both aquatic reservoirs and the human small intestine, where pathogenesis occurs. The Gram-negative bacterium Vibrio cholerae adapts to changes in the environment by selectively producing the necessary machinery to take up and metabolize available carbohydrates. The import of fructose by the fructose-specific phosphoenolpyruvate (PEP) phosphotransferase system (PTS) is of particular interest because of its putative connection to cholera pathogenesis and persistence. Here, we describe the expression and regulation of fruB, which encodes an EIIA-FPr fusion protein as part of the fructose-specific PTS in V. cholerae. Using a series of transcriptional reporter fusions and additional biochemical and genetic assays, we identified Cra (catabolite repressor/activator) and cAMP receptor protein (CRP) as regulators of fruB expression and determined that this regulation is dependent upon the presence or absence of PTS sugars. Cra functions as a repressor, downregulating fruB expression in the absence of fructose when components of PTSFru are not needed. CRP functions as an activator of fruB expression. We also report that Cra and CRP can affect fruB expression independently; however, CRP can modulate cra expression in the presence of fructose and glucose. Evidence from this work provides the foundation for continued investigations into PTSFru and its relationship to the V. cholerae life cycle. IMPORTANCEVibrio cholerae is the causative agent of cholera disease. While current treatments of care are accessible, we still lack an understanding of the molecular mechanisms that allow V. cholerae to survive in both aquatic reservoirs and the human small intestine, where pathogenesis occurs. Central to V. cholerae’s survival is its ability to use available carbon sources. Here, we investigate the regulation of fruB, which encodes a protein central to the import and metabolism of fructose. We show that fruB expression is controlled by the transcriptional regulators Cra and CRP. This work contributes toward a clearer understanding of how carbon source availability impacts the physiology and, potentially, the persistence of the pathogen.
Collapse
|
25
|
Furusawa G, Diyana T, Lau NS. Metabolic strategies of dormancy of a marine bacterium Microbulbifer aggregans CCB-MM1: Its alternative electron transfer chain and sulfate-reducing pathway. Genomics 2021; 114:443-455. [PMID: 33689784 DOI: 10.1016/j.ygeno.2021.02.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/26/2021] [Accepted: 02/28/2021] [Indexed: 12/26/2022]
Abstract
Bacterial dormancy plays a crucial role in maintaining the functioning and diversity of microbial communities in natural environments. However, the metabolic regulations of the dormancy of bacteria in natural habitats, especially marine habitats, have remained largely unknown. A marine bacterium, Microbulbifer aggregans CCB-MM1 exhibits rod-to-coccus cell shape change during the dormant state. Therefore, to clarify the metabolic regulation of the dormancy, differential gene expression analysis based on RNA-Seq was performed between rod- (vegetative), intermediate, and coccus-shaped cells (dormancy). The RNA-Seq data revealed that one of two distinct electron transfer chains was upregulated in the dormancy. Dissimilatory sulfite reductase and soluble hydrogenase were also highly upregulated in the dormancy. In addition, induction of the dormancy of MM1 in the absence of MgSO4 was slower than that in the presence of MgSO4. These results indicate that the sulfate-reducing pathway plays an important role in entering the dormancy of MM1.
Collapse
Affiliation(s)
- Go Furusawa
- Centre for Chemical Biology, Universiti Sains Malaysia, 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia.
| | - Tarmizi Diyana
- Centre for Chemical Biology, Universiti Sains Malaysia, 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia
| | - Nyok-Sean Lau
- Centre for Chemical Biology, Universiti Sains Malaysia, 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia
| |
Collapse
|
26
|
Gao R, Liao X, Zhao X, Liu D, Ding T. The diagnostic tools for viable but nonculturable pathogens in the food industry: Current status and future prospects. Compr Rev Food Sci Food Saf 2021; 20:2146-2175. [PMID: 33484068 DOI: 10.1111/1541-4337.12695] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 12/21/2022]
Abstract
Viable but nonculturable (VBNC) microorganisms have been recognized as pathogenic contaminants in foods and environments. The failure of VBNC cells to form the visible colonies hinders the ability to use conventional media for their detection. Efficient and rapid detection of pathogens in the VBNC state is a prerequisite to ensure the food safety and public health. Despite their nonculturability, VBNC cells have distinct characteristics, such as morphology, metabolism, chemical composition, and gene and protein expression, that have been used as the basis for the development of abundant diagnostic tools. This review covers the current status and advances in various approaches for examining microorganisms in the VBNC state, including but not limited to the methodological aspects, advantages, and drawbacks of each technique. Existing methods, such as direct viable count, SYTO/PI dual staining, and propidium monoazide quantitative polymerase chain reaction (PCR), as well as some techniques with potential to be applied in the future, such as digital PCR, enhanced-surface Raman spectroscopy, and impedance-based techniques, are summarized in depth. Finally, future prospects for the one-step detection of VBNC bacteria are proposed and discussed. We believe that this review can provide more optional methods for researchers and promote the development of rapid, accurate detecting methods, and for inspectors, the diagnostic tools can provide data to undertake risk analysis of VBNC cells.
Collapse
Affiliation(s)
- Rui Gao
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinyu Liao
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xihong Zhao
- Research Center for Environmental Ecology and Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Donghong Liu
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tian Ding
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
27
|
Yang S, Xi D, Wang X, Li Y, Li Y, Yan J, Cao B. Vibrio cholerae VC1741 (PsrA) enhances the colonization of the pathogen in infant mice intestines in the presence of the long-chain fatty acid, oleic acid. Microb Pathog 2020; 147:104443. [PMID: 32777352 DOI: 10.1016/j.micpath.2020.104443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 01/08/2023]
Abstract
Vibrio cholerae is a natural inhabitant of aquatic environments and causes the epidemic diarrheal disease known as cholera. Fatty acid metabolism is closely related to the pathogenicity of V. cholerae. The TetR family transcriptional repressor PsrA regulates the β-oxidation pathway in Pseudomonas aeruginosa; however, little is known about its regulation in V. cholerae. In this study, qRT-PCR revealed that the expression of vc1741 (psrA) increased 40-fold in the small intestines of infant mice compared with that grown in LB medium. The Δvc1741 mutant showed a significant defected in the ability to colonize the small intestines of infant mice with a competitive index (CI) of 0.53. EMSAs indicated that VC1741 could directly bind to the promoter regions of vc1741-fadE1, fadBA, and fadIJ operons, and these bindings were reversed upon addition of the long-chain fatty acid (LCFA), oleic acid. The expression levels of the fadB, fadA, fadI, and fadJ genes were all elevated by approximately 2-fold in the Δvc1741 mutant strain compared with that in the wild-type strain in LB medium, indicating that VC1741 is a repressor for these genes involved in fatty acid degradation. Moreover, ΔfadBA, ΔfadB, and ΔfadA isogenic mutants showed defective abilities to colonize the small intestines of infant mice, with CI values of 0.64, 0.73, and 0.74, respectively. These data provided a mechanistic model in which LCFAs affect the expression of VC1741 to control fatty acid degradation and virulence in V. cholerae.
Collapse
Affiliation(s)
- Shuang Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China; Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China; Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Daoyi Xi
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China; Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China; Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Xiaochen Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China; Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China; Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Yuehua Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China; Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China; Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Yujia Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China; Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China; Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Junxiang Yan
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China; Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China; Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Boyang Cao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China; Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China; Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China.
| |
Collapse
|
28
|
M Jayakumar J, Balasubramanian D, Reddi G, Almagro-Moreno S. Synergistic role of abiotic factors driving viable but non-culturable Vibrio cholerae. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:454-465. [PMID: 32542975 DOI: 10.1111/1758-2229.12861] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/06/2020] [Accepted: 06/13/2020] [Indexed: 06/11/2023]
Abstract
Vibrio cholerae O1, a natural inhabitant of estuarine environments, is found in a dormant, viable but non-culturable (VBNC) state during interepidemic periods. Although the individual roles of abiotic factors affecting VBNC formation have been extensively studied, their interplay in driving this phenomenon remains largely unaddressed. Here, we identified that major abiotic factors synergize with low nutrient conditions governing entry of cells into the VBNC state. Specifically, V. cholerae cells exposed to a combination of alkaline pH and high salinity under aeration at low temperatures (VBNC-inducing conditions) synergize to facilitate rapid entry into VBNC, whereas the opposite conditions prevented entry into the state. The major virulence regulator ToxR, and the stringent response protein RelA played opposing roles, repressing and facilitating VBNC entry respectively. Further, VBNC-inducing conditions negated the effects of ToxR and RelA, facilitating rapid formation of VBNC cells. In summary, this study highlights the synergy between critical abiotic factors and identified ToxR and RelA as two associated regulators, allowing for the persistence of V. cholerae in aquatic environments. Insights obtained in this study will help better understand environmental survival non-sporulating bacteria and transmission of facultative bacterial pathogens.
Collapse
Affiliation(s)
- Jane M Jayakumar
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816
- National Center for Integrated Coastal Research, University of Central Florida, Orlando, FL, 32816
| | - Deepak Balasubramanian
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816
- National Center for Integrated Coastal Research, University of Central Florida, Orlando, FL, 32816
| | - Geethika Reddi
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816
- National Center for Integrated Coastal Research, University of Central Florida, Orlando, FL, 32816
| | - Salvador Almagro-Moreno
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816
- National Center for Integrated Coastal Research, University of Central Florida, Orlando, FL, 32816
| |
Collapse
|
29
|
Xi D, Yang S, Liu Q, Li Y, Li Y, Yan J, Wang X, Ning K, Cao B. The response regulator ArcA enhances biofilm formation in the vpsT manner under the anaerobic condition in Vibrio cholerae. Microb Pathog 2020; 144:104197. [PMID: 32283260 DOI: 10.1016/j.micpath.2020.104197] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 12/27/2022]
Abstract
Vibrio cholerae, the agent of severe diarrheal disease cholera, is known to form biofilm to persist in the environmental and the host,s intestines. The bacteria execute a complex regulatory pathway producing virulence factors that allow colonization and cause disease in response to environmental signals in the intestine, including low oxygen-limited condition. VpsR and VpsT are primary regulators of the biofilm formation-regulatory network. In this study, we determined that anaerobic induction enhanced biofilm formation via the two component system, ArcB/A, which functions as a positive regulator of toxT expression. The biofilm formation has reduced approximately 2.4-fold in the ΔarcA mutant compared to the wild type in anaerobic condition. Chip-qPCR and EMSA assays confirmed that ArcA can bind directly to the vpsT promoter and then activates the expression of biofilm formation related genes, vpsA-K and vpsL-Q. Meanwhile, the ΔarcA mutant decreased the ability of colonization in intestine with CI (competition index) of 0.27 compared to wild type strain. These results suggest that ArcA links the expression of virulence and biofilm synthesis genes during anaerobic condition, and contributes to understand the complex relationship between biofilm formation and the intestinal signals during infection.
Collapse
Affiliation(s)
- Daoyi Xi
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China; Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China; Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Shuang Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China; Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China; Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Qian Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China; Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China; Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Yujia Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China; Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China; Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Yuehua Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China; Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China; Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Junxiang Yan
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China; Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China; Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Xiaochen Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China; Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China; Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Kexin Ning
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China; Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China; Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Boyang Cao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China; Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China; Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China.
| |
Collapse
|
30
|
Pan H, Dong K, Rao L, Zhao L, Wang Y, Liao X. The Association of Cell Division Regulated by DicC With the Formation of Viable but Non-culturable Escherichia coli O157:H7. Front Microbiol 2020; 10:2850. [PMID: 31921032 PMCID: PMC6915034 DOI: 10.3389/fmicb.2019.02850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 11/25/2019] [Indexed: 12/23/2022] Open
Abstract
The viable but non-culturable (VBNC) state, in which bacteria fail to grow on routine culture media but are actually alive, has been widely recognized as a strategy adopted by bacteria to cope with stressful environments. However, little is known regarding the molecular mechanism of VBNC formation. Here, we aimed to elucidate the specific roles of cell division regulatory proteins and the cell growth rate during VBNC Escherichia coli O157:H7 formation. We have previously found that expression of dicC is reduced by 20.08-fold in VBNC E. coli O157:H7 compared to non-VBNC cells. Little is known about DicC except that it, along with DicA, appears to act as a regulator of cell division by regulating expression of the cell division inhibitor DicB. First, our results showed that the VBNC cell number increased in the ΔdicC mutant as well as the DicA-overexpressing strain but decreased in the DicC-overexpressing strain induced by high-pressure carbon dioxide, acid, and H2O2. Furthermore, the growth rates of both the DicA-overexpressing strain and the ΔdicC mutant were higher than that of the control strain, while DicC-overexpressing strain grew significantly more slowly than the vector strain. The level of the dicB gene, regulated by dicA and dicC and inhibiting cell division, was increased in the DicC-overexpressing strain and decreased in the ΔdicC mutant and DicA-overexpressing strain, which was consistent with the growth phenotypes. In addition, the dwarfing cell morphology of the ΔdicC mutant and DicA-overexpressing strain were observed by SEM and TEM. Taken together, our study demonstrates that DicC negatively regulates the formation of the VBNC state, and DicA enhances the ability of cells to enter the VBNC state. Besides, the cell growth rate and dwarfing cell morphology may be correlated with the formation of the VBNC state.
Collapse
Affiliation(s)
- Hanxu Pan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Kai Dong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Lei Rao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Liang Zhao
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yongtao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xiaojun Liao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
31
|
Xi D, Li Y, Yan J, Li Y, Wang X, Cao B. Small RNA coaR contributes to intestinal colonization in Vibrio cholerae via the two-component system EnvZ/OmpR. Environ Microbiol 2020; 22:4231-4243. [PMID: 31868254 DOI: 10.1111/1462-2920.14906] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/20/2019] [Indexed: 11/30/2022]
Abstract
Vibrio cholerae is a waterborne bacterium responsible for worldwide outbreaks of acute and fatal cholera. Recently, small regulatory RNAs (sRNAs) have become increasingly recognized as important regulators of virulence gene expression in response to environmental signals. In this study, we determined that two-component system EnvZ/OmpR was required for intestinal colonization in V. cholerae O1 EI Tor strain E12382. Analysis of the characteristics of OmpR revealed a potential binding site in the intergenic region between vc1470 and vc1471, and qRT-PCR showed that expression of the intergenic region increased 5.3-fold in the small intestine compared to LB medium. Race and northern blot assays were performed and demonstrated a new sRNA, coaR (cholerae osmolarity and acidity related regulatory RNA). A ΔcoaR mutant showed a deficient colonization ability in small intestine with CI of 0.15. We identified a target of coaR, tcpI, a negative regulator of the major pilin subunit of TcpA. The ΔtcpI mutant has an increased colonization with CI of 3.16. The expression of coaR increased 2.8-fold and 3.3-fold under relative acidic and hypertonic condition. In summary, coaR was induced under the condition of high osmolarity and acid stress via EnvZ/OmpR and explained that tcpI relieves pH-mediated repression of toxin co-regulated pilus synthesis.
Collapse
Affiliation(s)
- Daoyi Xi
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.,Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China.,Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, 300457, China.,Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Yujia Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.,Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China.,Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, 300457, China.,Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Junxiang Yan
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.,Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China.,Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, 300457, China.,Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Yuehua Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.,Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China.,Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, 300457, China.,Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Xiaochen Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.,Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China.,Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, 300457, China.,Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Boyang Cao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.,Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China.,Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, 300457, China.,Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| |
Collapse
|
32
|
Dong K, Pan H, Yang D, Rao L, Zhao L, Wang Y, Liao X. Induction, detection, formation, and resuscitation of viable but non‐culturable state microorganisms. Compr Rev Food Sci Food Saf 2019; 19:149-183. [DOI: 10.1111/1541-4337.12513] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/21/2019] [Accepted: 11/14/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Kai Dong
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- College of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- Key Lab of Fruit and Vegetable ProcessingMinistry of Agriculture and Rural Affairs Beijing China
| | - Hanxu Pan
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- College of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- Key Lab of Fruit and Vegetable ProcessingMinistry of Agriculture and Rural Affairs Beijing China
| | - Dong Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- College of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- Key Lab of Fruit and Vegetable ProcessingMinistry of Agriculture and Rural Affairs Beijing China
| | - Lei Rao
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- College of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- Key Lab of Fruit and Vegetable ProcessingMinistry of Agriculture and Rural Affairs Beijing China
| | - Liang Zhao
- College of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- Key Lab of Fruit and Vegetable ProcessingMinistry of Agriculture and Rural Affairs Beijing China
| | - Yongtao Wang
- College of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- Key Lab of Fruit and Vegetable ProcessingMinistry of Agriculture and Rural Affairs Beijing China
| | - Xiaojun Liao
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- College of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- Key Lab of Fruit and Vegetable ProcessingMinistry of Agriculture and Rural Affairs Beijing China
| |
Collapse
|
33
|
Hounmanou YMG, Mdegela RH, Dougnon TV, Madsen H, Withey JH, Olsen JE, Dalsgaard A. Tilapia ( Oreochromis niloticus) as a Putative Reservoir Host for Survival and Transmission of Vibrio cholerae O1 Biotype El Tor in the Aquatic Environment. Front Microbiol 2019; 10:1215. [PMID: 31214149 PMCID: PMC6554700 DOI: 10.3389/fmicb.2019.01215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/15/2019] [Indexed: 12/17/2022] Open
Abstract
Studies have reported the occurrence of Vibrio cholerae in fish but little is known about the interaction between fish and toxigenic V. cholerae as opposed to phytoplankton, which are well-established aquatic reservoirs for V. cholerae. The present study determined the role of tilapia (Oreochromis niloticus) as a reservoir host for survival and transmission of V. cholerae in aquatic environments. Three experiments were performed with one repetition each, where O. niloticus (∼2 g) kept in beakers were inoculated with four V. cholerae strains (5 × 107 cfu/mL). Firstly, infected tilapia were kept in stagnant water and fed live brine shrimp (Artemia salina) larvae daily. Secondly, infected tilapia were kept without feeding and water was changed every 24 h. Thirdly, infected tilapia were fed and water was renewed daily. Infected tilapia and non-infected controls were sacrificed on days 1, 2, 3, 7, and 14 post-inoculation and V. cholerae were enumerated in intestinal content and water. Another experiment assessed the transmission of V. cholerae from infected to non-infected tilapia. The study revealed that El Tor biotype V. cholerae O1 and V. cholerae non-O1 colonized tilapia intestines and persisted at stable concentrations during the second week of the experiment whereas the Classical biotype was undetectable after 1 week. In stagnant water with feeding, V. cholerae counts dropped to 105 cfu/ml in water and from 107 to 104 cfu/intestine in fish after 14 days. When water was renewed, counts in water decreased from 107 to 103 cfu/ml and intestinal counts went from 106 to 102 cfu/intestine regardless of feeding. All strains were transmitted from infected to naïve fish after 24 h of cohabitation. Tilapia like other fish may play an essential role in the survival and dissemination of V. cholerae O1 in aquatic environments, e.g., the seventh pandemic strains mostly. In this study, tilapia were exposed to high concentrations of V. cholerae to ensure initial uptake and follow-up studies with lower doses resembling natural concentrations of V. cholerae in the aquatic environment are needed to confirm our findings.
Collapse
Affiliation(s)
- Yaovi Mahuton Gildas Hounmanou
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Robinson H Mdegela
- Department of Veterinary Medicine and Public Health, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Tamegnon Victorien Dougnon
- Research Unit in Applied Microbiology and Pharmacology of Natural Substances, Research Laboratory in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, Abomey-Calavi, Benin
| | - Henry Madsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jeffrey H Withey
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, United States
| | - John E Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Dalsgaard
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
34
|
Brenzinger S, van der Aart LT, van Wezel GP, Lacroix JM, Glatter T, Briegel A. Structural and Proteomic Changes in Viable but Non-culturable Vibrio cholerae. Front Microbiol 2019; 10:793. [PMID: 31057510 PMCID: PMC6479200 DOI: 10.3389/fmicb.2019.00793] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/28/2019] [Indexed: 11/13/2022] Open
Abstract
Aquatic environments are reservoirs of the human pathogen Vibrio cholerae O1, which causes the acute diarrheal disease cholera. Upon low temperature or limited nutrient availability, the cells enter a viable but non-culturable (VBNC) state. Characteristic of this state are an altered morphology, low metabolic activity, and lack of growth under standard laboratory conditions. Here, for the first time, the cellular ultrastructure of V. cholerae VBNC cells raised in natural waters was investigated using electron cryo-tomography. This was complemented by a comparison of the proteomes and the peptidoglycan composition of V. cholerae from LB overnight cultures and VBNC cells. The extensive remodeling of the VBNC cells was most obvious in the passive dehiscence of the cell envelope, resulting in improper embedment of flagella and pili. Only minor changes of the peptidoglycan and osmoregulated periplasmic glucans were observed. Active changes in VBNC cells included the production of cluster I chemosensory arrays and change of abundance of cluster II array proteins. Components involved in iron acquisition and storage, peptide import and arginine biosynthesis were overrepresented in VBNC cells, while enzymes of the central carbon metabolism were found at lower levels. Finally, several pathogenicity factors of V. cholerae were less abundant in the VBNC state, potentially limiting their infectious potential. This study gives unprecedented insight into the physiology of VBNC cells and the drastically altered presence of their metabolic and structural proteins.
Collapse
Affiliation(s)
- Susanne Brenzinger
- Department of Microbial Biotechnology & Health, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Lizah T. van der Aart
- Department of Microbial Biotechnology & Health, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Gilles P. van Wezel
- Department of Microbial Biotechnology & Health, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Jean-Marie Lacroix
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS 8576, Université de Lille Sciences et Technologies, Villeneuve d'Ascq, France
| | - Timo Glatter
- Facility for Bacterial Proteomics and Mass Spectrometry, Max-Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Ariane Briegel
- Department of Microbial Biotechnology & Health, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| |
Collapse
|
35
|
Plesiomonas shigelloides sipD mutant, generated by an efficient gene transfer system, is less invasive. J Microbiol Methods 2019; 159:75-80. [PMID: 30817946 DOI: 10.1016/j.mimet.2019.02.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/24/2019] [Accepted: 02/24/2019] [Indexed: 11/24/2022]
Abstract
Plesiomonas shigelloides is widely associated with human diarrheal disease. Research on this pathogen has been hampered by the absence of an effective genetic manipulation system. In the present study, an efficient and precise conjugation transfer procedure, mediated by suicide vector pRE112 was used to overcome this limitation. The efficiency of generating double recombinants was average 74.3%, and the conjugation protocol may be applied to other P. shigelloides strains. We also identified that the SipD protein of P. shigelloides G5884 (serotype O45) is 65% similar to the SipD in Salmonella pathogenicity island 1 (SPI-1), which is a key element of the type III secretion system related to Salmonella invasion. A P. shigelloides sipD null mutant was generated via the conjugation system, using the suicide vector pRE112. The isogenic mutant strain lacking sipD showed a 50% reduction in its capacity to invade Caco-2 cells.
Collapse
|