1
|
Sabença C, Romero-Rivera M, Barbero-Herranz R, Sargo R, Sousa L, Silva F, Lopes F, Abrantes AC, Vieira-Pinto M, Torres C, Igrejas G, del Campo R, Poeta P. Molecular Characterization of Multidrug-Resistant Escherichia coli from Fecal Samples of Wild Animals. Vet Sci 2024; 11:469. [PMID: 39453061 PMCID: PMC11512376 DOI: 10.3390/vetsci11100469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
Antimicrobial resistance (AMR) surveillance in fecal Escherichia coli isolates from wildlife is crucial for monitoring the spread of this microorganism in the environment and for developing effective AMR control strategies. Wildlife can act as carriers of AMR bacteria and spread them to other wildlife, domestic animals, and humans; thus, they have public health implications. A total of 128 Escherichia coli isolates were obtained from 66 of 217 fecal samples obtained from different wild animals using media without antibiotic supplementation. Antibiograms were performed for 17 antibiotics to determine the phenotypic resistance profile in these isolates. Extended-spectrum β-lactamase (ESBL) production was tested using the double-disc synergy test, and 29 E. coli strains were selected for whole genome sequencing. In total, 22.1% of the wild animals tested carried multidrug-resistant E. coli isolates, and 0.93% (2/217) of these wild animals carried E. coli isolates with ESBL-encoding genes (blaCTX-M-65, blaCTX-M-55, and blaEC-1982). The E. coli isolates showed the highest resistance rates to ampicillin and were fully susceptible to amikacin, meropenem, ertapenem, and imipenem. Multiple resistance and virulence genes were detected, as well as different plasmids. The relatively high frequency of multidrug-resistant E. coli isolates in wildlife, with some of them being ESBL producers, raises some concern regarding the potential transmission of antibiotic-resistant bacteria among these animals. Gaining insights into antibiotic resistance patterns in wildlife can be vital in shaping conservation initiatives and developing effective strategies for responsible antibiotic use.
Collapse
Affiliation(s)
- Carolina Sabença
- MicroART-Antibiotic Resistance Team, Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry, University NOVA of Lisbon, 1099-085 Caparica, Portugal
| | - Mario Romero-Rivera
- Department of Microbiology, University Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (M.R.-R.); (R.B.-H.); (R.d.C.)
| | - Raquel Barbero-Herranz
- Department of Microbiology, University Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (M.R.-R.); (R.B.-H.); (R.d.C.)
| | - Roberto Sargo
- CRAS—Center for the Recovery of Wild Animals, Veterinary Hospital, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.S.); (L.S.); (F.S.)
| | - Luís Sousa
- CRAS—Center for the Recovery of Wild Animals, Veterinary Hospital, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.S.); (L.S.); (F.S.)
| | - Filipe Silva
- CRAS—Center for the Recovery of Wild Animals, Veterinary Hospital, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.S.); (L.S.); (F.S.)
| | - Filipa Lopes
- LxCRAS—Centro de Recuperação de Animais Silvestres de Lisboa, 1500-068 Lisboa, Portugal;
| | - Ana Carolina Abrantes
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (A.C.A.); (M.V.-P.)
| | - Madalena Vieira-Pinto
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (A.C.A.); (M.V.-P.)
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 5000-801 Vila Real, Portugal
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain;
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry, University NOVA of Lisbon, 1099-085 Caparica, Portugal
| | - Rosa del Campo
- Department of Microbiology, University Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (M.R.-R.); (R.B.-H.); (R.d.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28040 Madrid, Spain
- Facultad de Ciencias de la Salud, Universidad Alfonso X El Sabio, 28691 Villanueva de la Cañada, Spain
| | - Patrícia Poeta
- MicroART-Antibiotic Resistance Team, Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Associated Laboratory for Green Chemistry, University NOVA of Lisbon, 1099-085 Caparica, Portugal
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (A.C.A.); (M.V.-P.)
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 5000-801 Vila Real, Portugal
| |
Collapse
|
2
|
Liu H, Fan S, Zhang X, Yuan Y, Zhong W, Wang L, Wang C, Zhou Z, Zhang S, Geng Y, Peng G, Wang Y, Zhang K, Yan Q, Luo Y, Shi K, Zhong Z. Antibiotic-resistant characteristics and horizontal gene transfer ability analysis of extended-spectrum β-lactamase-producing Escherichia coli isolated from giant pandas. Front Vet Sci 2024; 11:1394814. [PMID: 39132438 PMCID: PMC11310934 DOI: 10.3389/fvets.2024.1394814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/09/2024] [Indexed: 08/13/2024] Open
Abstract
Extended-spectrum β-lactamase (ESBL)-producing Escherichia coli (ESBL-EC) is regarded as one of the most important priority pathogens within the One Health interface. However, few studies have investigated the occurrence of ESBL-EC in giant pandas, along with their antibiotic-resistant characteristics and horizontal gene transfer abilities. In this study, we successfully identified 12 ESBL-EC strains (8.33%, 12/144) out of 144 E. coli strains which isolated from giant pandas. We further detected antibiotic resistance genes (ARGs), virulence-associated genes (VAGs) and mobile genetic elements (MGEs) among the 12 ESBL-EC strains, and the results showed that 13 ARGs and 11 VAGs were detected, of which bla CTX-M (100.00%, 12/12, with 5 variants observed) and papA (83.33%, 10/12) were the most prevalent, respectively. And ISEcp1 (66.67%, 8/12) and IS26 (66.67%, 8/12) were the predominant MGEs. Furthermore, horizontal gene transfer ability analysis of the 12 ESBL-EC showed that all bla CTX-M genes could be transferred by conjugative plasmids, indicating high horizontal gene transfer ability. In addition, ARGs of rmtB and sul2, VAGs of papA, fimC and ompT, MGEs of ISEcp1 and IS26 were all found to be co-transferred with bla CTX-M. Phylogenetic analysis clustered these ESBL-EC strains into group B2 (75.00%, 9/12), D (16.67%, 2/12), and B1 (8.33%, 1/12), and 10 sequence types (STs) were identified among 12 ESBL-EC (including ST48, ST127, ST206, ST354, ST648, ST1706, and four new STs). Our present study showed that ESBL-EC strains from captive giant pandas are reservoirs of ARGs, VAGs and MGEs that can co-transfer with bla CTX-M via plasmids. Transmissible ESBL-EC strains with high diversity of resistance and virulence elements are a potential threat to humans, animals and surrounding environment.
Collapse
Affiliation(s)
- Haifeng Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Siping Fan
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | | | - Yu Yuan
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Wenhao Zhong
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Liqin Wang
- The Chengdu Zoo, Institute of Wild Animals, Chengdu, China
| | - Chengdong Wang
- China Conservation and Research Centre for the Giant Panda, Key Laboratory of SFGA on the Giant-Panda, Ya'an, Sichuan, China
| | - Ziyao Zhou
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Shaqiu Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Guangneng Peng
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Ya Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Kun Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Qigui Yan
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Yan Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Keyun Shi
- Jiangsu Yixing People’s Hospital, Yixing, China
| | - Zhijun Zhong
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| |
Collapse
|
3
|
Silva A, Silva V, Tavares T, López M, Rojo-Bezares B, Pereira JE, Falco V, Valentão P, Igrejas G, Sáenz Y, Poeta P. Rabbits as a Reservoir of Multidrug-Resistant Escherichia coli: Clonal Lineages and Public Health Impact. Antibiotics (Basel) 2024; 13:376. [PMID: 38667052 PMCID: PMC11047531 DOI: 10.3390/antibiotics13040376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
Escherichia coli, including extended-spectrum β-lactamases (ESBL)-producing strains, poses a global health threat due to multidrug resistance, compromising food safety and environmental integrity. In industrial settings, rabbits raised for meat have the highest consumption of antimicrobial agents compared to other food-producing animals. The European Union is facing challenges in rabbit farming as rabbit consumption declines and antibiotic-resistant strains of E. coli cause enteric diseases. The aim of this study was to investigate the antibiotic resistance profile, genetic diversity, and biofilm formation in cefotaxime-resistant E. coli strains isolated from twenty rabbit farms in Northern Portugal to address the effect of the pressing issue of antibiotic resistance in the rabbit farming industry. Resistance to critically antibiotics was observed, with high levels of resistance to several categories, such as tetracycline, ampicillin, aztreonam, and streptomycin. However, all isolates were susceptible to cefoxitin and imipenem. Multidrug resistance was common, with strains showing resistance to all antibiotics tested. The blaCTX-M variants (blaCTX-3G and blaCTX-M9), followed by the tetracycline resistance genes, were the most frequent resistance genes found. ST10 clones exhibiting significant resistance to various categories of antibiotics and harboring different resistance genes were detected. ST457 and ST2325 were important sequence types due to their association with ESBL-E. coli isolates and have been widely distributed in a variety of environments and host species. The strains evaluated showed a high capacity for biofilm formation, which varied when they were grouped by the number of classes of antibiotics to which they showed resistance (i.e., seven different classes of antibiotics, six classes of antibiotics, and three/four/five classes of antibiotics). The One Health approach integrates efforts to combat antimicrobial resistance in rabbit farming through interdisciplinary collaboration of human, animal, and environmental health. Our findings are worrisome and raise concerns. The extensive usage of antibiotics in rabbit farming emphasizes the urgent need to establish active surveillance systems.
Collapse
Affiliation(s)
- Adriana Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal (T.T.)
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal (T.T.)
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Teresa Tavares
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal (T.T.)
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- José Azevedo Monteiro, Lda., Rua do Campo Grande 309, 4625-679 Vila Boa do Bispo, Portugal
| | - María López
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), 26006 Logroño, Spain; (M.L.); (B.R.-B.)
| | - Beatriz Rojo-Bezares
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), 26006 Logroño, Spain; (M.L.); (B.R.-B.)
| | - José Eduardo Pereira
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| | - Virgílio Falco
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Universidade de Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Universidade do Porto (UP), 2829-516 Caparica, Portugal;
| | - Patrícia Valentão
- Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Universidade do Porto (UP), 2829-516 Caparica, Portugal;
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Gilberto Igrejas
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Yolanda Sáenz
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), 26006 Logroño, Spain; (M.L.); (B.R.-B.)
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Traás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal (T.T.)
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| |
Collapse
|
4
|
Almansour AM, Alhadlaq MA, Alzahrani KO, Mukhtar LE, Alharbi AL, Alajel SM. The Silent Threat: Antimicrobial-Resistant Pathogens in Food-Producing Animals and Their Impact on Public Health. Microorganisms 2023; 11:2127. [PMID: 37763971 PMCID: PMC10537193 DOI: 10.3390/microorganisms11092127] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
The emergence of antimicrobial resistance (AMR) is a global health problem without geographic boundaries. This increases the risk of complications and, thus, makes it harder to treat infections, which can result in higher healthcare costs and a greater number of deaths. Antimicrobials are often used to treat infections from pathogens in food-producing animals, making them a potential source of AMR. Overuse and misuse of these drugs in animal agriculture can lead to the development of AMR bacteria, which can then be transmitted to humans through contaminated food or direct contact. It is therefore essential to take multifaceted, comprehensive, and integrated measures, following the One Health approach. To address this issue, many countries have implemented regulations to limit antimicrobial use. To our knowledge, there are previous studies based on AMR in food-producing animals; however, this paper adds novelty related to the AMR pathogens in livestock, as we include the recent publications of this field worldwide. In this work, we aim to describe the most critical and high-risk AMR pathogens among food-producing animals, as a worldwide health problem. We also focus on the dissemination of AMR genes in livestock, as well as its consequences in animals and humans, and future strategies to tackle this threat.
Collapse
Affiliation(s)
- Ayidh M. Almansour
- Molecular Biology Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh 11671, Saudi Arabia; (M.A.A.); (K.O.A.); (A.L.A.)
| | - Meshari A. Alhadlaq
- Molecular Biology Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh 11671, Saudi Arabia; (M.A.A.); (K.O.A.); (A.L.A.)
| | - Khaloud O. Alzahrani
- Molecular Biology Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh 11671, Saudi Arabia; (M.A.A.); (K.O.A.); (A.L.A.)
| | - Lenah E. Mukhtar
- Antimicrobial Resistance Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh 11671, Saudi Arabia;
| | - Abdulmohsen L. Alharbi
- Molecular Biology Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh 11671, Saudi Arabia; (M.A.A.); (K.O.A.); (A.L.A.)
| | - Sulaiman M. Alajel
- Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh 11671, Saudi Arabia;
| |
Collapse
|
5
|
Haenni M, Du Fraysseix L, François P, Drapeau A, Bralet T, Madec JY, Boulinier T, Duriez O. Occurrence of ESBL- and AmpC-Producing E. coli in French Griffon Vultures Feeding on Extensive Livestock Carcasses. Antibiotics (Basel) 2023; 12:1160. [PMID: 37508256 PMCID: PMC10376662 DOI: 10.3390/antibiotics12071160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/16/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Despite the fact that the selective pressure of antibiotics on wild birds is supposed to be very weak, they are considered potential vectors of antimicrobial resistance (AMR). Obligate scavengers such as vultures can present high proportions of resistance to extended-spectrum cephalosporins (ESC) and multi-drug-resistant (MDR) bacteria, partially due to feeding stations that are provisioned with livestock carcasses from intensive farming. Here we investigated whether griffon vultures (Gyps fulvus) from two populations located in the French Alps, which feed on livestock carcasses from extensive farms, may carry such resistant bacteria. Phenotypic and genotypic characterization showed an 11.8% proportion of ESC-resistant bacteria, including five extended-spectrum beta-lactamase (ESBL)-producing and one AmpC-producing E. coli. The five ESBL-positive E. coli were clonal and all came from the same vulture population, proving their spread between animals. The ESBL phenotype was due to a blaCTX-M-15 gene located on the chromosome. Both ESBL- and AmpC-positive E. coli belonged to minor STs (ST212 and ST3274, respectively); interestingly, ST212 has already been identified in wild birds around the world, including vultures. These results suggest that actions are needed to mitigate the spread of MDR bacteria through wild birds, particularly in commensal species.
Collapse
Affiliation(s)
- Marisa Haenni
- Unité Antibiorésistance et Virulence Bactériennes, ANSES-Université de Lyon, 69007 Lyon, France
| | - Laetitia Du Fraysseix
- Unité Antibiorésistance et Virulence Bactériennes, ANSES-Université de Lyon, 69007 Lyon, France
| | - Pauline François
- Unité Antibiorésistance et Virulence Bactériennes, ANSES-Université de Lyon, 69007 Lyon, France
| | - Antoine Drapeau
- Unité Antibiorésistance et Virulence Bactériennes, ANSES-Université de Lyon, 69007 Lyon, France
| | - Tristan Bralet
- CEFE, Montpellier University, CNRS, EPHE, IRD, 34090 Montpellier, France
- ANSES-Bacterial Zoonoses Unit, 94700 Maisons-Alfort, France
| | - Jean-Yves Madec
- Unité Antibiorésistance et Virulence Bactériennes, ANSES-Université de Lyon, 69007 Lyon, France
| | - Thierry Boulinier
- CEFE, Montpellier University, CNRS, EPHE, IRD, 34090 Montpellier, France
| | - Olivier Duriez
- CEFE, Montpellier University, CNRS, EPHE, IRD, 34090 Montpellier, France
| |
Collapse
|
6
|
Woksepp H, Camara F, Bonnedahl J. High prevalence of bla CTX-M-15 type extended-spectrum beta-lactamases in Gambian hooded vultures (Necrosyrtes monachus): A threatened species with substantial human interaction. Microbiologyopen 2023; 12:e1349. [PMID: 37186228 PMCID: PMC10035410 DOI: 10.1002/mbo3.1349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 03/25/2023] Open
Abstract
One hundred fecal samples from hooded vultures in the Gambia (Banjul area) were investigated for the presence of bacteria with extended-spectrum cephalosporin- (ESBL/AmpC), carbapenemases, and colistin resistance. No Enterobacteriales carrying carbapenemases or resistance against colistin were detected. Fifty-four ESBL-producing Escherichia coli and five ESBL-producing Klebsiella pneumoniae isolates were identified in 52 of the samples, of which 52 E. coli and 4 K. pneumoniae yielded passed sequencing results. Fifty of the E. coli had ESBL phenotype and genotype harboring blaCTX-M genes, of which 88.5% (n = 46) were the blaCTX-M-15 gene, commonly found on the African continent. Furthermore, the genetic context around blaCTX-M-15 was similar between isolates, being colocalized with ISKpn19. In contrast, cgMLST analysis of the E. coli harboring ESBL genes revealed a genetic distribution over a large fraction of the currently known existing E. coli populations in the Gambia. Hooded vultures in the Gambia thus have a high ESBL E. coli-prevalence (>50%) with low diversity regarding key resistance genes. Furthermore, given the urban presence and frequent interactions between hooded vultures and humans, data from this study implies hooded vultures as potential vectors contributing to the further dissemination of antibiotic-resistance genes.
Collapse
Affiliation(s)
- Hanna Woksepp
- Department of ResearchRegion Kalmar CountyKalmarSweden
- Department of Chemistry and Biomedical SciencesLinnaeus UniversityKalmarSweden
| | - Fagimba Camara
- Department of Wildlife Management, AbukoThe West African Birds Study, Association (WABSA)SerrekundaGambia
| | - Jonas Bonnedahl
- Department of Biomedical and Clinical SciencesLinköping UniversityLinköpingSweden
- Department of Infectious DiseasesRegion Kalmar CountyKalmarSweden
| |
Collapse
|
7
|
Carvalho I, Cunha R, Martins C, Martínez-Álvarez S, Safia Chenouf N, Pimenta P, Pereira AR, Ramos S, Sadi M, Martins Â, Façanha J, Rabbi F, Capita R, Alonso-Calleja C, de Lurdes Nunes Enes Dapkevicius M, Igrejas G, Torres C, Poeta P. Antimicrobial Resistance Genes and Diversity of Clones among Faecal ESBL-Producing Escherichia coli Isolated from Healthy and Sick Dogs Living in Portugal. Antibiotics (Basel) 2021; 10:antibiotics10081013. [PMID: 34439063 PMCID: PMC8388948 DOI: 10.3390/antibiotics10081013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
The purpose of this study was to analyse the prevalence and genetic characteristics of ESBL and acquired-AmpC (qAmpC)-producing Escherichia coli isolates from healthy and sick dogs in Portugal. Three hundred and sixty-one faecal samples from sick and healthy dogs were seeded on MacConkey agar supplemented with cefotaxime (2 µg/mL) for cefotaxime-resistant (CTXR) E. coli recovery. Antimicrobial susceptibility testing for 15 antibiotics was performed and the ESBL-phenotype of the E. coli isolates was screened. Detection of antimicrobial resistance and virulence genes, and molecular typing of the isolates (phylogroups, multilocus-sequence-typing, and specific-ST131) were performed by PCR (and sequencing when required). CTXRE. coli isolates were obtained in 51/361 faecal samples analysed (14.1%), originating from 36/234 sick dogs and 15/127 healthy dogs. Forty-seven ESBL-producing E. coli isolates were recovered from 32 sick (13.7%) and 15 healthy animals (11.8%). Different variants of blaCTX-M genes were detected among 45/47 ESBL-producers: blaCTX-M-15 (n = 26), blaCTX-M-1 (n = 10), blaCTX-M-32 (n = 3), blaCTX-M-55 (n = 3), blaCTX-M-14 (n = 2), and blaCTX-M-variant (n = 1); one ESBL-positive isolate co-produced CTX-M-15 and CMY-2 enzymes. Moreover, two additional CTXR ESBL-negative E. coli isolates were CMY-2-producers (qAmpC). Ten different sequence types were identified (ST/phylogenetic-group/β-lactamase): ST131/B2/CTX-M-15, ST617/A/CTX-M-55, ST3078/B1/CTX-M-32, ST542/A/CTX-M-14, ST57/D/CTX-M-1, ST12/B2/CTX-M-15, ST6448/B1/CTX-M-15 + CMY-2, ST5766/A/CTX-M-32, ST115/D/CMY-2 and a new-ST/D/CMY-2. Five variants of CTX-M enzymes (CTX-M-15 and CTX-M-1 predominant) and eight different clonal complexes were detected from canine ESBL-producing E. coli isolates. Although at a lower rate, CMY-2 β-lactamase was also found. Dogs remain frequent carriers of ESBL and/or qAmpC-producing E. coli with a potential zoonotic role.
Collapse
Affiliation(s)
- Isabel Carvalho
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Laboratory Associated for Green Chemistry (LAQV-REQUIMTE), New University of Lisbon, 2829-516 Monte da Caparica, Portugal
- Area Biochemistry and Molecular Biology, University of La Rioja, 26006 Logroño, Spain; (S.M.-Á.); (N.S.C.); (M.S.); (C.T.)
| | - Rita Cunha
- Hospital Veterinário Cascais da Onevet, 2775-352 Parede, Lisbon, Portugal;
| | - Carla Martins
- Clínica Veterinária do Vouga, 3740-253 Sever do Vouga, Portugal;
| | - Sandra Martínez-Álvarez
- Area Biochemistry and Molecular Biology, University of La Rioja, 26006 Logroño, Spain; (S.M.-Á.); (N.S.C.); (M.S.); (C.T.)
| | - Nadia Safia Chenouf
- Area Biochemistry and Molecular Biology, University of La Rioja, 26006 Logroño, Spain; (S.M.-Á.); (N.S.C.); (M.S.); (C.T.)
- Laboratory of Exploration and Valuation of the Steppe Ecosystem, University of Djelfa, Djelfa 17000, Algeria
| | - Paulo Pimenta
- Hospital Veterinário de Trás-os-Montes, 5000-056 Vila Real, Portugal;
| | - Ana Raquel Pereira
- Centro Veterinário de Macedo de Cavaleiros, 5340-202 Bragança, Portugal;
| | - Sónia Ramos
- VetRedondo, Consultório Veterinário de Monte Redondo Unipessoal Lda, Monte Redondo, 2425-618 Leiria, Portugal;
| | - Madjid Sadi
- Area Biochemistry and Molecular Biology, University of La Rioja, 26006 Logroño, Spain; (S.M.-Á.); (N.S.C.); (M.S.); (C.T.)
- Laboratory of Biotechnology Related to Animals Reproduction, Université Saad Dahlab de Blida, Blida 09000, Algeria
| | - Ângela Martins
- Animal and Veterinary Research Center (CECAV), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
| | - Jorge Façanha
- Centro Veterinário Jorge Façanha, 5140-060 Carrazeda de Ansiães, Portugal;
| | - Fazle Rabbi
- Australian Computer Society, Docklands, Melbourne, VIC 3008, Australia;
| | - Rosa Capita
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, 24071 León, Spain; (R.C.); (C.A.-C.)
- Institute of Food Science and Technology, University of León, 24071 León, Spain
| | - Carlos Alonso-Calleja
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, 24071 León, Spain; (R.C.); (C.A.-C.)
- Institute of Food Science and Technology, University of León, 24071 León, Spain
| | - Maria de Lurdes Nunes Enes Dapkevicius
- Faculty of Agricultural and Environmental Sciences, University of the Azores, 9500-321 Angra do Heroísmo, Portugal;
- Institute of Agricultural and Environmental Research and Technology (IITAA), University of the Azores, 9500-321 Angra do Heroísmo, Portugal
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Laboratory Associated for Green Chemistry (LAQV-REQUIMTE), New University of Lisbon, 2829-516 Monte da Caparica, Portugal
| | - Carmen Torres
- Area Biochemistry and Molecular Biology, University of La Rioja, 26006 Logroño, Spain; (S.M.-Á.); (N.S.C.); (M.S.); (C.T.)
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Laboratory Associated for Green Chemistry (LAQV-REQUIMTE), New University of Lisbon, 2829-516 Monte da Caparica, Portugal
- Correspondence: ; Tel.: +351-25935-0466; Fax: +351-25935-0629
| |
Collapse
|
8
|
Rojas-Jiménez J, Jiménez-Pearson MA, Duarte-Martínez F, Brenes-Mora E, Arguedas R, Barquero-Calvo E. First Report of a Multidrug-Resistant ST58 Escherichia coli Harboring Extended-Spectrum Beta-Lactamase of the CTX-M-1 Class in a Fecal Sample of a Captive Baird's Tapir ( Tapirus bairdii) in Costa Rica, Central America. Microb Drug Resist 2021; 28:143-148. [PMID: 34314636 DOI: 10.1089/mdr.2020.0339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Objective: This study's main objective was to analyze the antibiotic susceptibility profile of Escherichia coli isolates obtained from a fecal sample of a captive Baird's tapir (Tapirus bairdii) in Costa Rica. Materials and Methods: The fecal sample was collected inside the enclosure on March 3, 2017, right after the animal defecated. Samples were cultured on MacConkey agar plates nonsupplemented and supplemented with 2 μg/mL of cefotaxime. Bacterial identification and antibiotic susceptibility were performed with the Vitek 2 Compact System and the Kirby Bauer disk diffusion method, respectively. Polymerase chain reaction amplification was performed to detect blaCTX-M beta-lactamase genes. Resistant isolates were subjected to whole-genome sequencing (WGS). Results: After evaluating several antibiotic classes, a multidrug-resistant E. coli strain with extended-spectrum beta-lactamase phenotype was isolated. Resistance to cefotaxime, cefepime, ampicillin, ampicillin/sulbactam, and tetracycline was detected. WGS analysis showed the presence of blaCTX-M-1, blaTEM-1B, and tet(B) genes. The presence of IncN plasmids and Col156 was also detected. Conclusion: Our findings are according with the notion that animals' high density enhances the spread of resistant determinants in a captive environment in a limited space, where the likelihood of direct or indirect contact with other animals and humans is more frequent.
Collapse
Affiliation(s)
- Jorge Rojas-Jiménez
- Warnell School of Forestry and Natural Resources, The University of Georgia, Athens, Georgia, USA.,Costa Rica Wildlife Foundation, San José, Costa Rica
| | | | | | | | | | - Elías Barquero-Calvo
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional de Costa Rica, Lagunilla, Costa Rica
| |
Collapse
|
9
|
Carvalho I, Safia Chenouf N, Cunha R, Martins C, Pimenta P, Pereira AR, Martínez-Álvarez S, Ramos S, Silva V, Igrejas G, Torres C, Poeta P. Antimicrobial Resistance Genes and Diversity of Clones among ESBL- and Acquired AmpC-Producing Escherichia coli Isolated from Fecal Samples of Healthy and Sick Cats in Portugal. Antibiotics (Basel) 2021; 10:antibiotics10030262. [PMID: 33807601 PMCID: PMC8001562 DOI: 10.3390/antibiotics10030262] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 12/26/2022] Open
Abstract
The aim of the study was to analyze the mechanisms of resistance in extended-spectrum beta-lactamase (ESBL)- and acquired AmpC (qAmpC)-producing Escherichia coli isolates from healthy and sick cats in Portugal. A total of 141 rectal swabs recovered from 98 sick and 43 healthy cats were processed for cefotaxime-resistant (CTXR) E. coli recovery (in MacConkey agar supplemented with 2 µg/mL cefotaxime). The matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) method was used for E. coli identification and antimicrobial susceptibility was performed by a disk diffusion test. The presence of resistance/virulence genes was tested by PCR sequencing. The phylogenetic typing and multilocus sequence typing (MLST) were determined by specific PCR sequencing. CTXRE. coli isolates were detected in seven sick and six healthy cats (7.1% and 13.9%, respectively). Based on the synergy tests, 11 of 13 CTXRE. coli isolates (one/sample) were ESBL-producers (ESBL total rate: 7.8%) carrying the following ESBL genes: blaCTX-M-1 (n = 3), blaCTX-M-15 (n = 3), blaCTX-M-55 (n = 2), blaCTX-M-27 (n = 2) and blaCTX-M-9 (n = 1). Six different sequence types were identified among ESBL-producers (sequence type/associated ESBLs): ST847/CTX-M-9, CTX-M-27, CTX-M-1; ST10/CTX-M-15, CTX-M-27; ST6448/CTX-M-15, CTX-M-55; ST429/CTX-M-15; ST101/CTX-M-1 and ST40/CTX-M-1. Three of the CTXR isolates were CMY-2-producers (qAmpC rate: 2.1%); two of them were ESBL-positive and one ESBL-negative. These isolates were typed as ST429 and ST6448 and were obtained in healthy or sick cats. The phylogenetic groups A/B1/D/clade 1 were detected among ESBL- and qAmpC-producing isolates. Cats are carriers of qAmpC (CMY-2)- and ESBL-producing E. coli isolates (mostly of variants of CTX-M group 1) of diverse clonal lineages, which might represent a public health problem due to the proximity of cats with humans regarding a One Health perspective.
Collapse
Affiliation(s)
- Isabel Carvalho
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (I.C.); (V.S.)
- Department of Genetics and Biotechnology, UTAD, 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, UTAD, 5000-801 Vila Real, Portugal
- Laboratory Associated for Green Chemistry (LAQV-REQUIMTE), New University of Lisbon, 2829-516 Monte da Caparica, Portugal
- Area Biochemistry and Molecular Biology, University of La Rioja, 26006 Logroño, Spain; (N.S.C.); (S.M.-Á.); (C.T.)
| | - Nadia Safia Chenouf
- Area Biochemistry and Molecular Biology, University of La Rioja, 26006 Logroño, Spain; (N.S.C.); (S.M.-Á.); (C.T.)
- Laboratory of Exploration and Valuation of the Steppe Ecosystem, University of Djelfa, Djelfa 17000, Algeria
| | - Rita Cunha
- Hospital Veterinário de São Bento, 1200-822 Lisboa, Portugal;
| | - Carla Martins
- Clínica Veterinária do Vouga, 3740-253 Sever do Vouga, Portugal;
| | - Paulo Pimenta
- Hospital Veterinário de Trás-os-Montes, 5000-056 Vila Real, Portugal;
| | | | - Sandra Martínez-Álvarez
- Area Biochemistry and Molecular Biology, University of La Rioja, 26006 Logroño, Spain; (N.S.C.); (S.M.-Á.); (C.T.)
| | - Sónia Ramos
- VetRedondo, Consultório Veterinário de Monte Redondo Unipessoal Lda, Monte Redondo, 2425-618 Leiria, Portugal;
| | - Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (I.C.); (V.S.)
- Department of Genetics and Biotechnology, UTAD, 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, UTAD, 5000-801 Vila Real, Portugal
- Laboratory Associated for Green Chemistry (LAQV-REQUIMTE), New University of Lisbon, 2829-516 Monte da Caparica, Portugal
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, UTAD, 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, UTAD, 5000-801 Vila Real, Portugal
- Laboratory Associated for Green Chemistry (LAQV-REQUIMTE), New University of Lisbon, 2829-516 Monte da Caparica, Portugal
| | - Carmen Torres
- Area Biochemistry and Molecular Biology, University of La Rioja, 26006 Logroño, Spain; (N.S.C.); (S.M.-Á.); (C.T.)
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (I.C.); (V.S.)
- Laboratory Associated for Green Chemistry (LAQV-REQUIMTE), New University of Lisbon, 2829-516 Monte da Caparica, Portugal
- Correspondence: ; Tel.: +351-259350466; Fax: +351-259350629
| |
Collapse
|