1
|
Shukla M, Sarkar RR. Differential cellular communication in tumor immune microenvironment during early and advanced stages of lung adenocarcinoma. Mol Genet Genomics 2024; 299:100. [PMID: 39460829 DOI: 10.1007/s00438-024-02193-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024]
Abstract
Heterogeneous behavior of each cell type and their cross-talks in tumor immune microenvironment (TIME) refers to tumor immunological heterogeneity that emerges during tumor progression and represents formidable challenges for effective anti-tumor immune response and promotes drug resistance. To comprehensively elucidate the heterogeneous behavior of individual cell types and their interactions across different stages of tumor development at system level, a computational framework was devised that integrates cell specific data from single-cell RNASeq into networks illustrating interactions among signaling and metabolic response genes within and between cells in TIME. This study identified stage specific novel markers which remodel the cross-talks, thereby facilitating immune stimulation. Particularly, multicellular knockout of metabolic gene APOE (Apolipoprotein E in mast cell, myeloid cell and fibroblast) combined with signaling gene CAV1 (Caveolin1 in endothelial and epithelial cells) resulted in the activation of T-cell mediated signaling pathways. Additionally, this knockout also initiated intervention of cytotoxic gene regulations during tumor immune cell interactions at the early stage of Lung Adenocarcinoma (LUAD). Furthermore, a unique interaction motif from multiple cells emerged significant in regulating the overall immune response at the advanced stage of LUAD. Most significantly, FCER1G (Fc Fragment of IgE Receptor Ig) was identified as the common regulator in activating the anti-tumor immune response at both stages. Predicted markers exhibited significant association with patient overall survival in patient specific dataset. This study uncovers the significance of signaling and metabolic interplay within TIME and discovers important targets to enhance anti-tumor immune response at each stage of tumor development.
Collapse
Affiliation(s)
- Mudita Shukla
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ram Rup Sarkar
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Coulton A, Murai J, Qian D, Thakkar K, Lewis CE, Litchfield K. Using a pan-cancer atlas to investigate tumour associated macrophages as regulators of immunotherapy response. Nat Commun 2024; 15:5665. [PMID: 38969631 PMCID: PMC11226649 DOI: 10.1038/s41467-024-49885-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/24/2024] [Indexed: 07/07/2024] Open
Abstract
The paradigm for macrophage characterization has evolved from the simple M1/M2 dichotomy to a more complex model that encompasses the broad spectrum of macrophage phenotypic diversity, due to differences in ontogeny and/or local stimuli. We currently lack an in-depth pan-cancer single cell RNA-seq (scRNAseq) atlas of tumour-associated macrophages (TAMs) that fully captures this complexity. In addition, an increased understanding of macrophage diversity could help to explain the variable responses of cancer patients to immunotherapy. Our atlas includes well established macrophage subsets as well as a number of additional ones. We associate macrophage composition with tumour phenotype and show macrophage subsets can vary between primary and metastatic tumours growing in sites like the liver. We also examine macrophage-T cell functional cross talk and identify two subsets of TAMs associated with T cell activation. Analysis of TAM signatures in a large cohort of immune checkpoint inhibitor-treated patients (CPI1000 + ) identify multiple TAM subsets associated with response, including the presence of a subset of TAMs that upregulate collagen-related genes. Finally, we demonstrate the utility of our data as a resource and reference atlas for mapping of novel macrophage datasets using projection. Overall, these advances represent an important step in both macrophage classification and overcoming resistance to immunotherapies in cancer.
Collapse
Affiliation(s)
- Alexander Coulton
- The Tumour Immunogenomics and Immunosurveillance (TIGI) Lab, UCL Cancer Institute, London, WC1E 6DD, UK
| | - Jun Murai
- The Tumour Immunogenomics and Immunosurveillance (TIGI) Lab, UCL Cancer Institute, London, WC1E 6DD, UK
| | - Danwen Qian
- The Tumour Immunogenomics and Immunosurveillance (TIGI) Lab, UCL Cancer Institute, London, WC1E 6DD, UK
| | - Krupa Thakkar
- The Tumour Immunogenomics and Immunosurveillance (TIGI) Lab, UCL Cancer Institute, London, WC1E 6DD, UK
| | - Claire E Lewis
- Department of Oncology and Metabolism, University of Sheffield Medical School, Beech Hill Road, Sheffield, Yorkshire, S10 2RX, UK.
| | - Kevin Litchfield
- The Tumour Immunogenomics and Immunosurveillance (TIGI) Lab, UCL Cancer Institute, London, WC1E 6DD, UK.
| |
Collapse
|
3
|
Rakina M, Larionova I, Kzhyshkowska J. Macrophage diversity in human cancers: New insight provided by single-cell resolution and spatial context. Heliyon 2024; 10:e28332. [PMID: 38571605 PMCID: PMC10988020 DOI: 10.1016/j.heliyon.2024.e28332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 04/05/2024] Open
Abstract
M1/M2 paradigm of macrophage plasticity has existed for decades. Now it becomes clear that this dichotomy doesn't adequately reflect the diversity of macrophage phenotypes in tumor microenvironment (TME). Tumor-associated macrophages (TAMs) are a major population of innate immune cells in the TME that promotes tumor cell proliferation, angiogenesis and lymphangiogenesis, invasion and metastatic niche formation, as well as response to anti-tumor therapy. However, the fundamental restriction in therapeutic TAM targeting is the limited knowledge about the specific TAM states in distinct human cancer types. Here we summarized the results of the most recent studies that use advanced technologies (e.g. single-cell RNA sequencing and spatial transcriptomics) allowing to decipher novel functional subsets of TAMs in numerous human cancers. The transcriptomic profiles of these TAM subsets and their clinical significance were described. We emphasized the characteristics of specific TAM subpopulations - TREM2+, SPP1+, MARCO+, FOLR2+, SIGLEC1+, APOC1+, C1QC+, and others, which have been most extensively characterized in several cancers, and are associated with cancer prognosis. Spatial transcriptomics technologies defined specific spatial interactions between TAMs and other cell types, especially fibroblasts, in tumors. Spatial transcriptomics methods were also applied to identify markers of immunotherapy response, which are expressed by macrophages or in the macrophage-abundant regions. We highlighted the perspectives for novel techniques that utilize spatial and single cell resolution in investigating new ligand-receptor interactions for effective immunotherapy based on TAM-targeting.
Collapse
Affiliation(s)
- Militsa Rakina
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, 634050, Russia
- Laboratory of Molecular Therapy of Cancer, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Russia
| | - Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, 634050, Russia
- Laboratory of Molecular Therapy of Cancer, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Russia
| | - Julia Kzhyshkowska
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, 634050, Russia
- Institute of Transfusion Medicine and Immunology, Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, 68167, Germany
- German Red Cross Blood Service Baden-Württemberg – Hessen, Mannheim, 68167, Germany
| |
Collapse
|
4
|
He YX, Li YY, Wu YQ, Ren LZ, Wang Y, Wang YM, Yu Y. Huanglian Ganjiang decoction alleviates ulcerative colitis by restoring gut barrier via APOC1-JNK/P38 MAPK signal pathway based on proteomic analysis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116994. [PMID: 37541400 DOI: 10.1016/j.jep.2023.116994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ulcerative colitis (UC) is a kind of chronic intestinal inflammation accompanied with abdominal pain, diarrhea and hematochezia. Huanglian Ganjiang decoction (HGD) derived from "Beiji Qianjin Yao Fang" was used for UC patients clinically. However, the specific mechanism of HGD in treating UC remain unclear. AIM OF STUDY Our study devoted to demonstrating the therapeutic effect of HGD for colitis and clarifying the underlying mechanism. MATERIALS AND METHODS UPLC-MS was carried out to identify the ingredients of HGD. UC mice were induced by giving 3% dextran sulfate sodium (DSS) solution for one week and treated by HGD for another week. Body weight fluctuation, disease activity index (DAI), colon length and pathological change of colon tissues were observed to evaluate therapeutical effect of HGD. ELISA and qPCR were carried out to estimate the inflammatory state. Western blot, qPCR and immunofluorescence were used to access the expression of tight junction proteins. Tandem mass tag (TMT)-Based proteomics and network pharmacology was launched to screen and predict the potential targets and pathway regulated by HGD. RESULTS Based on the UPLC-MS/MS analysis, 100 components were identified in HGD. After 7-day treatment, HGD significantly alleviated colitis-associated symptoms including body weight loss, shorted colon, increase of DAI score, histopathologic lesions. HGD also reduced inflammatory cytokines IL-6 and IL-1β levels, increased the number of goblet cells and restored tight junction proteins Occludin, Claudin-1 in colon. Network pharmacology study predicted that tight junction and MAPK pathway might be affected by HGD in colitis mice. APOC1 was screened out as key target in HGD-treated mice using TMT-based proteomics study. Further Western blot results showed that HGD reduced expressions of APOC1, p-P38 and p-JNK. CONCLUSION HGD improves general symptoms of colitis mice at medium and high doses, which may be associated with restoring tight junction and intestinal barrier integrity and function through suppression of APOC1-JNK/P38 MAPK signal pathway.
Collapse
Affiliation(s)
- Yue-Xian He
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong Province, China
| | - Yan-Yang Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong Province, China
| | - Ye-Qun Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong Province, China
| | - Ling-Zhi Ren
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong Province, China
| | - Yi Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong Province, China
| | - Yu-Mei Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong Province, China.
| | - Yang Yu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong Province, China.
| |
Collapse
|
5
|
Yang Z, Yang L, Sun Z, Rong Y, Bai C, Dong Q, Jian L. miRNA-660-3p inhibits malignancy in glioblastoma via negative regulation of APOC1-TGFβ2 signaling pathway. Cancer Biol Ther 2023; 24:2281459. [PMID: 37981873 PMCID: PMC10783846 DOI: 10.1080/15384047.2023.2281459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/06/2023] [Indexed: 11/21/2023] Open
Abstract
Glioblastoma as the most common and aggressive central nervous system tumor in adults. Its prognosis and therapeutic outcome are poor due to the limited understanding of its molecular mechanism. Apolipoprotein C-1 (APOC1) as a member of the apolipoprotein family that acts as a tumor promoter in various cancers. MicroRNA (miRNA) can silence gene expression and suppress tumor progression. However, the role of APOC1 and its upstream miRNA has not been explored in glioblastoma. Two glioblastoma cell lines (U87 and U251) were used to explore the role of APOC1 and its upstream miRNA-660-3p in glioblastoma tumorigenesis in vitro. Cells with APOC1/miRNA-660-3p overexpression or knockdown were assessed for their proliferation, migration, and invasion in vitro, and tumorigenesis in vivo. Gene and protein expression was assessed by qRT-PCR and western blot, respectively. Cell proliferation was assessed by the MTT assay and the EdU and Ki67 staining. Cell migration and invasion were assessed by the transwell assay. Tumorigenesis in vivo was assessed in U87 cells with a xenograft mouse model. APOC1 was overexpressed in glioblastoma compared with normal peritumoral tissue and was inversely related to patient prognosis. APOC1 overexpression promotes cell proliferation, migration, and invasion in vitro. APOC1 inhibition reduced tumor growth in vivo. miRNA-660-3p inhibits tumorigenesis by directly targeting APOC1. Mechanistically, APOC1 drives the malignancy of glioblastoma by activating the TGFβ2 signaling pathway. miRNA-660-3p suppresses tumorigenesis by targeting APOC1. Therefore, miRNA-660-3p/APOC1 axis can serve as potential intervention targets in managing glioblastoma progression.
Collapse
Affiliation(s)
- Zelin Yang
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Liang Yang
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zhenkai Sun
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yuxi Rong
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Chenglian Bai
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Qiaoxiang Dong
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Lin Jian
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
6
|
Ploypetch S, Wongbandue G, Roytrakul S, Phaonakrop N, Prapaiwan N. Comparative Serum Proteome Profiling of Canine Benign Prostatic Hyperplasia before and after Castration. Animals (Basel) 2023; 13:3853. [PMID: 38136890 PMCID: PMC10740436 DOI: 10.3390/ani13243853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/18/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
BPH is the most prevalent prostatic condition in aging dogs. Nevertheless, clinical diagnosis and management remain inconsistent. This study employed in-solution digestion coupled with nano-liquid chromatography tandem mass spectrometry to assess serum proteome profiling of dogs with BPH and those dogs after castration. Male dogs were divided into two groups; control and BPH groups. In the BPH group, each dog was evaluated at two time points: Day 0 (BF subgroup) and Day 30 after castration (AT subgroup). In the BF subgroup, three proteins were significantly upregulated and associated with dihydrotestosterone: solute carrier family 5 member 5, tyrosine-protein kinase, and FRAT regulator of WNT signaling pathway 1. Additionally, the overexpression of polymeric immunoglobulin receptors in the BF subgroup hints at its potential as a novel protein linked to the BPH development process. Conversely, alpha-1-B glycoprotein (A1BG) displayed significant downregulation in the BF subgroup, suggesting A1BG's potential as a predictive protein for canine BPH. Finasteride was associated with increased proteins in the AT subgroup, including apolipoprotein C-I, apolipoprotein E, apolipoprotein A-II, TAO kinase 1, DnaJ homolog subfamily C member 16, PH domain and leucine-rich repeat protein phosphatase 1, neuregulin 1, and pseudopodium enriched atypical kinase 1. In conclusion, this pilot study highlighted alterations in various serum proteins in canine BPH, reflecting different pathological changes occurring in this condition. These proteins could be a source of potential non-invasive biomarkers for diagnosing this disease.
Collapse
Affiliation(s)
- Sekkarin Ploypetch
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand; (S.P.); (G.W.)
| | - Grisnarong Wongbandue
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand; (S.P.); (G.W.)
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (S.R.); (N.P.)
| | - Narumon Phaonakrop
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (S.R.); (N.P.)
| | - Nawarus Prapaiwan
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand; (S.P.); (G.W.)
| |
Collapse
|
7
|
Liu S, Zhang F, Liang Y, Wu G, Liu R, Li X, Saw PE, Yang Z. Nanoparticle (NP)-mediated APOC1 silencing to inhibit MAPK/ERK and NF-κB pathway and suppress breast cancer growth and metastasis. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2451-2465. [PMID: 37668862 DOI: 10.1007/s11427-022-2329-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/14/2023] [Indexed: 09/06/2023]
Abstract
Breast cancer is one of the most common malignant tumors with high mortality and poor prognosis in women. There is an urgent need to discover new therapeutic targets for breast cancer metastasis. Herein, we identified that Apolipoprotein C1 (APOC1) was up-regulated in primary tumor of breast cancer patient that recurrence and metastasis by immunohistochemistry (IHC). Kaplan-Meier Plotter database showed that high levels of APOC1 in breast cancer patients were strongly associated with worse overall survival (OS) and relapse-free survival (RFS). Mechanistically, APOC1 silencing significantly inhibits MAPK/ERK kinase pathway and restrains the NF-κB to decrease the transcription of target genes related to growth and metastasis in vitro. Based on this regulatory mechanism, we developed these findings into potential therapeutic drugs, glutathione (GSH) responsive nano-particles (NPs) were used for systemic APOC1 siRNA delivery, NPs (siAPOC1) silenced APOC1 expression, and subsequently resulted in positive anti-tumor effects in orthotopic and liver metastasis models in vivo. Taken together, GSH responsive NP-mediated siAPOC1 delivery was proved to be effective in regulating growth and metastasis in multiple tumor models. These findings show that APOC1 could be a potential biomarker to predict the prognosis of breast cancer patients and NP-mediated APOC1 silencing could be new strategies for exploration of new treatments for breast cancer metastasis.
Collapse
Affiliation(s)
- Shaomin Liu
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, 518107, China
| | - Fengqian Zhang
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China
| | - Yixia Liang
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China
| | - Guo Wu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, 421001, China
| | - Rong Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, 421001, China
| | - Xiuling Li
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China
| | - Phei Er Saw
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China.
| | - Zhonghan Yang
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
8
|
Xu H, Ba Z, Liu C, Yu X. Long noncoding RNA DLEU1 promotes proliferation and glycolysis of gastric cancer cells via APOC1 upregulation by recruiting SMYD2 to induce trimethylation of H3K4 modification. Transl Oncol 2023; 36:101731. [PMID: 37478669 PMCID: PMC10375852 DOI: 10.1016/j.tranon.2023.101731] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/06/2023] [Accepted: 06/21/2023] [Indexed: 07/23/2023] Open
Abstract
OBJECTIVES APOC1 has been reported to promote tumor progression. Nevertheless, its impact on cell proliferation and glycolysis in gastric cancer (GC) remains to be probed. Hence, this study explored the related impacts and mechanisms. METHODS DLEU1, SMYD2, and APOC1 expression was detected in GC cells. Afterward, ectopic expression and knockdown experiments were conducted in GC cells, followed by measurement of cell proliferation, glucose uptake capability, lactic acid production, ATP content, extracellular acidification rate (ECAR), oxygen consumption rate (OCR), and GLUT1, HK2, and LDHA expression. In addition, interactions between DLEU1 and SMYD2 were analyzed with RIP and RNA pull down assays, and the binding of SMYD2 to APOC1 promoter and the methylation modification of SMYD2 in H3K4me3 were assessed with a ChIP assay. The ectopic tumor formation experiment in nude mice was conducted for in vivo validation. RESULTS DLEU1, SMYD2, and APOC1 were highly expressed in GC cells. The downregulation of DLEU1 or APOC1 inhibited glucose uptake capability, lactic acid production, ECAR, the expression of GLUT1, HK2, and LDHA, ATP contents, and proliferation but augmented OCR in GC cells, which was also verified in animal experiments. Mechanistically, DLEU1 interacted with SMYD2 and recruited SMYD2 to APOC1 promoter to promote H3K4me3 modification, thus facilitating APOC1 expression. Furthermore, the effects of DLEU1 silencing on GC cell proliferation and glycolysis were negated by overexpressing SMYD2 or APOC1. CONCLUSION LncRNA DLEU1 recruited SMYD2 to upregulate APOC1 expression, thus boosting GC cell proliferation and glycolysis.
Collapse
Affiliation(s)
- Haitao Xu
- Department of Hepatobiliary and Pancreatic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P. R. China
| | - Zhichang Ba
- Department of Medical Imaging Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P. R. China
| | - Chunxun Liu
- Department of Hepatobiliary and Pancreatic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P. R. China
| | - Xuefeng Yu
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P. R. China.
| |
Collapse
|
9
|
Chen TY, Mihalopoulos M, Zuluaga L, Rich J, Ganta T, Mehrazin R, Tsao CK, Tewari A, Gonzalez-Kozlova E, Badani K, Dogra N, Kyprianou N. Clinical Significance of Extracellular Vesicles in Prostate and Renal Cancer. Int J Mol Sci 2023; 24:14713. [PMID: 37834162 PMCID: PMC10573190 DOI: 10.3390/ijms241914713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/02/2023] [Accepted: 09/03/2023] [Indexed: 10/15/2023] Open
Abstract
Extracellular vesicles (EVs)-including apoptotic bodies, microvesicles, and exosomes-are released by almost all cell types and contain molecular footprints from their cell of origin, including lipids, proteins, metabolites, RNA, and DNA. They have been successfully isolated from blood, urine, semen, and other body fluids. In this review, we discuss the current understanding of the predictive value of EVs in prostate and renal cancer. We also describe the findings supporting the use of EVs from liquid biopsies in stratifying high-risk prostate/kidney cancer and advanced disease, such as castration-resistant (CRPC) and neuroendocrine prostate cancer (NEPC) as well as metastatic renal cell carcinoma (RCC). Assays based on EVs isolated from urine and blood have the potential to serve as highly sensitive diagnostic studies as well as predictive measures of tumor recurrence in patients with prostate and renal cancers. Overall, we discuss the biogenesis, isolation, liquid-biopsy, and therapeutic applications of EVs in CRPC, NEPC, and RCC.
Collapse
Affiliation(s)
- Tzu-Yi Chen
- Department of Pathology & Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (T.-Y.C.); (A.T.)
| | - Meredith Mihalopoulos
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.M.); (L.Z.); (J.R.); (R.M.); (K.B.)
| | - Laura Zuluaga
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.M.); (L.Z.); (J.R.); (R.M.); (K.B.)
| | - Jordan Rich
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.M.); (L.Z.); (J.R.); (R.M.); (K.B.)
| | - Teja Ganta
- Department of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (T.G.); (C.-K.T.)
| | - Reza Mehrazin
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.M.); (L.Z.); (J.R.); (R.M.); (K.B.)
| | - Che-Kai Tsao
- Department of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (T.G.); (C.-K.T.)
| | - Ash Tewari
- Department of Pathology & Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (T.-Y.C.); (A.T.)
| | - Edgar Gonzalez-Kozlova
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Ketan Badani
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.M.); (L.Z.); (J.R.); (R.M.); (K.B.)
| | - Navneet Dogra
- Department of Pathology & Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (T.-Y.C.); (A.T.)
| | - Natasha Kyprianou
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.M.); (L.Z.); (J.R.); (R.M.); (K.B.)
- The Tisch Cancer Institute, Mount Sinai Health, New York, NY 10029, USA
| |
Collapse
|
10
|
Liang R, Zhang G, Xu W, Liu W, Tang Y. ApoC1 promotes glioma metastasis by enhancing epithelial-mesenchymal transition and activating the STAT3 pathway. Neurol Res 2023; 45:268-275. [PMID: 36302088 DOI: 10.1080/01616412.2022.2132458] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVE One of the apolipoprotein's members, apolipoprotein C1 (ApoC1), is critical in the metabolism of both very-low-density lipoprotein (VLDL) and high-density lipoprotein (HDL) cholesterols. Multiple studies have recently revealed that ApoC1 may be a viable therapeutic target in solid malignancies. However, the motor protein ApoC1's specific role and mechanism in glioblastoma remain unknown. METHODS In this study, the Cancer Genome Atlas (TCGA) database was used to look at the level of ApoC1 in glioma tissues and normal tissues, as well as how it related to the prognosis of glioma. Glioma cell lines (U87 and U251) were subjected to a wide range of experiments to determine the involvement of ApoC1 in cell proliferation, migration, and invasion. RESULTS Cell proliferation, migration, and invasion decreased in glioma cell lines when ApoC1 was silenced. Furthermore, ApoC1 increased glioma cell metastasis through the epithelial-mesenchymal transition (EMT), while ApoC1 deletion reduced this impact. Additionally, APOC1 influenced the evolution of glioma by affecting the STAT3 pathway. In addition, APOC1 knockdown reduced the activation of the phosphorylated-total signal transducer and activator of transcription (STAT3) in the glioma cells. ApoC1-induced glioma cell metastatic ability was prevented by niclosamide (a STAT3 inhibitor). CONCLUSIONS These results uncover that ApoC1 may serve as a biomarker or therapeutic target for future fundamental study or clinical treatment of glioma.
Collapse
Affiliation(s)
- Rui Liang
- Department of Neurosurgery, The First Hospital of Jiujiang City, Jiujiang, China
| | - Guofeng Zhang
- Department of Neurosurgery, The First Hospital of Jiujiang City, Jiujiang, China
| | - Wenhua Xu
- Department of Neurosurgery, The First Hospital of Jiujiang City, Jiujiang, China
| | - Weibing Liu
- Department of Neurosurgery, The First Hospital of Jiujiang City, Jiujiang, China
| | - Youjia Tang
- Department of Neurosurgery, The First Hospital of Jiujiang City, Jiujiang, China
| |
Collapse
|
11
|
Tang L, Zhang S, Zhang M, Wang PJ, Liang GY, Gao XL. Integrated Proteomics and Metabolomics Analysis to Explore the Amelioration Mechanisms of Rosa roxburghii Tratt Fruit Polyphenols on Lipopolysaccharide-Induced Acute Lung Injury Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3079-3092. [PMID: 36745194 DOI: 10.1021/acs.jafc.2c04344] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Acute lung injury (ALI) is the main cause of death for the elderly and children due to its high morbidity and mortality rates. Plant-derived functional foods are becoming increasingly important to the healthcare and food industries for adjunctive and alternative treatments of ALI. Polyphenols have been regarded to be beneficial to the prevention and amelioration of ALI. Rosa roxburghii Tratt fruit polyphenols (RRTP) has potential to prevent ALI, but mechanism remains unclear. This study was set up to systematically analyze the RRTP extract active ingredients, comprehensively evaluate its protective effects via lung histopathological examination, protein concentration, and cytokines production in ALI mice induced by lipopolysaccharide (LPS), and finally revealed alleviation mechanisms of the regulatory effects of RRTP by proteomics and metabolomics approach. The results demonstrated RRTP could synergistically exert significant preventive effects against ALI by notably ameliorating lung histopathological damage and pulmonary capillary permeability in ALI mice, inhibiting lung tissue inflammatory response and acute phase proteins and S-100 calcium binding proteins, suppressing excessive activation of complement and coagulation cascades, and regulating disordered lipids metabolism and amino acid metabolism. This study illustrated that RRTP has obvious advantages in ALI adjunctive therapy and revealed the complicated amelioration mechanisms, which provides a breakthrough for the development and demonstration of RRTP as a nutritional compound additive for complementary therapy of ALI.
Collapse
Affiliation(s)
- Li Tang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences & Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of Education, Guizhou Medical University, Guiyang, 550025, China
- School of Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, 550025, China
| | - Shuo Zhang
- School of Basic Medical Sciences & Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of Education, Guizhou Medical University, Guiyang 550025, China
| | - Min Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences & Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Peng-Jiao Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences & Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Gui-You Liang
- Translational Medicine Research Center & State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550025, China
| | - Xiu-Li Gao
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
12
|
Cao X, Wu B, Guo S, Zhong W, Zhu S, Zhang Z, Gu L, Li H. APOC1 predicts a worse prognosis for esophageal squamous cell carcinoma and is associated with tumor immune infiltration during tumorigenesis. Pathol Oncol Res 2023; 29:1610976. [PMID: 36969562 PMCID: PMC10030600 DOI: 10.3389/pore.2023.1610976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/22/2023] [Indexed: 03/29/2023]
Abstract
Background: Esophageal carcinoma (ESCA), a common malignant tumor of the digestive tract with insidious onset, is a serious threat to human health. Despite multiple treatment modalities for patients with ESCA, the overall prognosis remains poor. Apolipoprotein C1 (APOC1) is involved in tumorigenesis as an inflammation-related molecule, and its role in esophageal cancer is still unknown. Methods: We downloaded documents and clinical data using The Cancer Genome Atlas (TCGA)and Gene Expression Omnibus (GEO) databases. We also conducted bioinformatics studies on the diagnostic value, prognostic value, and correlation between APOC1 and immune infiltrating cells in ESCA through STRING (https://cn.string-db.org/), the TISIDB (http://cis.hku.hk/TISIDB/) website, and various other analysis tools. Results: In patients with ESCA, APOC1 was significantly more highly expressed in tumor tissues than in normal tissues (p < 0.001). APOC1 could diagnose ESCA more accurately and determine the TNM stage and disease classification with high accuracy (area under the curve, AUC≥0.807). The results of the Kaplan-Meier curve analysis showed that APOC1 has prognostic value for esophageal squamous carcinoma (ESCC) (p = 0.043). Univariate analysis showed that high APOC1 expression in ESCC was significantly associated with worse overall survival (OS) (p = 0.043), and multivariate analysis shows that high APOC1 expression was an independent risk factor for the OS of patients with ESCC (p = 0.030). In addition, the GO (gene ontology)/KEGG (Kyoto encyclopedia of genes and genomes) analysis showed a concentration of gene enrichment in the regulation of T-cell activation, cornification, cytolysis, external side of the plasma membrane, MHC protein complex, MHC class II protein complex, serine-type peptidase activity, serine-type endopeptidase activity, Staphylococcus aureus infection, antigen processing and presentation, and graft-versus-host disease (all p < 0.001). GSEA (gene set enrichment analysis) showed that enrichment pathways such as immunoregulatory-interactions between a lymphoid and non-lymphoid cell (NES = 1.493, p. adj = 0.023, FDR = 0.017) and FCERI-mediated NF-KB activation (NES = 1.437, p. adj = 0.023, FDR = 0.017) were significantly enriched in APOC1-related phenotypes. In addition, APOC1 was significantly associated with tumor immune infiltrating cells and immune chemokines. Conclusion: APOC1 can be used as a prognostic biomarker for esophageal cancer. Furthermore, as a novel prognostic marker for patients with ESCC, it may have potential value for further investigation regarding the diagnosis and treatment of this group of patients.
Collapse
Affiliation(s)
- Xiying Cao
- Department of Thoracic Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- *Correspondence: Xiying Cao, ; Hui Li,
| | - Bingqun Wu
- Department of Thoracic Surgery, Huaxin Hospital, First Hospital of Tsinghua University Beijing, Beijing, China
| | - Shaoming Guo
- Department of Thoracic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Weixiang Zhong
- Department of Thoracic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Shenyu Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Zuxiong Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Liang Gu
- Department of Thoracic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Hui Li
- Department of Thoracic Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- *Correspondence: Xiying Cao, ; Hui Li,
| |
Collapse
|
13
|
He Y, Chen J, Ma Y, Chen H. Apolipoproteins: New players in cancers. Front Pharmacol 2022; 13:1051280. [PMID: 36506554 PMCID: PMC9732396 DOI: 10.3389/fphar.2022.1051280] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/15/2022] [Indexed: 11/26/2022] Open
Abstract
Apolipoproteins (APOs), the primary protein moiety of lipoproteins, are known for their crucial role in lipid traffic and metabolism. Despite extensive exploration of APOs in cardiovascular diseases, their roles in cancers did not attract enough attention. Recently, research focusing on the roles of APOs in cancers has flourished. Multiple studies demonstrate the interaction of APOs with classical pathways of tumorigenesis. Besides, the dysregulation of APOs may indicate cancer occurrence and progression, thus serving as potential biomarkers for cancer patients. Herein, we summarize the mechanisms of APOs involved in the development of various cancers, their applications as cancer biomarkers and their genetic polymorphism associated with cancer risk. Additionally, we also discuss the potential anti-cancer therapies by virtue of APOs. The comprehensive review of APOs in cancers may advance the understanding of the roles of APOs in cancers and their potential mechanisms. We hope that it will provide novel clues and new therapeutic strategies for cancers.
Collapse
Affiliation(s)
- Yingcheng He
- Department of Histology and Embryology, Medical College of Nanchang University, Nanchang, Jiangxi, China,Medical Department, Queen Mary School, Nanchang University, Nanchang, Jiangxi, China
| | - Jianrui Chen
- Department of Histology and Embryology, Medical College of Nanchang University, Nanchang, Jiangxi, China,Medical Department, Queen Mary School, Nanchang University, Nanchang, Jiangxi, China
| | - Yanbing Ma
- Department of Histology and Embryology, Medical College of Nanchang University, Nanchang, Jiangxi, China,Medical Department, Queen Mary School, Nanchang University, Nanchang, Jiangxi, China
| | - Hongping Chen
- Department of Histology and Embryology, Medical College of Nanchang University, Nanchang, Jiangxi, China,Jiangxi Key Laboratory of Experimental Animals, Nanchang University, Nanchang, Jiangxi, China,*Correspondence: Hongping Chen,
| |
Collapse
|
14
|
Pan X, Chen S, Chen X, Ren Q, Yue L, Niu S, Li Z, Zhu R, Chen X, Jia Z, Zhen R, Ban J. Effect of high-fat diet and empagliflozin on cardiac proteins in mice. Nutr Metab (Lond) 2022; 19:69. [PMID: 36242090 PMCID: PMC9563173 DOI: 10.1186/s12986-022-00705-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/02/2022] [Indexed: 11/16/2022] Open
Abstract
Using proteomic techniques the impact of the sodium-glucose transport protein 2 inhibitor empagliflozin on cardiac protein expression in a mouse model was assessed under normal and high-fat diet (HFD) conditions. We examined the effect of obesity on serological markers and heart function in obese mice treated with or without empagliflozin and used proteomic techniques to investigate alterations in cardiac protein expression. Using bioinformatic techniques, data were screened for differentially expressed proteins (DEPs) implicated in the putative mechanism of empagliflozin's cardioprotective effects. In C57BL/6 mice, HFD increased body weight, blood lipid, and glucose levels and was associated with structural damage to the heart. Empagliflozin reduces body weight, improves glucose and lipid metabolism, alleviates obesity-induced cardiac ventricular wall thickening, and lowers cardiac tissue collagen. The expression of several proteins was altered in the heart, mainly related to lipid metabolism. Following empagliflozin treatment, the expression of several lipid metabolism-related proteins was considerably reduced. Further examination of DEPs revealed that following empagliflozin treatment, the expressions of Apoe, Apoc1, Saa2, Apoa2, and Pon1 altered dramatically, suggesting that these proteins may be the main proteins that empagliflozin uses to treat obesity-induced aberrant lipid metabolism. Empagliflozin may protect the heart by altering the expression of genes including Apoe, Apoc1, Saa2, Apoa2, and Pon1, which are all involved in lipid metabolism disturbance in obesity.
Collapse
Affiliation(s)
- Xiaoyu Pan
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China.,Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| | - Shuchun Chen
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China. .,Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China.
| | - Xing Chen
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China.,Department of Nephrology, Hebei General Hospital, Shijiazhuang, China
| | - Qingjuan Ren
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China.,Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| | - Lin Yue
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China.,Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| | - Shu Niu
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China.,Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| | - Zelin Li
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China.,Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| | - Ruiyi Zhu
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China.,Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| | - Xiaoyi Chen
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| | - Zhuoya Jia
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China.,Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| | - Ruoxi Zhen
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China.,Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| | - Jiangli Ban
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| |
Collapse
|
15
|
Feasibility of ApoC1 serum levels as tumor biomarker in glioblastoma patients: a pilot study. Sci Rep 2022; 12:16981. [PMID: 36216850 PMCID: PMC9550816 DOI: 10.1038/s41598-022-21216-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/23/2022] [Indexed: 12/29/2022] Open
Abstract
Apolipoprotein C1 (ApoC1) has been detected immunohistochemically in glioblastoma tissue, probably expressed by activated monocytes and microglia. The present study was conceived to determine whether the amount of intratumoral ApoC1 expression leads to measurable changes of serum levels after glioblastoma resection or during recurrence. 176 blood samples from 70 glioblastoma patients were collected perioperatively and during subsequent therapy. ApoC1 serum levels were determined using an enzyme linked immunosorbent assay (ELISA). High absorption values due to lipemic or hemolytic serum were removed from the final dataset using a stem and leaf plot. Samples were grouped according to the treatment stage to compare mean ApoC1 serum levels. The number of patients with falling or increasing perioperative values was assessed. 167 ApoC1 serum values from 68 glioblastoma patients were amenable to statistical evaluation. Mean ApoC1 serum level was 91.9 µg/ml (n = 167, sd = 36.0). In samples from patients undergoing first glioblastoma resection, the mean preoperative value was significantly higher (94.8 µg/ml, n = 37, sd = 29.5) than after surgery (77.4 µg/ml, n = 41, sd = 23.2, p = 0.009). Individually, falling ApoC1 levels were detected in 25 and rising levels in 9 patients (p = 0.0061). Single absolute serum levels of ApoC1 do not allow an estimation of glioblastoma activity or tumor response. Although pathophysiologically of interest, ApoC1 serum levels did not qualify as a potential biomarker in glioblastoma management. Our results do not seem to encourage larger, multicenter studies.
Collapse
|
16
|
Rapier-Sharman N, Clancy J, Pickett BE. Joint Secondary Transcriptomic Analysis of Non-Hodgkin's B-Cell Lymphomas Predicts Reliance on Pathways Associated with the Extracellular Matrix and Robust Diagnostic Biomarkers. JOURNAL OF BIOINFORMATICS AND SYSTEMS BIOLOGY : OPEN ACCESS 2022; 5:119-135. [PMID: 36873459 PMCID: PMC9980876 DOI: 10.26502/jbsb.5107040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Approximately 450,000 cases of Non-Hodgkin's lymphoma are annually diagnosed worldwide, resulting in ~240,000 deaths. An augmented understanding of the common mechanisms of pathology among larger numbers of B-cell Non-Hodgkin's Lymphoma (BCNHL) patients is sorely needed. We consequently performed a large joint secondary transcriptomic analysis of the available BCNHL RNA-sequencing projects from GEO, consisting of 322 relevant samples across ten distinct public studies, to find common underlying mechanisms and biomarkers across multiple BCNHL subtypes and patient subpopulations; limitations may include lack of diversity in certain ethnicities and age groups and limited clinical subtype diversity due to sample availability. We found ~10,400 significant differentially expressed genes (FDR-adjusted p-value < 0.05) and 33 significantly modulated pathways (Bonferroni-adjusted p-value < 0.05) when comparing BCNHL samples to non-diseased B-cell samples. Our findings included a significant class of proteoglycans not previously associated with lymphomas as well as significant modulation of genes that code for extracellular matrix-associated proteins. Our drug repurposing analysis predicted new candidates for repurposed drugs including ocriplasmin and collagenase. We also used a machine learning approach to identify robust BCNHL biomarkers that include YES1, FERMT2, and FAM98B, which have not previously been associated with BCNHL in the literature, but together provide ~99.9% combined specificity and sensitivity for differentiating lymphoma cells from healthy B-cells based on measurement of transcript expression levels in B-cells. This analysis supports past findings and validates existing knowledge while providing novel insights into the inner workings and mechanisms of transformed B-cell lymphomas that could give rise to improved diagnostics and/or therapeutics.
Collapse
Affiliation(s)
- Naomi Rapier-Sharman
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Jeffrey Clancy
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Brett E Pickett
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
17
|
Hao X, Zheng Z, Liu H, Zhang Y, Kang J, Kong X, Rong D, Sun G, Sun G, Liu L, Yu H, Tang W, Wang X. Inhibition of APOC1 promotes the transformation of M2 into M1 macrophages via the ferroptosis pathway and enhances anti-PD1 immunotherapy in hepatocellular carcinoma based on single-cell RNA sequencing. Redox Biol 2022; 56:102463. [PMID: 36108528 PMCID: PMC9482117 DOI: 10.1016/j.redox.2022.102463] [Citation(s) in RCA: 96] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/28/2022] [Accepted: 08/28/2022] [Indexed: 11/04/2022] Open
Abstract
Single-cell RNA-sequencing (scRNA-seq) presents better insights into cell behavior in the context of a complex tumor microenvironment by profiling single-cell populations. However, the mechanisms underlying treatment failure in hepatocellular carcinoma (HCC) are poorly understood. In this study, we performed deep scRNA-seq on immune cells under the isolation in peripheral blood, cancer tissues, and nearby common tissues of four HCC cases and two non-cancer controls, and 212,494 cells were included in the analysis. We identified distinct immune cell subtypes, enriched pathways for differential genes, and delineated associated developmentally relevant trajectories. APOC1 was found over-expressed in tumor-associated macrophages (TAMs) of HCC tissues than in normal tissues. Inhibition of APOC1 reversed the M2 phenotype to the M1 phenotype via the ferroptosis pathway in TAMs from HCC. Tumors in APOC1 −/− C57BL/6 mice demonstrated consistent attenuation compared to wild-type (WT) mice. Mass spectrometry results revealed that the relative proportion of M2 macrophages, B cells, and CD4+ T cells in the APOC1 −/− group exhibited a downward expression compared with the WT group, whereas CD8+ T cells, M1 macrophages, and NK cells exhibited an upward trend. Finally, APOC1 was found to be negatively correlated with the expression of PD1/PD-L1 in human HCC samples. In conclusion, the present study demonstrated that inhibiting APOC1 can promote the transformation of M2 macrophages into M1 macrophages via the ferroptosis pathway, thereby reshaping the tumor immune microenvironment and improving the anti-PD1 immunotherapy for HCC, providing a new strategy for improving the therapeutic effect of anti-PD1, and bringing new hope to HCC patients.
Collapse
|
18
|
Hilbert M, Kuzman P, Mueller WC, Nestler U. The Mean ApoC1 Serum Level in Postoperative Samples from Neurosurgical Patients Is Lower than in Preoperative Samples and during Chemotherapy. BIOLOGY 2022; 11:biology11071021. [PMID: 36101402 PMCID: PMC9312344 DOI: 10.3390/biology11071021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 12/26/2022]
Abstract
Serum levels of apolipoprotein ApoC1 have been described in a number of systemic tumor entities as potential biomarkers, but little is known about ApoC1 in neurosurgical patients. A total of 230 serum samples from 96 patients were analyzed using an ELISA technique. Patient diagnoses comprised 70 glioblastomas WHO IV°, 10 anaplastic astrocytomas III°, one anaplastic oligodendroglioma III°, one oligodendroglioma II°, one diffuse astrocytoma II°, one pilocytic astrocytoma I°, and a single case of a spindle cell tumor without WHO grading, as well as 11 spinal interventions. The mean ApoC1 level of the 230 samples was 132.03 µg/mL (median 86.83, SD 292.91). In the 176 glioblastoma samples, the mean ApoC1 level was 130.0 µg/mL (median 86.23, SD 314.9), which was neither different from the whole group nor from patients with spinal interventions (215.1 μg/mL, median 63.6, SD 404.9). In the postoperative samples, the mean ApoC1 level was significantly lower (85.81 μg/mL) than in the preoperative samples (129.64 μg/mL) and in samples obtained during adjuvant chemotherapy (168.44 μg/mL). While absolute ApoC1 serum levels in a patient do not allow for the distinction between neurosurgical histological entities, future analyses will examine whether the time course of ApoC1 in an individual patient can be related to certain treatment stages.
Collapse
Affiliation(s)
- Michelle Hilbert
- Department of Neurosurgery, University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Peter Kuzman
- Paul-Flechsig-Institute of Neuropathology, University Hospital Leipzig, 04103 Leipzig, Germany; (P.K.); (W.C.M.)
| | - Wolf C. Mueller
- Paul-Flechsig-Institute of Neuropathology, University Hospital Leipzig, 04103 Leipzig, Germany; (P.K.); (W.C.M.)
| | - Ulf Nestler
- Department of Neurosurgery, University Hospital Leipzig, 04103 Leipzig, Germany;
- Correspondence: ; Tel.: +49-(0)341-97-17510
| |
Collapse
|
19
|
The Apolipoprotein C1 is involved in breast cancer progression via EMT and MAPK/JNK pathway. Pathol Res Pract 2022; 229:153746. [DOI: 10.1016/j.prp.2021.153746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022]
|
20
|
Ma S, Murakami K, Saito R, Ito H, Murata K, Nishitani K, Hashimoto M, Tanaka M, Taniguchi M, Kitagori K, Akizuki S, Nakashima R, Yoshifuji H, Ohmura K, Morinobu A, Mimori T. Increased Ratio of CD14 ++CD80 + Cells/CD14 ++CD163 + Cells in the Infrapatellar Fat Pad of End-Stage Arthropathy Patients. Front Immunol 2021; 12:774177. [PMID: 34899727 PMCID: PMC8662627 DOI: 10.3389/fimmu.2021.774177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/08/2021] [Indexed: 01/02/2023] Open
Abstract
Objectives This study sought to identify the ratio of M1/M2 cells in the infrapatellar fat pads (IFP) and subcutaneous fat tissues (SC) of osteoarthritis (OA) and rheumatoid arthritis (RA) patients. The clinical features of OA and RA patients treated with or without biological disease-modifying anti-rheumatic drugs (bDMARDs) were also assessed. Methods IFP and SC were collected from patients with OA and RA who are undergoing total knee arthroplasty (TKA). CD14-positive cells were then isolated from these samples. Flow cytometry was used to determine the number of CD14++CD80+ cells and CD14++CD163+ cells. The expression levels of lipid transcription factors, such as sterol regulatory element-binding protein 1 (SREBP1) and liver X receptor alpha (LXRA), and inflammatory cytokines were also evaluated. Results Twenty OA patients and 22 RA patients were enrolled in this study. Ten of the RA patients (45.4%) received bDAMRDs before TKA. On average, a fivefold increase in the number of CD14-positive cells and lower expression levels of SREBP1C and LXRA were observed in OA IFP relative to OA SC; however, these results were not obtained from the RA samples. The median ratio of CD14++CD80+ cells/CD14++CD163+ cells of OA IFP was 0.87 (0.76–1.09, interquartile range), which is higher to that of OA SC with a lower ratio (p = 0.05835). Conclusions The quantity and quality of CD14-positive cells differed between IFP and SC in arthropathy patients. To our knowledge, this is the first study to characterize the ratio of M1/M2 cells in the IFP and SC of end-stage OA and RA patients. The increased ratio of CD14++CD80+ cells/CD14++CD163+ cells in the IFP from patients with OA and RA treated with bDMARDs indicated that inflammation was localized in the IFP. As adipose tissue-derived innate immune cells were revealed as one of the targets for regulating inflammation, further analysis of these cells in the IFP may reveal new therapeutic strategies for inflammatory joint diseases.
Collapse
Affiliation(s)
- Shuhe Ma
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kosaku Murakami
- Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Rintaro Saito
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiromu Ito
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Orthopaedic Surgery, Kurashiki Central Hospital, Okayama, Japan
| | - Koichi Murata
- Department for Advanced Medicine for Rheumatic Disease, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kohei Nishitani
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Motomu Hashimoto
- Department for Advanced Medicine for Rheumatic Disease, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Clinical Immunology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masao Tanaka
- Department for Advanced Medicine for Rheumatic Disease, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masahi Taniguchi
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Koji Kitagori
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shuji Akizuki
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ran Nakashima
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hajime Yoshifuji
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Koichiro Ohmura
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akio Morinobu
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tsuneyo Mimori
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Ijinkai Takeda General Hospital, Kyoto, Japan
| |
Collapse
|
21
|
PCBP1 regulates the transcription and alternative splicing of metastasis‑related genes and pathways in hepatocellular carcinoma. Sci Rep 2021; 11:23356. [PMID: 34857818 PMCID: PMC8640068 DOI: 10.1038/s41598-021-02642-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/03/2021] [Indexed: 02/08/2023] Open
Abstract
PCBP1 is a multifunctional RNA-binding protein (RBP) expressed in most human cells and is involved in posttranscriptional gene regulation. PCBP1 regulates the alternative splicing, translation and RNA stability of many cancer-related genes and has been identified as a potential tumour suppressor gene. PCBP1 inhibits the invasion of hepatocellular carcinoma (HCC) cells, but there are few studies on the specific regulatory target and mechanism of RBPs in HCC, and it is unclear whether PCBP1 plays a role in tumour metastasis as a splicing factor. We analysed the regulation of gene expression by PCBP1 at the transcriptional level. We obtained and analysed PCBP1-knockdown RNA-seq data and eCLIP-seq data of PCBP1 in HepG2 cells and found that PCBP1 widely regulates the alternative splicing and expression of genes enriched in cancer-related pathways, including extracellular matrix, cell adhesion, small molecule metabolic process and apoptosis. We validated five regulated alternative splicing events affected by PCBP1 using RT-qPCR and found that there was a significant difference in the expression of APOC1 and SPHK1 between tumour and normal tissues. In this study, we provided convincing evidence that human PCBP1 profoundly regulates the splicing of genes associated with tumour metastasis. These findings provide new insight into potential markers or therapeutic targets for HCC treatment.
Collapse
|
22
|
Xu X, Wang D, Li N, Sheng J, Xie M, Zhou Z, Cheng G, Fan Y. The Novel Tumor Microenvironment-Related Prognostic Gene AIF1 May Influence Immune Infiltrates and is Correlated with TIGIT in Esophageal Cancer. Ann Surg Oncol 2021; 29:2930-2940. [PMID: 34751872 DOI: 10.1245/s10434-021-10928-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/28/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND Esophageal carcinoma (EC) is the sixth most common cause of cancer-related mortality worldwide. Studying the associations of the tumor microenvironment (TME) with pathology and prognosis would illustrate the underlying mechanism of prognostic prediction and provide novel targets for immunotherapy in the treatment of EC. METHODS Transcriptomic profiles of 159 EC patients were obtained from The Cancer Genome Atlas (TCGA) database. Stromal and immune scores were calculated using the ESTIMATE algorithm. Differentially expressed genes (DEGs) were identified by the optimal score cutoff. Functional enrichments were analyzed by DAVID, while prognostic genes were explored using the Kaplan-Meier method. Validation analysis was performed using immunohistochemistry in tissue microarrays containing samples from 145 EC patients. Multiplex immunofluorescence staining was performed to detect a panel of 6 immune markers, including T-cell immunoreceptor with Ig and ITIM domains (TIGIT), in 90 EC patients. RESULTS Immune scores significantly increased with increasing age, while stromal scores were dramatically elevated with increasing tumor stage. Fifteen TME-related DEGs including allograft inflammatory factor 1 (AIF1) were identified as prognostic factors of EC. Furthermore, the validation cohort indicated that AIF1 was negatively associated with the prognosis of esophageal squamous cell carcinoma patients. Subsequent analyses suggested that AIF1 may affect immune infiltrates, including T cells and natural-killer cells. Moreover, a correlation between AIF1 and TIGIT was identified. CONCLUSIONS These results indicate that the TME-related gene AIF1 is a promising predictor of prognosis and is related to immune infiltrates and TIGIT expression in EC. However, further mechanistic studies are needed.
Collapse
Affiliation(s)
- Xiaoling Xu
- Department of Thoracic Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou City, China.,Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou City, China.,The Second Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, China
| | - Ding Wang
- The Second Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, China
| | - Na Li
- The Second Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, China
| | - Jiamin Sheng
- Department of Thoracic Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou City, China.,Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou City, China
| | - Mingying Xie
- The Second Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, China
| | - Zichao Zhou
- The Second Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, China
| | - Guoping Cheng
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou City, China.,The Second Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, China.,Department of Pathology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Yun Fan
- Department of Thoracic Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou City, China. .,Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou City, China. .,The Second Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, China.
| |
Collapse
|
23
|
Lu C, Luo X, Xing C, Mao Y, Xu Y, Gao W, Wang W, Zhan T, Wang G, Liu Z, Yu C. Construction of a novel mRNA-miRNA-lncRNA network and identification of potential regulatory axis associated with prognosis in colorectal cancer liver metastases. Aging (Albany NY) 2021; 13:14968-14988. [PMID: 34081622 PMCID: PMC8221294 DOI: 10.18632/aging.203049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 04/29/2021] [Indexed: 12/24/2022]
Abstract
Liver metastasis is a leading cause of death in patients with colorectal cancer (CRC). Increasing evidence demonstrates that competing endogenous RNA (ceRNA) networks play important roles in malignant cancers. The purpose of this study was to identify molecular markers and build a ceRNA network as a significant predictor of colorectal liver metastases (CRLM). By integrated bioinformatics analysis, we found that apolipoprotein C1 (APOC1) was upregulated in CRLM and associated with prognosis in patients with CRC and thereby established an APOC1-dependent ceRNA network. By survival analysis, expression analysis, and correlation analysis of each element in the ceRNA network, we identified that ZEB1-AS1, miR-335-5p and APOC1 regulated each other. We further experimentally confirmed that ZEB1-AS1 promoted a CRC progression via regulating the expression of miR-335-5p that controlled the expression of APOC1. Our findings indicate that the ZEB1-AS1-miR-335-5p-APOC1 ceRNA regulatory network is significantly valuable for better prognosis of patients with CRC and as a new therapeutic target for the treatment of CRLM.
Collapse
Affiliation(s)
- Chen Lu
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, China
| | - Xiagang Luo
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, China
| | - Cheng Xing
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, China
| | - Yonghuan Mao
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, China
| | - Yuting Xu
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Wenjie Gao
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, China
| | - Wulin Wang
- Department of Gastrointestinal Surgery, Jingzhou Central Hospital, Jingzhou 434000, Hubei, China
| | - Tian Zhan
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, China
| | - Guoguang Wang
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, China
| | - Zhengxia Liu
- Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, China
| | - Chunzhao Yu
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, China
| |
Collapse
|
24
|
Discovery and Validation of Circulating EVL mRNA as a Prognostic Biomarker in Pancreatic Cancer. JOURNAL OF ONCOLOGY 2021; 2021:6656337. [PMID: 33986805 PMCID: PMC8079208 DOI: 10.1155/2021/6656337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/25/2021] [Accepted: 04/04/2021] [Indexed: 02/05/2023]
Abstract
Background Circulating plasma mRNAs can be analyzed to identify putative cancer biomarkers. This study was conducted in an effort to detect plasma mRNA biomarkers capable of predicting pancreatic cancer (PACA) patient prognosis. Material and Methods. First, prognostic mRNAs that were differentially expressed in PACA in The Cancer Genome Atlas (TCGA) were established, after which microarray expression profiles from PACA patient plasma samples were utilized to specifically identify potential prognostic plasma mRNA biomarkers associated with this cancer type. In total, plasma samples were then collected from 79 PACA patients and 19 healthy controls to confirm differential mRNA expression via qPCR, while Kaplan–Meier analyses were used to examine the link between mRNA expression and patient overall survival. Results In total, three prognostic differentially expressed genes were identified in PACA patient plasma samples, including SMAP2, PTPN6, and EVL (Ena/VASP-like). Plasma EVL levels were confirmed via qPCR to be correlated with tumor pathology (p < 0.01), while the overall survival of patients with low plasma EVL levels was poor (p < 0.01). Multivariate Cox regression analyses further confirmed that plasma EVL levels were independent predictors of PACA patient prognosis. Conclusion We found that PACA is associated with the downregulation of plasma EVL mRNA levels, indicating that this mRNA may be a viable biomarker associated with patient prognosis.
Collapse
|
25
|
Liu YC, Yam GHF, Lin MTY, Teo E, Koh SK, Deng L, Zhou L, Tong L, Mehta JS. Comparison of tear proteomic and neuromediator profiles changes between small incision lenticule extraction (SMILE) and femtosecond laser-assisted in-situ keratomileusis (LASIK). J Adv Res 2021; 29:67-81. [PMID: 33842006 PMCID: PMC8020296 DOI: 10.1016/j.jare.2020.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 12/19/2022] Open
Abstract
Introduction The tear proteomics and neuromediators are associated with clinical dry eye parameters following refractive surgery. Purpose To investigate and compare the tear proteomic and neuromediator profiles following small incision lenticule extraction (SMILE) versus laser-assisted in-situ keratomileusis (LASIK). Methods In this randomized controlled trial with paired-eye design, 70 patients were randomized to receive SMILE in one eye and LASIK in the other eye. Tear samples were collected preoperatively, and 1 week, 1, 3, 6 and 12 months postoperatively, and were examined for protein concentration changes using sequential window acquisition of all theoretical fragment ion mass spectrometry (SWATH-MS). The data were analyzed with DAVID Bioinformatics Resources for enriched gene ontology terms and over-represented pathways. Tear neuromediators levels were correlated with clinical parameters. Results Post-SMILE eyes had significantly better Oxford staining scores and tear break-up time (TBUT) than post-LASIK eyes at 1 and 3 months, respectively. Tear substance P and nerve growth factor levels were significantly higher in the LASIK group for 3 months and 1 year, respectively. SMILE and LASIK shared some similar biological responses postoperatively, but there was significant up-regulation in leukocyte migration and wound healing at 1 week, humoral immune response and apoptosis at 1 month, negative regulation of endopeptidase activity at 3 to 6 months, and extracellular structure organization at 1 year in the post-LASIK eyes. Tear mucin-like protein 1 and substance P levels were significantly correlated with TBUT (r = -0.47, r = -0.49, respectively). Conclusion Significant differences in the tear neuromediators and proteomics were observed between SMILE and LASIK, even though clinical dry eye signs have subsided and became comparable between 2 procedures.
Collapse
Affiliation(s)
- Yu-Chi Liu
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore
- Department of Cornea and External Eye Disease, Singapore National Eye Centre, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - Gary Hin-Fai Yam
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore
- Department of Ophthalmology, University of Pittsburgh, PA, USA
| | - Molly Tzu-Yu Lin
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore
| | - Ericia Teo
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore
| | - Siew-Kwan Koh
- Ocular Proteomics, Singapore Eye Research Institute, Singapore
| | - Lu Deng
- Department of Statistics and Applied Probability, Faculty of Science, National University of Singapore, Singapore
| | - Lei Zhou
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore
- Ocular Proteomics, Singapore Eye Research Institute, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Louis Tong
- Department of Cornea and External Eye Disease, Singapore National Eye Centre, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Ocular Surface Group, Singapore Eye Research Institute, Singapore
| | - Jodhbir S. Mehta
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore
- Department of Cornea and External Eye Disease, Singapore National Eye Centre, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore
| |
Collapse
|
26
|
Sarmadi VH, Ahmadloo S, Boroojerdi MH, John CM, Al-Graitte SJR, Lawal H, Maqbool M, Hwa LK, Ramasamy R. Human Mesenchymal Stem Cells-mediated Transcriptomic Regulation of Leukemic Cells in Delivering Anti-tumorigenic Effects. Cell Transplant 2021; 29:963689719885077. [PMID: 32024378 PMCID: PMC7444238 DOI: 10.1177/0963689719885077] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Treatment of leukemia has become much difficult because of resistance to the
existing anticancer therapies. This has thus expedited the search for alternativ
therapies, and one of these is the exploitation of mesenchymal stem cells (MSCs)
towards control of tumor cells. The present study investigated the effect of
human umbilical cord-derived MSCs (UC-MSCs) on the proliferation of leukemic
cells and gauged the transcriptomic modulation and the signaling pathways
potentially affected by UC-MSCs. The inhibition of growth of leukemic tumor cell
lines was assessed by proliferation assays, apoptosis and cell cycle analysis.
BV173 and HL-60 cells were further analyzed using microarray gene expression
profiling. The microarray results were validated by RT-qPCR and western blot
assay for the corresponding expression of genes and proteins. The UC-MSCs
attenuated leukemic cell viability and proliferation in a dose-dependent manner
without inducing apoptosis. Cell cycle analysis revealed that the growth of
tumor cells was arrested at the G0/G1 phase. The
microarray results identified that HL-60 and BV173 share 35 differentially
expressed genes (DEGs) (same expression direction) in the presence of UC-MSCs.
In silico analysis of these selected DEGs indicated a
significant influence in the cell cycle and cell cycle-related biological
processes and signaling pathways. Among these, the expression of DBF4, MDM2,
CCNE2, CDK6, CDKN1A, and CDKN2A was implicated in six different signaling
pathways that play a pivotal role in the anti-tumorigenic activity exerted by
UC-MSCs. The UC-MSCs perturbate the cell cycle process of leukemic cells via
dysregulation of tumor suppressor and oncogene expression.
Collapse
Affiliation(s)
- Vahid Hosseinpour Sarmadi
- Department of Pathology, Faculty of Medicine and Health Sciences, Stem Cell & Immunity Research Group, Immunology Laboratory, Universiti Putra Malaysia, Selangor, Malaysia
| | - Salma Ahmadloo
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Genetics Laboratory, Universiti Putra Malaysia, Selangor, Malaysia
| | - Mohadese Hashem Boroojerdi
- Department of Pathology, Faculty of Medicine and Health Sciences, Stem Cell & Immunity Research Group, Immunology Laboratory, Universiti Putra Malaysia, Selangor, Malaysia
| | - Cini Mathew John
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Satar Jabbar Rahi Al-Graitte
- Department of Pathology, Faculty of Medicine and Health Sciences, Stem Cell & Immunity Research Group, Immunology Laboratory, Universiti Putra Malaysia, Selangor, Malaysia.,Department of Medical Microbiology, College of Medicine, University of Kerbala, Kerbala City, Iraq
| | - Hamza Lawal
- Department of Pathology, Faculty of Medicine and Health Sciences, Stem Cell & Immunity Research Group, Immunology Laboratory, Universiti Putra Malaysia, Selangor, Malaysia.,Department of Biochemistry, Faculty of Sciences, Bauchi State University, Gadau, Itas-Gadau LGA, Bauchi State 751105 Nigeria
| | - Maryam Maqbool
- Department of Pathology, Faculty of Medicine and Health Sciences, Stem Cell & Immunity Research Group, Immunology Laboratory, Universiti Putra Malaysia, Selangor, Malaysia
| | - Ling King Hwa
- Medical Genetics Laboratory, Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Rajesh Ramasamy
- Department of Pathology, Faculty of Medicine and Health Sciences, Stem Cell & Immunity Research Group, Immunology Laboratory, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
27
|
Ge S, Wang H, Alavi A, Xing E, Bar-Joseph Z. Supervised Adversarial Alignment of Single-Cell RNA-seq Data. J Comput Biol 2021; 28:501-513. [PMID: 33470876 DOI: 10.1089/cmb.2020.0439] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Dimensionality reduction is an important first step in the analysis of single-cell RNA-sequencing (scRNA-seq) data. In addition to enabling the visualization of the profiled cells, such representations are used by many downstream analyses methods ranging from pseudo-time reconstruction to clustering to alignment of scRNA-seq data from different experiments, platforms, and laboratories. Both supervised and unsupervised methods have been proposed to reduce the dimension of scRNA-seq. However, all methods to date are sensitive to batch effects. When batches correlate with cell types, as is often the case, their impact can lead to representations that are batch rather than cell-type specific. To overcome this, we developed a domain adversarial neural network model for learning a reduced dimension representation of scRNA-seq data. The adversarial model tries to simultaneously optimize two objectives. The first is the accuracy of cell-type assignment and the second is the inability to distinguish the batch (domain). We tested the method by using the resulting representation to align several different data sets. As we show, by overcoming batch effects our method was able to correctly separate cell types, improving on several prior methods suggested for this task. Analysis of the top features used by the network indicates that by taking the batch impact into account, the reduced representation is much better able to focus on key genes for each cell type.
Collapse
Affiliation(s)
- Songwei Ge
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Haohan Wang
- Language Technologies Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Amir Alavi
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Eric Xing
- Language Technologies Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.,Machine Learning Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Ziv Bar-Joseph
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.,Machine Learning Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
28
|
Shi X, Wang J, Dai S, Qin L, Zhou J, Chen Y. Apolipoprotein C1 (APOC1): A Novel Diagnostic and Prognostic Biomarker for Cervical Cancer. Onco Targets Ther 2020; 13:12881-12891. [PMID: 33364782 PMCID: PMC7751697 DOI: 10.2147/ott.s280690] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/26/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Previous reports showed that APOC1 was associated with several cancers but the function of APOC1 in cervical cancer was unknown. This study aimed to investigate the clinical effect and function of APOC1 in cervical cancer. MATERIALS AND METHODS In this study, the relative expression of APOC1 in cervical cancer was detected by RT-qPCR. In order to determine the cell proliferation and migration and invading ability and apoptosis more accurately, we used CCK8 assay, Edu assay, wound healing assay, migration and invasion assay, flow cytometry assay, co-immunoprecipitation, proteomics and Western blot by silencing and overexpressing APOC1, respectively. The role of APOC1 on tumor progression was explored in vitro and vivo. RESULTS The relative expression of APOC1 in cervical cancer tissues was up-regulated (P<0.05). In cervical cancer cell lines, silencing of APOC1 restrained cell progression and EMT, while over-expression of APOC1 accelerated cell progression and EMT in vivo and vitro (P<0.05). CONCLUSION APOC1 acts as an oncogene in cervical cancers and knockdown of APOC1 inhibited cervical cancer cells growth in vitro and in vivo. There is a close relationship between the relative expression of APOC1 and clinical outcome in cervical cancer patients.
Collapse
Affiliation(s)
- Xiu Shi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People’s Republic of China
- Clinical Research Center of Obstetrics and Gynecology, Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, Jiangsu Province, People’s Republic of China
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People’s Republic of China
| | - Juan Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People’s Republic of China
| | - Shouqian Dai
- Department of Emergency Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People’s Republic of China
| | - Lingyan Qin
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People’s Republic of China
| | - Jinhua Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People’s Republic of China
| | - Youguo Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People’s Republic of China
| |
Collapse
|
29
|
Wang HJ, Ma YX, Wang AH, Jiang YS, Jiang XZ. Expression of apolipoprotein C1 in clear cell renal cell carcinoma: An oncogenic gene and a prognostic marker. Kaohsiung J Med Sci 2020; 37:419-426. [PMID: 33305507 DOI: 10.1002/kjm2.12328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/17/2020] [Accepted: 11/02/2020] [Indexed: 01/04/2023] Open
Abstract
This study aimed to explore whether APOC1 expression has a function in the biological behavior of clear cell renal cell carcinoma (ccRCC) cells and its possible mechanism. Bioinformatics analysis of data TCGA and OnComine was conducted to explore the expression pattern and prognostic value of APOC1, as well as the relationship between APOC1 expression and clinical indicators. Loss- and gain- of APOC1 function assays were carried out to assess the biological functions of APOC1. Western blotting was applied to detect protein expression. We revealed that APOC1 was upregulated in ccRCC tissues. APOC1 expression was related to gender, grade, pathologic-T, pathologic-stage, and pathologic-M in patients with ccRCC. Meanwhile, Kaplan-Meier analysis evidenced that the high APOC1 expression indicated unfavorable outcomes of ccRCC. Functional experiments in vitro revealed that upregulation of APOC1 in UT33A cells promoted cell proliferation, invasion, and migration, while downregulation of APOC1 in 786-O cells had the opposite effect. Furthermore, epithelial mesenchymal transition (EMT) was activated in cells with upregulated APOC1 but inhibited in cells with down-regulated APOC1. Collectively, our data suggested that APOC1 was overexpressed in ccRCC cells and promoted the malignant biological behaviors and EMT of ccRCC cells.
Collapse
Affiliation(s)
- Hai-Jun Wang
- Department of Urology, Qilu Hospital,Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Urology Surgery, Anqiu Hospital of Chinese Traditional Medicine, Anqiu, China
| | - Yong-Xiang Ma
- Department of Urology Surgery, Anqiu Hospital of Chinese Traditional Medicine, Anqiu, China
| | - Ai-Hua Wang
- Department of Urology Surgery, Anqiu Hospital of Chinese Traditional Medicine, Anqiu, China
| | - Yuan-Shun Jiang
- Department of Urology Surgery, Anqiu Hospital of Chinese Traditional Medicine, Anqiu, China
| | - Xian-Zhou Jiang
- Department of Urology, Qilu Hospital,Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
30
|
Hall Z, Wilson CH, Burkhart DL, Ashmore T, Evan GI, Griffin JL. Myc linked to dysregulation of cholesterol transport and storage in nonsmall cell lung cancer. J Lipid Res 2020; 61:1390-1399. [PMID: 32753459 PMCID: PMC7604716 DOI: 10.1194/jlr.ra120000899] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nonsmall cell lung cancer (NSCLC) is a leading cause of cancer-related deaths. While mutations in Kras and overexpression of Myc are commonly found in patients, the role of altered lipid metabolism in lung cancer and its interplay with oncogenic Myc is poorly understood. Here we use a transgenic mouse model of Kras-driven lung adenocarcinoma with reversible activation of Myc combined with surface analysis lipid profiling of lung tumors and transcriptomics to study the effect of Myc activity on cholesterol homeostasis. Our findings reveal that the activation of Myc leads to the accumulation of cholesteryl esters (CEs) stored in lipid droplets. Subsequent Myc deactivation leads to further increases in CEs, in contrast to tumors in which Myc was never activated. Gene expression analysis linked cholesterol transport and storage pathways to Myc activity. Our results suggest that increased Myc activity is associated with increased cholesterol influx, reduced efflux, and accumulation of CE-rich lipid droplets in lung tumors. Targeting cholesterol homeostasis is proposed as a promising avenue to explore for novel treatments of lung cancer, with diagnostic and stratification potential in human NSCLC.
Collapse
Affiliation(s)
- Zoe Hall
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Catherine H Wilson
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Deborah L Burkhart
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Tom Ashmore
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Gerard I Evan
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Julian L Griffin
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| |
Collapse
|
31
|
ApoC1 promotes the metastasis of clear cell renal cell carcinoma via activation of STAT3. Oncogene 2020; 39:6203-6217. [PMID: 32826950 DOI: 10.1038/s41388-020-01428-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 08/05/2020] [Accepted: 08/10/2020] [Indexed: 12/19/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common renal cancer and frequently diagnosed at an advanced stage. It is prone to develop unpredictable metastases even with proper treatment. Antiangiogenic therapy is the most effective medical treatment for metastatic ccRCC. Thus, exploration of novel approaches to inhibit angiogenesis and metastasis may potentially lead to a better therapeutic option for ccRCC. Among all the types of cancer, renal cancer samples exhibited the maximum upregulation of ApoC1 as referred to in the Oncomine database. The expression of ApoC1 was increased accompanied by ccRCC progression. A high level of ApoC1 was closely related to poor survival time in ccRCC patients. Furthermore, ApoC1 was over-expressed in the highly invasive ccRCC cells as compared to that in the low-invasive ccRCC cells. Besides, ApoC1 promoted metastasis of ccRCC cells via EMT pathway, whereas depletion of ApoC1 alleviated these effects. ApoC1 as a novel pro-metastatic factor facilitates the activation of STAT3 and enhances the metastasis of ccRCC cells. Meanwhile, ApoC1 in the exosomes were transferred from the ccRCC cells to the vascular endothelial cells and promoted metastasis of the ccRCC cells via activating STAT3. Finally, the metastatic potential of the ccRCC cells driven by ApoC1 was suppressed by DPP-4 inhibition. Our study not only identifies a novel ApoC1-STAT3 pathway in ccRCC metastasis but also provides direction for the exploration of novel strategies to predict and treat metastatic ccRCC in the future.
Collapse
|
32
|
Cui Y, Miao C, Hou C, Wang Z, Liu B. Apolipoprotein C1 (APOC1): A Novel Diagnostic and Prognostic Biomarker for Clear Cell Renal Cell Carcinoma. Front Oncol 2020; 10:1436. [PMID: 32974161 PMCID: PMC7468425 DOI: 10.3389/fonc.2020.01436] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 07/07/2020] [Indexed: 12/24/2022] Open
Abstract
Background: Apolipoprotein C1 (APOC1) has been proved to play a critical role in gastric, breast, lung, and pancreatic cancer. However, the relationship between APOC1 and urinary tumors remains unclear. This study aimed to assess the diagnostic and prognostic value of APOC1 in urinary tumors. Methods: We performed a pan analysis of APOC1 mRNA expression in urinary cancer using the Gene Expression Profiling Interactive Analysis (GEPIA) database. To further investigate the prognostic value of APOC1 expression in urinary cancers, the Kaplan-Meier plotter database was used. Furthermore, we collected the tumor and adjacent normal samples of 32 ccRCC patients to perform qRT-PCR and western blotting assays. A total of 72 cases with ccRCC were analyzed using tissue microarrays (TMAs). Results: Our results based on Kaplan-Meier plotter database indicated that a high expression of APOC1 may lead to poor overall survival (OS, p = 0.0019) in patients with ccRCC. Furthermore, the cancer stages and tumor grade of ccRCC appeared to be strongly linked with APOC1 expression according to UALCAN database. Hence, we reached a preliminary conclusion that APOC1 may play a key role in the tumorigenesis and progression of ccRCC. Furthermore, the Kaplan-Meier survival curve analyses of 72 clinical patients indicated that high expression of APOC1 was associated with poor progression-free survival (PFS, p = 0.007) and OS (p = 0.022). In addition, univariate Cox regression analysis confirmed the significant relationship between APOC1 expression and survival (p = 0.038). The TMAs analysis in combination with the patients' clinicopathological features was also performed. The expression of APOC1 was found to be significantly correlated with the tumor size (p = 0.018) and histological grade (p = 0.016). Conclusions: In conclusion, the findings of our study suggest that APOC1 may serve as a novel diagnostic and prognostic biomarker for ccRCC. Further evidence on the mechanism of APOC1 promoting tumor progression may transform it to a new therapeutic target for the treatment of ccRCC.
Collapse
Affiliation(s)
- Yankang Cui
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chenkui Miao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Hou
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zengjun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bianjiang Liu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
33
|
Identification of Long Noncoding RNA APOC1P1 as an Oncogene in Clear Cell Renal Cell Carcinoma. DISEASE MARKERS 2019; 2019:2814058. [PMID: 31871500 PMCID: PMC6913315 DOI: 10.1155/2019/2814058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/07/2019] [Accepted: 10/24/2019] [Indexed: 12/24/2022]
Abstract
Renal cell carcinoma (RCC) is one of the most common genitourinary cancers worldwide. Previous evidence shows that long noncoding RNA (LncRNA) APOC1P1 plays an important role in cancer development. However, the role of LncRNA APOC1P1 in ccRCC remains to be explored. LncRNA APOC1P1 expression in 283 ccRCC tissues and 30 normal kidney tissues was detected by quantitative real-time PCR, and its prognostic association with ccRCC was assessed by the Kaplan-Meier method and Cox proportional hazard model. Cell proliferation, apoptosis, migration, and invasion were determined in RCC cells with downregulation of LncRNA APOC1P1 expression. LncRNA APOC1P1 expression was increased in ccRCC tissues compared with normal kidney tissues (P < 0.001). Its expression was higher in the Fuhrman grade III and IV group than in the Fuhrman grade I and II group (P < 0.05) and significantly upregulated in the advanced stage group (P < 0.05). Kaplan-Meier analyses revealed that elevated LncRNA APOC1P1 expression was significantly associated with poor overall survival (P < 0.05) but may not be an independent prognostic factor. Knockdown of LncRNA APOC1P1 inhibited cell proliferation, induced apoptosis, and arrested cells at the G1/S phase (P < 0.05). Silencing of LncRNA APOC1P1 also led to decreased cell migration and invasion (P < 0.05). LncRNA APOC1P1 acts as an oncogene, plays an important role in ccRCC development, and can be considered a prognostic biomarker and therapeutic target in ccRCC patients.
Collapse
|
34
|
Fuior EV, Gafencu AV. Apolipoprotein C1: Its Pleiotropic Effects in Lipid Metabolism and Beyond. Int J Mol Sci 2019; 20:ijms20235939. [PMID: 31779116 PMCID: PMC6928722 DOI: 10.3390/ijms20235939] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 12/20/2022] Open
Abstract
Apolipoprotein C1 (apoC1), the smallest of all apolipoproteins, participates in lipid transport and metabolism. In humans, APOC1 gene is in linkage disequilibrium with APOE gene on chromosome 19, a proximity that spurred its investigation. Apolipoprotein C1 associates with triglyceride-rich lipoproteins and HDL and exchanges between lipoprotein classes. These interactions occur via amphipathic helix motifs, as demonstrated by biophysical studies on the wild-type polypeptide and representative mutants. Apolipoprotein C1 acts on lipoprotein receptors by inhibiting binding mediated by apolipoprotein E, and modulating the activities of several enzymes. Thus, apoC1 downregulates lipoprotein lipase, hepatic lipase, phospholipase A2, cholesterylester transfer protein, and activates lecithin-cholesterol acyl transferase. By controlling the plasma levels of lipids, apoC1 relates directly to cardiovascular physiology, but its activity extends beyond, to inflammation and immunity, sepsis, diabetes, cancer, viral infectivity, and-not last-to cognition. Such correlations were established based on studies using transgenic mice, associated in the recent years with GWAS, transcriptomic and proteomic analyses. The presence of a duplicate gene, pseudogene APOC1P, stimulated evolutionary studies and more recently, the regulatory properties of the corresponding non-coding RNA are steadily emerging. Nonetheless, this prototypical apolipoprotein is still underexplored and deserves further research for understanding its physiology and exploiting its therapeutic potential.
Collapse
Affiliation(s)
- Elena V. Fuior
- Institute of Cellular Biology and Pathology “N. Simionescu”, 050568 Bucharest, Romania;
| | - Anca V. Gafencu
- Institute of Cellular Biology and Pathology “N. Simionescu”, 050568 Bucharest, Romania;
- Correspondence:
| |
Collapse
|
35
|
Ren L, Yi J, Li W, Zheng X, Liu J, Wang J, Du G. Apolipoproteins and cancer. Cancer Med 2019; 8:7032-7043. [PMID: 31573738 PMCID: PMC6853823 DOI: 10.1002/cam4.2587] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/11/2019] [Accepted: 09/13/2019] [Indexed: 12/19/2022] Open
Abstract
The role of apolipoproteins in cardiovascular disease has been well investigated, but their participation in cancer has only been explored in a few published studies which showed a close link with certain kinds of cancer. In this review, we focused on the function of different kinds of apolipoproteins in cancers, autophagy, oxidative stress, and drug resistance. The potential application of apolipoproteins as biomarkers for cancer diagnosis and prognosis was highlighted, together with an investigation of their potential as drug targets for cancer treatment. Many important roles of apolipoproteins and their mechanisms in cancers were reviewed in detail and future perspectives of apolipoprotein research were discussed.
Collapse
Affiliation(s)
- Liwen Ren
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jie Yi
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Beijing, People's Republic of China
| | - Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiangjin Zheng
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jinyi Liu
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
36
|
Development of a Reproducible Prognostic Gene Signature to Predict the Clinical Outcome in Patients with Diffuse Large B-Cell Lymphoma. Sci Rep 2019; 9:12198. [PMID: 31434961 PMCID: PMC6704056 DOI: 10.1038/s41598-019-48721-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 08/06/2019] [Indexed: 12/14/2022] Open
Abstract
Alongside various clinical prognostic factors for diffuse large B-cell lymphoma (DLBCL) such as the international prognostic index (IPI) components (ie, age, tumor stage, performance status, serum lactate dehydrogenase concentration, and number of extranodal sites), prognostic gene signatures have recently shown promising efficacy. However, previously developed signatures for DLBCL suffer from many major inadequacies such as lack of reproducibility in external datasets, high number of members (genes) in a signature, and inconsistent association with the survival time in various datasets. Accordingly, we sought to find a reproducible prognostic gene signature with a minimal number of genes. Seven datasets—namely GSE10856 (420 samples), GSE31312 (470 samples), GSE69051 (157 samples), GSE32918 (172 samples), GSE4475 (123 samples), GSE11318 (203 samples), and GSE34171 (91 samples)—were employed. The datasets were randomly categorized into training (1219 samples comprising GSE10856, GSE31312, GSE69051, and GSE32918) and validation (417 samples consisting of GSE4475, GSE11318, and GSE34171) groups. Through the univariate Cox proportional hazards analysis, common genes associated with the overall survival time with a P value less than 0.001 and a false discovery rate less than 5% were identified in 1219 patients included in the 4 training datasets. Thereafter, the common genes were entered into a multivariate Cox proportional hazards analysis encompassing the common genes and the international prognostic index (IPI) factors as covariates, and then only common genes with a significant level of difference (P < 0.01 and z-score >2 or <−2) were selected to reconstruct the prognostic signature. After the analyses, a 7-gene prognostic signature was developed, which efficiently predicted the survival time in the training dataset (Ps < 0.0001). Subsequently, this signature was tested in 3 validation datasets. Our signature was able to strongly predict clinical outcomes in the validation datasets (Ps < 0.0001). In the multivariate Cox analysis, our outcome predictor was independent of the routine IPI components in both training datasets (Ps < 0.0001). Furthermore, our outcome predictor was the most powerful independent prognostic variable (Ps < 0.0001). We developed a potential reproducible prognostic gene signature which was able to robustly discriminate low-risk patients with DLBCL from high-risk ones.
Collapse
|
37
|
Digiacomo L, Palchetti S, Giulimondi F, Pozzi D, Zenezini Chiozzi R, Capriotti AL, Laganà A, Caracciolo G. The biomolecular corona of gold nanoparticles in a controlled microfluidic environment. LAB ON A CHIP 2019; 19:2557-2567. [PMID: 31243412 DOI: 10.1039/c9lc00341j] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Nanoparticles (NPs) exposed to biological media are coated by proteins and other biomolecules forming a biomolecular corona (BC) on the particle surface. Recent studies have shown that shear stress as that created by laminar fluid flow generates more complex coronas with systematic changes in composition with respect to counterparts formed under static incubation. However, in most studies reported so far, dynamic environments have been produced by peristaltic pumps and comparing experimental results appears challenging. On the other side, generating shear stress by microfluidic devices could help to remove user variability and ensure better reproducibility of experimental data. This study was therefore aimed at exploring formation of NP-BC in a microfluidic environment. To this end, 100 nm gold nanoparticles and human plasma (HP) were used as models for nano-formulation and biological medium. We injected gold nanoparticles and HP in each of the islets of a remote-controlled microfluidic cartridge. Static incubation was used as a reference. BC-decorated NPs were thoroughly characterized by dynamic light scattering (DLS), micro-electrophoresis (ME), sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE) and nano-liquid chromatography tandem mass spectrometry (nano-LC MS/MS). By varying the incubation time from 30 s to 2.5 min we demonstrate that BC is already determined by the earliest exposure time point and does not appreciably evolve in time. DLS and ME results demonstrate that the BC formed in a microfluidic chip is thicker and more negatively charged than its counterpart formed under static incubation. SDS-PAGE and nano-LC MS/MS revealed that the incubation procedure had a major effect on BC composition. As an example, immunoglobulins are the most abundant plasma proteins of the BC generated in a microfluidic environment (relative protein abundance ∼30%), while tissue leakage proteins (relative protein abundance ∼26%) are the most enriched proteins when the BC is formed upon static incubation. Potential implications in emerging biomedical research arenas are discussed.
Collapse
Affiliation(s)
- Luca Digiacomo
- Department of Molecular Medicine, "Sapienza" University of Rome, V.le Regina Elena 291, 00161 Rome, Italy.
| | - Sara Palchetti
- Department of Molecular Medicine, "Sapienza" University of Rome, V.le Regina Elena 291, 00161 Rome, Italy.
| | - Francesca Giulimondi
- Department of Molecular Medicine, "Sapienza" University of Rome, V.le Regina Elena 291, 00161 Rome, Italy.
| | - Daniela Pozzi
- Department of Molecular Medicine, "Sapienza" University of Rome, V.le Regina Elena 291, 00161 Rome, Italy.
| | - Riccardo Zenezini Chiozzi
- Biomolecular Mass Spectrometry and Proteomics, Bijoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Anna Laura Capriotti
- Department of Chemistry, "Sapienza" University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Aldo Laganà
- Department of Chemistry, "Sapienza" University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Giulio Caracciolo
- Department of Molecular Medicine, "Sapienza" University of Rome, V.le Regina Elena 291, 00161 Rome, Italy.
| |
Collapse
|
38
|
Yi J, Ren L, Wu J, Li W, Zheng X, Du G, Wang J. Apolipoprotein C1 (APOC1) as a novel diagnostic and prognostic biomarker for gastric cancer. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:380. [PMID: 31555694 DOI: 10.21037/atm.2019.07.59] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Gastric cancer (GC) is a common malignant cancer in the worldwide, especially in China. Patients with GC have poor prognosis, which is mainly due to lack of early diagnosis. Up to now, there is no good biomarker to detect GC at early stage. Apolipoprotein C1 (APOC1), a component of both triglyceride-rich lipoproteins and high-density lipoproteins, is reported to be involved in numerous biological processes. Methods Expression of APOC1 mRNA was analyzed by in silicon assay. Concentration of APOC1 in serum was measured by ELISA assay. Expression of APOC1 protein in GC tissue array was checked by immunohistochemistry. Results It was firstly found that concentration of APOC1 in serum was significantly higher in GC than that in control. Expression of APOC1 protein was also higher in GC than that in adjacent issues of GC and normal tissues using tissues array by immunohistochemistry. In addition, the expression of APOC1 is significantly associated with clinical stage (P=0.011), tumor classification (P=0.010), as well as with the lymph node metastasis (P=0.048). Area under the curve (AUC) of receiver operating characteristic (ROC) curve of APOC1 was 0.803. Furthermore, elevated APOC1 expression in GC was found to be correlated with decreased overall survival (P=0.00214). Conclusions All these results suggested that APOC1 might be a potential serum biomarker to diagnose GC and a potential prognostic marker for GC.
Collapse
Affiliation(s)
- Jie Yi
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Beijing 100000, China
| | - Liwen Ren
- Beijing Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Jie Wu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Beijing 100000, China
| | - Wan Li
- Beijing Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Xiangjin Zheng
- Beijing Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Guanhua Du
- Beijing Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Jinhua Wang
- Beijing Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
39
|
Identification of important invasion and proliferation related genes in adrenocortical carcinoma. Med Oncol 2019; 36:73. [DOI: 10.1007/s12032-019-1296-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/01/2019] [Indexed: 12/17/2022]
|
40
|
Kurozumi S, Joseph C, Sonbul S, Alsaeed S, Kariri Y, Aljohani A, Raafat S, Alsaleem M, Ogden A, Johnston SJ, Aleskandarany MA, Fujii T, Shirabe K, Caldas C, Ashankyty I, Dalton L, Ellis IO, Desmedt C, Green AR, Mongan NP, Rakha EA. A key genomic subtype associated with lymphovascular invasion in invasive breast cancer. Br J Cancer 2019; 120:1129-1136. [PMID: 31114020 PMCID: PMC6738092 DOI: 10.1038/s41416-019-0486-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/24/2019] [Accepted: 05/02/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Lymphovascular invasion (LVI) is associated with the development of metastasis in invasive breast cancer (BC). However, the complex molecular mechanisms of LVI, which overlap with other oncogenic pathways, remain unclear. This study, using available large transcriptomic datasets, aims to identify genes associated with LVI in early-stage BC patients. METHODS Gene expression data from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) cohort (n = 1565) was used as a discovery dataset, and The Cancer Genome Atlas (TCGA; n = 854) cohort was used as a validation dataset. Key genes were identified on the basis of differential mRNA expression with respect to LVI status as characterised by histological review. The relationships among LVI-associated genomic subtype, clinicopathological features and patient outcomes were explored. RESULTS A 99-gene set was identified that demonstrated significantly different expression between LVI-positive and LVI-negative cases. Clustering analysis with this gene set further divided cases into two molecular subtypes (subtypes 1 and 2), which were significantly associated with pathology-determined LVI status in both cohorts. The 10-year overall survival of subtype 2 was significantly worse than that of subtype 1. CONCLUSION This study demonstrates that LVI in BC is associated with a specific transcriptomic profile with potential prognostic value.
Collapse
Affiliation(s)
- Sasagu Kurozumi
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Chitra Joseph
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Sultan Sonbul
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Sami Alsaeed
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Yousif Kariri
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Abrar Aljohani
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Sara Raafat
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Mansour Alsaleem
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Angela Ogden
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Simon J Johnston
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Mohammed A Aleskandarany
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
- Faculty of Medicine, Menoufyia University, Shebin al Kawm, Egypt
| | - Takaaki Fujii
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Ken Shirabe
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute and Department of Oncology, University of Cambridge, Cambridge, UK
| | - Ibraheem Ashankyty
- Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Leslie Dalton
- Department of Histopathology, St. David's South Austin Medical Center, Austin, TX, USA
| | - Ian O Ellis
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Christine Desmedt
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Andrew R Green
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Nigel P Mongan
- Biology and Translational Research, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Emad A Rakha
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK.
- Faculty of Medicine, Menoufyia University, Shebin al Kawm, Egypt.
| |
Collapse
|
41
|
Ren H, Chen Z, Yang L, Xiong W, Yang H, Xu K, Zhai E, Ding L, He Y, Song X. Apolipoprotein C1 (APOC1) promotes tumor progression via MAPK signaling pathways in colorectal cancer. Cancer Manag Res 2019; 11:4917-4930. [PMID: 31213910 PMCID: PMC6549782 DOI: 10.2147/cmar.s192529] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 02/28/2019] [Indexed: 12/17/2022] Open
Abstract
Aim: Identifying high-efficiency prognostic markers for colorectal cancer (CRC) is necessary for clinical practice. Increasing evidence demonstrates that apolipoprotein C1 (APOC1) promotes carcinogenesis in some human cancers. However, the expression status and biological function of APOC1 in CRC remain unclear. Materials and methods: We detected the association between APOC1 expression and clinicopathological features in 140 CRC patients by immunohistochemistry. Small interfering RNA (siRNA) technology was used to downregulate APOC1 expression in CRC cells. Cell proliferation was estimated by CCK8 and clonogenic assays. The cell cycle and apoptosis were analyzed by flow cytometry. Cell migration and invasion were examined by a transwell assay. Gene set enrichment analysis (GSEA) and protein expression of signaling pathways were used to suggest the possible APOC1-associated pathways in CRC. Results: APOC1 was highly expressed in CRC tissues. High immunohistochemistry (IHC) expression of APOC1 was correlated with the N stage, M stage and TNM stage. High IHC APOC1 expression in CRC tissues was associated with poor prognosis. Univariate and multivariate Cox regression analyses showed that APOC1 was an independent risk factor for OS. Cell proliferation of CRC cell lines was inhibited by the downregulation of APOC1. Moreover, si-APOC1 transfection induced cell cycle arrest but low apoptosis increases by regulating the expression of related proteins. Cell migration and invasion were also inhibited by the downregulation of APOC1. The Cancer Genome Atlas Colorectal Adenocarcinoma (TCGA COAD-READ) dataset analyzed by GSEA showed that APOC1 might be involved in the mitogen-activated protein kinase (MAPK) signaling pathway, which was further preliminarily confirmed by Western blotting. Conclusion: APOC1 was overexpressed in CRC tissues, and a high level of APOC1 contributed to a poor prognosis. APOC1 expression influenced the cell proliferation ability and motility capacity of CRC via the MAPK pathway. APOC1 could act as a novel prognostic biomarker in CRC.
Collapse
Affiliation(s)
- Hui Ren
- Department of Gastrointestinal Surgery Centre, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.,Center for Digestive Disease, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Zhihui Chen
- Department of Gastrointestinal Surgery Centre, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Liang Yang
- Department of Gastrointestinal Surgery Centre, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Weixin Xiong
- Department of Gastrointestinal Surgery Centre, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Hong Yang
- Department of Operating Room, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Kaiwu Xu
- Department of Gastrointestinal Surgery Centre, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Ertao Zhai
- Department of Gastrointestinal Surgery Centre, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Li Ding
- Department of Pathology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yulong He
- Department of Gastrointestinal Surgery Centre, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.,Center for Digestive Disease, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Xingming Song
- Department of Gastrointestinal Surgery Centre, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
42
|
Maeda O, Matsuoka A, Furukawa K, Miyahara R, Hirooka Y, Ando Y. Alterations in gene expression and DNA methylation profiles in gastric cancer cells obtained from ascitic fluids collected before and after chemotherapy. Mol Clin Oncol 2019; 11:91-98. [PMID: 31289684 DOI: 10.3892/mco.2019.1858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 04/30/2019] [Indexed: 01/01/2023] Open
Abstract
Resistance to anticancer drugs is a critical issue in cancer treatment. Alterations in gene expression and DNA methylation profiles that accompany the acquisition of drug resistance are associated with resistance mechanisms. To analyze chemotherapy-associated alterations in gene expression and DNA methylation in gastric cancer cells obtained from ascites, ascitic fluids were collected from a patient with gastric cancer before chemotherapy with capecitabine and oxaliplatin (CapeOX), and after the disease had progressed. The fluids were cultured for 10 days, passaged into new flasks, and cultured for an additional 2 weeks. Normal cells, including white blood cells and mesothelial cells, were removed. The expression and DNA methylation profiles of 18,185 genes were analyzed using microarray, and compared between cells in ascitic fluids collected before and after the chemotherapy with CapeOX. In addition, fluorouracil- and oxaliplatin-resistant AGS cells were established and analyzed. Pathways having genes with expression profiles altered by CapeOX included those associated with 'signaling by G-protein-coupled receptor' and the 'immune system'. Genes that were commonly expressed at higher levels in CapeOX-resistant ascitic cells, fluorouracil-resistant AGS cells. and oxaliplatin-resistant AGS cells compared with those in untreated cells included telomerase reverse transcriptase (TERT), apolipoprotein C1 (APOC1) and serine/threonine/tyrosine kinase 1 (STYK1), whereas genes commonly expressed at lower levels in the three drug-resistant cell types compared with the untreated cells included defensin β4A (DEFB4A). A comparatively large number of genes exhibited altered methylation levels in drug-resistant AGS cells compared with the CapeOX-resistant cells. In addition, among the genes expressed at higher levels in decitabine-treated AGS cells, the majority were expressed at higher levels in fluorouracil-resistant AGS cells, and exhibited lower methylation levels. Taken together, the present study has demonstrated that comparing the expression profiles of gastric cancer cells obtained from ascitic fluids before and after chemotherapy with the expression profiles of drug-resistant cultured cells is a useful method for analyzing the molecular mechanisms underlying chemotherapy resistance.
Collapse
Affiliation(s)
- Osamu Maeda
- Department of Clinical Oncology and Chemotherapy, Nagoya University Hospital, Nagoya, Aichi 466-8560, Japan
| | - Ayumu Matsuoka
- Department of Clinical Oncology and Chemotherapy, Nagoya University Hospital, Nagoya, Aichi 466-8560, Japan
| | - Kazuhiro Furukawa
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Ryoji Miyahara
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Yoshiki Hirooka
- Department of Endoscopy, Nagoya University Hospital, Nagoya, Aichi 466-8560, Japan
| | - Yuichi Ando
- Department of Clinical Oncology and Chemotherapy, Nagoya University Hospital, Nagoya, Aichi 466-8560, Japan
| |
Collapse
|
43
|
Liu J, Nie S, Gao M, Jiang Y, Wan Y, Ma X, Zhou S, Cheng W. Identification of EPHX2 and RMI2 as two novel key genes in cervical squamous cell carcinoma by an integrated bioinformatic analysis. J Cell Physiol 2019; 234:21260-21273. [PMID: 31041817 DOI: 10.1002/jcp.28731] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/05/2019] [Accepted: 04/11/2019] [Indexed: 12/27/2022]
Abstract
Cervical cancer is the fourth most common malignancy in women worldwide and cervical squamous cell carcinoma (CESC) is the most common histological type of cervical cancer. The dysregulation of genes plays a significant role in cancer. In the present study, we screened out differentially expressed genes (DEGs) of CESC in the GSE63514 data set from the Gene Expression Omnibus database. An integrated bioinformatics analysis was used to select hub genes, as well as to investigate their related prognostic signature, functional annotation, methylation mechanism, and candidate molecular drugs. As a result, a total of 1907 DEGs were identified (944 were upregulated and 963 were downregulated). In the protein-protein interaction network, three hub modules and 30 hub genes were identified. And two hub modules and 116 hub genes were screened out from four CESC-related modules by the weighted gene coexpression network analysis. The gene ontology term enrichment analysis and Kyoto encyclopedia of genes and genomes pathway analysis were performed to better understand functions and pathways. Genes with a significant prognostic value were found by prognostic signature analysis. And there were five genes (EPHX2, CHAF1B, KIAA1524, CDC45, and RMI2) identified as significant CESC-associated genes after expression validation and survival analysis. Among them, EPHX2 and RMI2 were noted as two novel key genes for the CESC-associated methylation and expression. In addition, four candidate small molecule drugs for CESC (camptothecin, resveratrol, vorinostat, and trichostatin A) were defined. Further studies are required to explore these significant CESC-associated genes for their potentiality in diagnosis, prognosis, and targeted therapy.
Collapse
Affiliation(s)
- Jinhui Liu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Sipei Nie
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mei Gao
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yi Jiang
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yicong Wan
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoling Ma
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shulin Zhou
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wenjun Cheng
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
44
|
Su W, Sun L, Yang S, Zhao H, Zeng T, Wu W, Wang D. Apolipoprotein C1 promotes prostate cancer cell proliferation in vitro. J Biochem Mol Toxicol 2018; 32:e22158. [PMID: 29719090 PMCID: PMC6099310 DOI: 10.1002/jbt.22158] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/06/2018] [Indexed: 01/07/2023]
Abstract
Here, we aimed to investigate the carcinogenic effects of apolipoprotein C1 (APOC1) in prostate cancer (PCa). APOC1 expression was evaluated in PCa and normal prostate specimens, and lentivirus-mediated RNA interference was used to knockdown APOC1 in DU145 cells. The effects of APOC1 silencing on cell proliferation, cell cycle arrest, and apoptosis were assessed. APOC1 expression was much higher in PCa tissues than in normal tissues. Moreover, APOC1 silencing inhibited cell proliferation and colony formation, arrested cell cycle progression, and enhanced apoptosis in DU145 cells. Additionally, APOC1 silencing decreased survivin, phospho-Rb, and p21 levels and increased cleaved caspase-3 expression. These data supported the procarcinogenic effects of APOC1 in the pathogenesis of PCa and suggested that targeting APOC1 may have applications in the treatment of PCa.
Collapse
Affiliation(s)
- Wei‐peng Su
- Department of Urology, Fuzhou General HospitalFujian Medical UniversityFuzhouFujian 350025People's Republic of China
| | - Li‐na Sun
- Department of Presbyatrics, Fuzhou General HospitalFujian Medical UniversityFuzhouFujian 350025People's Republic of China
| | - Shun‐liang Yang
- Department of Urology, Fuzhou General HospitalFujian Medical UniversityFuzhouFujian 350025People's Republic of China
| | - Hu Zhao
- Department of Urology, Fuzhou General HospitalFujian Medical UniversityFuzhouFujian 350025People's Republic of China
- Department of Urology, Fuzhou Dongfang HospitalXiamen UniversityXiamenFujian 361005People's Republic of China
| | - Teng‐yue Zeng
- Department of Urology, Fuzhou General HospitalFujian Medical UniversityFuzhouFujian 350025People's Republic of China
| | - Wei‐zhen Wu
- Department of Urology, Fuzhou General HospitalFujian Medical UniversityFuzhouFujian 350025People's Republic of China
| | - Dong Wang
- Department of Urology, Fuzhou General HospitalFujian Medical UniversityFuzhouFujian 350025People's Republic of China
| |
Collapse
|
45
|
Zou C, Han C, Zhao M, Yu J, Bai L, Yao Y, Gao S, Cao H, Zheng Z. Change of ranibizumab-induced human vitreous protein profile in patients with proliferative diabetic retinopathy based on proteomics analysis. Clin Proteomics 2018. [PMID: 29541006 PMCID: PMC5844103 DOI: 10.1186/s12014-018-9187-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Preoperative treatment of anti-vascular endothelial growth factor (VEGF) agents is extensively used in proliferative diabetic retinopathy (PDR), but the molecular mechanism is not fully understood. The objective of this research is to observe change of protein profile induced by ranibizumab (an anti-VEGF agent) in vitreous humor from PDR patients and reveal the effects of anti-VEGF treatment on PDR. Methods A proteomic method was used to identify differentially expressed proteins in vitreous humor. Untreated PDR patients were defined as PDR group, while those who treated with intravitreal injection of ranibizumab (IVR) were defined as IVR. Gene Ontology (GO) annotation and REACTOME pathways were obtained from DAVID Bioinformatics Resources. Intravitreal level of apolipoprotein C-I (APOC1), serpin peptidase inhibitor clade A member 5 (SERPINA5), tissue inhibitor of metalloproteinases (TIMP2), and keratin 1 (KRT1) were determined by enzyme-linked immuno sorbent assay (ELISA). Results 339 differentially expressed proteins were identified in response to IVR. The most notable GO annotation describes the altered proteins was “innate immune response”. The most notable REACTOME pathway was “platelet degranulation”. ELISA result showed increased level of APOC1, SERPINA5, KRT1 and a decreased level of TIMP2 in PDR group compared with IVR. Conclusions In addition to decreasing VEGF level, ranibizumab is associated with change of human vitreous protein profile in patients with PDR, in which the differential proteins are involved in immune response, platelet degranulation, complement activation etc., suggesting that the effects of VEGF are involved in these signaling pathways. Electronic supplementary material The online version of this article (10.1186/s12014-018-9187-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chen Zou
- 1Department of Ophthalmology, Shanghai General Hospital, Shanghai Key Laboratory of Ocular Fundus Disease, Shanghai Engineering Center for Visual Science and Photomedicine, No. 100 Haining Road, Shanghai, 200080 China
| | - Changjing Han
- 2Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004 Shaanxi Province China
| | - Minjie Zhao
- 3Department of Ophthalmology, Yixing People's Hospital, Jiangsu University, No.75 Tongzhenguan Road, Yixing, 214200 Jiangsu China
| | - Jingjing Yu
- Department of Ophthalmology, Changshu the 2nd People's Hospital, Changshu, 215500 Jiangsu China
| | - Lin Bai
- 1Department of Ophthalmology, Shanghai General Hospital, Shanghai Key Laboratory of Ocular Fundus Disease, Shanghai Engineering Center for Visual Science and Photomedicine, No. 100 Haining Road, Shanghai, 200080 China
| | - Yuan Yao
- 5Public Health, Stanford University, Stanford, CA 94305 USA
| | - Shuaixin Gao
- 6National Center for Protein Science Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 333 Haike Road, Shanghai, 201210 China
| | - Hui Cao
- 1Department of Ophthalmology, Shanghai General Hospital, Shanghai Key Laboratory of Ocular Fundus Disease, Shanghai Engineering Center for Visual Science and Photomedicine, No. 100 Haining Road, Shanghai, 200080 China
| | - Zhi Zheng
- 1Department of Ophthalmology, Shanghai General Hospital, Shanghai Key Laboratory of Ocular Fundus Disease, Shanghai Engineering Center for Visual Science and Photomedicine, No. 100 Haining Road, Shanghai, 200080 China
| |
Collapse
|
46
|
Cheng C, Chang C, Patria YN, Chang R, Liu Y, Li F, Shih H, Lin C. Sex hormone-binding globulin (SHBG) is a potential early diagnostic biomarker for gastric cancer. Cancer Med 2018; 7:64-74. [PMID: 29148252 PMCID: PMC5773940 DOI: 10.1002/cam4.1254] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/15/2017] [Accepted: 10/13/2017] [Indexed: 12/11/2022] Open
Abstract
The use of blood plasma biomarkers in gastric cancer (GC) management is limited due to a lack of reliable biomarkers. An LC-MS/MS assay and a bioinformatic analysis were performed to identify blood plasma biomarkers in a GC discovery cohort. The data obtained were verified and validated by western blotting and an ELISA in an independent study cohort. A label-free quantification analysis of the MS data using PEAKS7 software found that four plasma proteins of apolipoprotein C-1, gelsolin, sex hormone-binding globulin (SHBG), and complement component C4-A were significantly overexpressed in GC patients. A western blot assay of these plasma proteins showed that only SHBG was consistently overexpressed in the patient group. ELISA measurement of SHBG blood plasma levels confirmed that the patient group had significantly higher SHBG levels than the control group. SHBG levels in the patient group remained significantly higher after being stratified by gender, age, and disease stage. These findings show that LC-MS/MS is powerful and highly sensitive for plasma biomarker discovery, and SHBG could be a potential plasma biomarker for GC management.
Collapse
Affiliation(s)
- Chao‐Wen Cheng
- Graduate Institute of Clinical MedicineCollege of MedicineTaipei Medical UniversityTaipei11031Taiwan
| | - Che‐Chang Chang
- Graduate Institute of Translational MedicineCollege of Medical Science and TechnologyTaipei Medical UniversityTaipei11031Taiwan
- Ph.D Program in Biotechnology Research and DevelopmentCollege of PharmacyTaipei Medical UniversityTaipei11031Taiwan
- Traditional Herbal Medicine Research Center of Taipei Medical University HospitalTaipei11031Taiwan
| | - Yudha Nur Patria
- Graduate Institute of Clinical MedicineCollege of MedicineTaipei Medical UniversityTaipei11031Taiwan
- Department of PediatricsFaculty of MedicineUniversitas Gadjah Mada/Sardjito HospitalYogyakarta55281Indonesia
| | - Ruei‐Ting Chang
- Graduate Institute of Translational MedicineCollege of Medical Science and TechnologyTaipei Medical UniversityTaipei11031Taiwan
| | - Yun‐Ru Liu
- Joint BiobankOffice of Human ResearchTaipei Medical UniversityTaipei11031Taiwan
| | - Fu‐An Li
- Institute of Biomedical SciencesAcademia SinicaTaipei11529Taiwan
| | - Hsiu‐Ming Shih
- Graduate Institute of Translational MedicineCollege of Medical Science and TechnologyTaipei Medical UniversityTaipei11031Taiwan
- Institute of Biomedical SciencesAcademia SinicaTaipei11529Taiwan
| | - Ching‐Yu Lin
- School of Medical Laboratory Science and BiotechnologyCollege of Medical Science and TechnologyTaipei Medical UniversityTaipei11031Taiwan
| |
Collapse
|
47
|
Guo F, Zhao W, Yang L, Yang Y, Wang S, Wang Y, Li Z, Wang J. Truncated apolipoprotein C-I induces apoptosis in neuroblastoma by activating caspases in the extrinsic and intrinsic pathways. Oncol Rep 2017; 38:1797-1805. [DOI: 10.3892/or.2017.5819] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/03/2017] [Indexed: 11/06/2022] Open
|
48
|
Li J, Sun L, Xu F, Qi H, Shen C, Jiao W, Xiao J, Li Q, Xu B, Shen A. Screening and Identification of APOC1 as a Novel Potential Biomarker for Differentiate of Mycoplasma pneumoniae in Children. Front Microbiol 2016; 7:1961. [PMID: 28018301 PMCID: PMC5156883 DOI: 10.3389/fmicb.2016.01961] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/23/2016] [Indexed: 11/13/2022] Open
Abstract
Background: Although Mycoplasma pneumoniae (MP) is a common cause of community-acquired pneumonia (CAP) in children, the currently used diagnostic methods are not optimal. Proteomics is increasingly being used to study the biomarkers of infectious diseases. Methods: Label-free quantitative proteomics and liquid chromatography-mass/mass spectrometry were used to analyze the fold change of protein expression in plasma of children with MP pneumonia (MPP), infectious disease control (IDC), and healthy control (HC) groups. Selected proteins that can distinguish MPP from HC and IDC were further validated by enzyme-linked immunosorbent assay (ELISA). Results: After multivariate analyses, 27 potential plasma biomarkers were identified to be expressed differently among child MPP, HC, and IDC groups. Among these proteins, SERPINA3, APOC1, ANXA6, KNTC1, and CFLAR were selected for ELISA verification. SERPINA3, APOC1, and CFLAR levels were significantly different among the three groups and the ratios were consistent with the trends of proteomics results. A comparison of MPP patients and HC showed APOC1 had the largest area under the curve (AUC) of 0.853, with 77.6% sensitivity and 81.1% specificity. When APOC1 levels were compared between MPP and IDC patients, it also showed a relatively high AUC of 0.882, with 77.6% sensitivity and 85.3% specificity. Conclusion: APOC1 is a potential biomarker for the rapid and noninvasive diagnosis of MPP in children. The present finding may offer new insights into the pathogenesis and biomarker selection of MPP in children.
Collapse
Affiliation(s)
- Jieqiong Li
- MOE Key Laboratory of Major Diseases in Children, National Key Discipline of Pediatrics (Capital Medical University), National Clinical Research Center for Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University Beijing, China
| | - Lin Sun
- MOE Key Laboratory of Major Diseases in Children, National Key Discipline of Pediatrics (Capital Medical University), National Clinical Research Center for Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University Beijing, China
| | - Fang Xu
- MOE Key Laboratory of Major Diseases in Children, National Key Discipline of Pediatrics (Capital Medical University), National Clinical Research Center for Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University Beijing, China
| | - Hui Qi
- MOE Key Laboratory of Major Diseases in Children, National Key Discipline of Pediatrics (Capital Medical University), National Clinical Research Center for Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University Beijing, China
| | - Chen Shen
- MOE Key Laboratory of Major Diseases in Children, National Key Discipline of Pediatrics (Capital Medical University), National Clinical Research Center for Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University Beijing, China
| | - Weiwei Jiao
- MOE Key Laboratory of Major Diseases in Children, National Key Discipline of Pediatrics (Capital Medical University), National Clinical Research Center for Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University Beijing, China
| | - Jing Xiao
- MOE Key Laboratory of Major Diseases in Children, National Key Discipline of Pediatrics (Capital Medical University), National Clinical Research Center for Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University Beijing, China
| | - Qinjing Li
- MOE Key Laboratory of Major Diseases in Children, National Key Discipline of Pediatrics (Capital Medical University), National Clinical Research Center for Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University Beijing, China
| | - Baoping Xu
- MOE Key Laboratory of Major Diseases in Children, National Key Discipline of Pediatrics (Capital Medical University), National Clinical Research Center for Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University Beijing, China
| | - Adong Shen
- MOE Key Laboratory of Major Diseases in Children, National Key Discipline of Pediatrics (Capital Medical University), National Clinical Research Center for Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University Beijing, China
| |
Collapse
|
49
|
Shi J, Yang H, Duan X, Li L, Sun L, Li Q, Zhang J. Apolipoproteins as Differentiating and Predictive Markers for Assessing Clinical Outcomes in Patients with Small Cell Lung Cancer. Yonsei Med J 2016; 57:549-56. [PMID: 26996551 PMCID: PMC4800341 DOI: 10.3349/ymj.2016.57.3.549] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/11/2015] [Accepted: 04/09/2015] [Indexed: 02/06/2023] Open
Abstract
PURPOSE The present study aimed to investigate the value of apolipoproteins, including ApoA-1, ApoC-III, and ApoE, in patients with small cell lung cancer (SCLC) as potential biomarkers for diagnosis, prognosis, and cancer progression. MATERIALS AND METHODS Lung samples were collected from 89 patients with SCLC. Nineteen lung samples from non-small cell lung cancer (NSCLC) patients and 12 normal lung tissues were used as controls. Expression profiles of ApoA-1, ApoC-III, and ApoE in different samples were examined using immunohistochemical methods, and the expression levels were correlated with cancer types, treatment, and outcomes using chi-square and Mann-Whitney tests. RESULTS Expression of ApoA-1 and ApoC-III in SCLC was significantly different, compared with that in NSCLC and normal lung tissues, and was correlated with recurrence of SCLC. Patients undergoing neoadjuvant chemotherapy before surgery showed significantly reduced expression of ApoA-1 and increased expression of ApoC-III and ApoE. Nevertheless, the expression levels of ApoA-1, ApoC-III, and ApoE were not correlated with SCLC staging. CONCLUSION ApoA-1 and ApoC-III may be used as differentiating and predictive markers for SCLC. ApoA-1, ApoC-III, and ApoE may be used to monitor the efficacy of chemotherapy.
Collapse
Affiliation(s)
- Jian Shi
- Department of Medical Oncology, Forth Hospital of Hebei Medical University, Tumor Hospital of Hebei Province, Shijiazhuang, Hebei, China.
| | - Huichai Yang
- Department of Pathology, Forth Hospital of Hebei Medical University, Tumor Hospital of Hebei Province, Shijiazhuang, Hebei, China
| | - Xiaoyang Duan
- Department of Medical Oncology, Forth Hospital of Hebei Medical University, Tumor Hospital of Hebei Province, Shijiazhuang, Hebei, China
| | - Lihua Li
- Department of Medical Oncology, Forth Hospital of Hebei Medical University, Tumor Hospital of Hebei Province, Shijiazhuang, Hebei, China
| | - Lulu Sun
- Department of Medical Oncology, Forth Hospital of Hebei Medical University, Tumor Hospital of Hebei Province, Shijiazhuang, Hebei, China
| | - Qian Li
- Department of Medical Oncology, Forth Hospital of Hebei Medical University, Tumor Hospital of Hebei Province, Shijiazhuang, Hebei, China
| | - Junjun Zhang
- Department of Medical Oncology, Forth Hospital of Hebei Medical University, Tumor Hospital of Hebei Province, Shijiazhuang, Hebei, China
| |
Collapse
|
50
|
Zhang K, Li C, Liu Y, Li L, Meng X, Feng D, Ma X. Evaluation of astrocytoma cell proliferation using diffusion-weighted imaging: correlation with expression of proliferating cell nuclear antigen. Transl Neurosci 2015; 6:265-270. [PMID: 28123812 PMCID: PMC4936638 DOI: 10.1515/tnsci-2015-0029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/28/2015] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study was to analyze if there is a significant correlation between the results of diffusion-weighted imaging (DWI) and the expression of proliferating cell nuclear antigen (PCNA) in astrocytomas. The DWI scans of 19 different-grade astrocytomas were obtained on a 3 T magnetic resonance scanner. The average regional apparent diffusion coefficients (ADC) were measured. The positive expression of PCNA was determined immunohistochemically by using streptavidin-peroxidase complex staining, and was quantified by calculating its calibrated opacity density (COD) using an image analysis system. The average regional ADC and PCNA COD of low grade and high grade astrocytomas were compared. Correlations between regional ADC and PCNA COD were analyzed. The average regional ADC of high grade astrocytomas was significantly (t = 10.169, P = 0.000) less (0.687 ± 0.225 × 10−3 mm2/s) than that of low grade astrocytomas (1.572 ± 0.333 × 10−3 mm2/s). The PCNA COD (0.343 ± 0.052) of high grade astrocytomas was significantly (t=−7.858, P=0.000) greater than that (0.194 ± 0.012) of low grade astrocytomas. There were strong negative correlations between regional ADC and PCNA COD (r = −0.801, P = 0.000). The results demonstrated that DWI is helpful in evaluating cell proliferation and preoperatively grading astrocytomas by measuring regional ADC.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Radiology, Qilu Hospital of Shandong University, Jinan 250012, P. R. China
| | - Chuanfu Li
- Department of Radiology, Qilu Hospital of Shandong University, Jinan 250012, P. R. China
| | - Ying Liu
- MRI Department, Anhui Provincial Hospital, Jinan 250012, P. R. China
| | - Li Li
- Department of Pathology, Qilu Hospital of Shandong University, Jinan 250012, P. R. China
| | - Xiangshui Meng
- Department of Radiology, Qilu Hospital of Shandong University, Jinan 250012, P. R. China
| | - Dechao Feng
- Department of Radiology, Qilu Hospital of Shandong University, Jinan 250012, P. R. China
| | - Xiangxing Ma
- Department of Radiology, Qilu Hospital of Shandong University, Jinan 250012, P. R. China
| |
Collapse
|