1
|
Taheri M, Shirvani-Farsani Z, Harsij A, Fathi M, Khalilian S, Ghafouri-Fard S, Baniahmad A. A review on the role of KCNQ1OT1 lncRNA in human disorders. Pathol Res Pract 2024; 255:155188. [PMID: 38330620 DOI: 10.1016/j.prp.2024.155188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
KCNQ1OT1 is an lncRNA located within KCNQ1 gene on chromosome 11p15.5. This lncRNAs participates in the pathogenesis of a diversity of cancers as well as non-cancerous conditions. In most types of cancers, KCNQ1OT1 is regarded as an oncogene. In a wide array of cancers, high level of KCNQ1OT1 is associated with lower overall survival time. This lncRNA has been found to adsorb a variety of miRNAs, namely miR-15a, miR-211-5p, hsa-miR-107, miR-145, miR-34a, miR-204-5p, miR-129-5p, miR-372-3p, miR-491-5p, miR-153, miR-185-5p, miR-124-3p, miR-211-5p, miR-149, miR-148a-3p, miR-140-5p, miR-125b-5p, miR-9, miR-329-3p, miR-760, miR-296-5p, miR-3666 and miR-129-5p, thus regulating the downstream targets of these miRNAs. In this manuscript, our attention is on this lncRNA and its biomolecular roles in human cancers and other disorders. KCNQ1OT1 plays significant roles in the tumorigenesis and may function as a prospective target for cancer therapy.
Collapse
Affiliation(s)
- Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Zeinab Shirvani-Farsani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Atefeh Harsij
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohadeseh Fathi
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sheyda Khalilian
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| |
Collapse
|
2
|
Fu J, Yu L, Yan H, Tang S, Wang Z, Dai T, Chen H, Zhang S, Hu H, Liu T, Tang S, He R, Zhou H. LncRNAs in non-small cell lung cancer: novel diagnostic and prognostic biomarkers. Front Mol Biosci 2023; 10:1297198. [PMID: 38152110 PMCID: PMC10751344 DOI: 10.3389/fmolb.2023.1297198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/21/2023] [Indexed: 12/29/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the main causes of cancer-related death worldwide, with a serious impact on human health and life. The identification of NSCLC at an early stage is a formidable task that frequently culminates in a belated diagnosis. LncRNA is a kind of noncoding RNA with limited protein-coding capacity, and its expression is out of balance in many cancers, especially NSCLC. A large number of studies have reported that lncRNA acts a vital role in regulating angiogenesis, invasion, metastasis, and the proliferation and apoptosis of tumor cells, affecting the occurrence and development of NSCLC. Abundant evidence demonstrates that lncRNAs may serve as potential biomarkers for NSCLC diagnosis and prognosis. In this review, we summarize the latest progress in characterizing the functional mechanism of lncRNAs involved in the development of NSCLC and further discuss the role of lncRNAs in NSCLC therapy and chemotherapy resistance. We also discuss the advantages, limitations, and challenges of using lncRNAs as diagnostic or prognostic biomarkers in the management of NSCLC.
Collapse
Affiliation(s)
- Jiang Fu
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Institute of Surgery, Graduate School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Yu
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Department of Physical Examination, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
| | - Hang Yan
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Institute of Surgery, Graduate School, Zunyi Medical University, Zunyi, China
| | - Shengjie Tang
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
| | - Zixu Wang
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Institute of Surgery, Graduate School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tingting Dai
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Institute of Surgery, Graduate School, Zunyi Medical University, Zunyi, China
| | - Haoyu Chen
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Institute of Surgery, Graduate School, North Sichuan Medical College, Nanchong, China
| | - Song Zhang
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Institute of Surgery, Graduate School, North Sichuan Medical College, Nanchong, China
| | - Haiyang Hu
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Institute of Surgery, Graduate School, Zunyi Medical University, Zunyi, China
| | - Tao Liu
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
| | - Shoujun Tang
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
| | - Rong He
- Department of Respiratory and Critical Care Medicine, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
| | - Haining Zhou
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Institute of Surgery, Graduate School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Surgery, Graduate School, Zunyi Medical University, Zunyi, China
- Institute of Surgery, Graduate School, North Sichuan Medical College, Nanchong, China
| |
Collapse
|
3
|
Yuan H, Yu J, Liu C, Zhao H, Xue J, Liu J, Yang Y. LncRNA KCNQ10T1 shuttled by bone marrow mesenchymal stem cell-derived exosome inhibits sepsis via regulation of miR-154-3p/RNF19A axis. Cell Tissue Res 2023; 393:507-521. [PMID: 37326687 PMCID: PMC10485167 DOI: 10.1007/s00441-023-03784-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/08/2023] [Indexed: 06/17/2023]
Abstract
This study aims to discuss the role of exosomes KCNQ10T1 derived from bone marrow mesenchymal stem cells (BMMSCs) in sepsis and to further investigate its potential molecular mechanisms. Exosomes extracted from BMMSCs are identified by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and western blot. Fluorescence labeling is applied to detect the internalization of exosomes in receptors. The proliferation ability, migration ability, and invasion ability of HUVECs are determined by CCK-8, EdU, wound healing, and Transwell. The levels of inflammatory cytokines in sepsis cells are quantitatively detected by ELISA. Kaplan-Meier survival curve is used to describe the overall survival. RT-qPCR is used to detect mRNA expression of related genes. Bioinformatics analysis is performed to search the downstream target of KCNQ1OT1 and miR-154-3p and the interaction is verified by luciferase reporter assay. Exosomes derived from BMMSCs alleviated the toxicity in sepsis cell models and animal models. In mice with septic cell models, exosomal KCNQ10T1 was down-regulated and associated with lower survival. Overexpression of KCNQ10T1 inhibited the proliferation and metastasis of LPS-induced HUVECs. Further research illustrated that miR-154-3p was the downstream target gene of KCNQ1OT1 and RNF19A was the downstream target gene of miR-154-3p. Importantly, functional research findings indicated that KCNQ1OT1 regulated sepsis progression by targeting miR-154-3p/RNF19A axis. Our study demonstrates that the exosomal KCNQ1OT1 suppresses sepsis via mediating miR-154-3p/RNF19A, which provides a latent target for sepsis treatment.
Collapse
Affiliation(s)
- Haojie Yuan
- Department of Trauma Center, Affiliated Hospital of Nantong University, Chongchuan District, Jiangsu Province, No. 20 Xisi Road, 226001, Nantong, China
| | - Junbo Yu
- Department of Trauma Center, Affiliated Hospital of Nantong University, Chongchuan District, Jiangsu Province, No. 20 Xisi Road, 226001, Nantong, China
| | - Chun Liu
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Jiangsu Province, Nantong, 226001, China
| | - Heyan Zhao
- Department of Human Anatomy, Institute of Neurobiology, Building of Qixiu Campus, Medical School of Nantong University, Jiangsu Province, No.19 Qixiu Road, Nantong, 226001, No.3 , China
| | - Jianhua Xue
- Department of Trauma Center, Affiliated Hospital of Nantong University, Chongchuan District, Jiangsu Province, No. 20 Xisi Road, 226001, Nantong, China
| | - Jiajia Liu
- Department of Trauma Center, Affiliated Hospital of Nantong University, Chongchuan District, Jiangsu Province, No. 20 Xisi Road, 226001, Nantong, China.
| | - Yang Yang
- Department of Trauma Center, Affiliated Hospital of Nantong University, Chongchuan District, Jiangsu Province, No. 20 Xisi Road, 226001, Nantong, China.
| |
Collapse
|
4
|
Wang Y, Wang Z, Shao C, Lu G, Xie M, Wang J, Duan H, Li X, Yu W, Duan W, Yan X. Melatonin may suppress lung adenocarcinoma progression via regulation of the circular noncoding RNA hsa_circ_0017109/miR-135b-3p/TOX3 axis. J Pineal Res 2022; 73:e12813. [PMID: 35661247 DOI: 10.1111/jpi.12813] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 05/10/2022] [Accepted: 06/03/2022] [Indexed: 12/01/2022]
Abstract
Melatonin is a hormone synthesized in the pineal gland and has widespread physiological and pharmacological functions. Moreover, it can activate protective receptor-dependent processes. These processes can prevent tissue carcinogenesis and inhibit malignant tumor progression and metastasis. Therefore, we investigated the regulatory effects of melatonin on dysregulated circular RNAs in human lung adenocarcinoma (LUAD) cells. In this study, we treated LUAD cells with melatonin and measured the expression of hsa_circ_0017109, miR-135b-3p, and TOX3 by quantitative reverse transcription polymerase chain reaction. Colony formation and cell counting kit-8 assays were used to determine cell proliferation. The wound-healing assay and Transwell experiment were carried out to evaluate the migration potential and invasive capacity of LUAD cells. Also, cell apoptosis was detected using a cell apoptosis kit, and protein production was identified by Western blot. It was suggested that melatonin could inhibit LUAD progression in vivo and in vitro, and the role of TOX3 in this process was explored. Additionally, hsa_circ_0017109 was found to sponge miR-135b-3p, a downstream factor of circ_0017109, which was demonstrated to target TOX3 in LUAD cells and could promote the Hippo pathway and epithelial-mesenchymal transition pathway. To summarize, we demonstrated that melatonin decreases the expression of circ_0017109 and suppresses the non-small-cell lung cancer cell migration, invasion, and proliferation through decreasing TOX3 expression via direct activation of miR-135b-3p.
Collapse
Affiliation(s)
- Yuanyong Wang
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi'an, China
| | - Zhaoyang Wang
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi'an, China
| | - Changjian Shao
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi'an, China
| | - Guofang Lu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Mei Xie
- Department of Respiratory and Critical Care, Chinese PLA General Hospital, Beijing, China
| | - Jian Wang
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi'an, China
| | - Hongtao Duan
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi'an, China
| | - Xiaofei Li
- Department of Thoracic Surgery, Xi'an International Medical Center Hospital, Xi'an, China
| | - Wanpeng Yu
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Weixun Duan
- Department of Cardiovascular Surgery, Xijing Hospital of Fourth Military Medical University, Xi'an, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi'an, China
| |
Collapse
|
5
|
Wei Z, Zeng X, Lei Y, He H, Jamal M, Zhang C, Tan H, Xie S, Zhang Q. TTYH3, a potential prognosis biomarker associated with immune infiltration and immunotherapy response in lung cancer. Int Immunopharmacol 2022; 110:108999. [PMID: 35858518 DOI: 10.1016/j.intimp.2022.108999] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/08/2022] [Accepted: 06/21/2022] [Indexed: 12/09/2022]
Abstract
PURPOSE The recognition of new diagnostic and prognostic biological markers for lung cancer is an essential and eager study. It's shown that ion channels play important roles in regulating various cellular processes and have been suggested to be associated with patient survival. However, tweety family member 3 (TTYH3), as a maxi-Cl- channel, its role in lung cancer remains elusive. METHODS The expression, diagnostic and prognostic efficacy of TTYH3 were analyzed by public databases and clinical samples. Cell functional experiments were used to explore the effects of TTYH3 on cell viability. GO and KEGG enrichment analysis revealed underlying pathways that TTYH3 and its co-expressed genes were enriched in. TIMER, TIDE and R language analyses were used to detect the correlation between TTYH3 and immune infiltration cell and immunotherapy response. RESULTS TTYH3 was up-regulated in lung cancer tissues compared to normal tissues and possessed a prominent diagnostic and prognostic value. TTYH3 knockdown significantly inhibited the proliferation of lung cancer cells. Enrichment analyses showed that TTYH3 and its co-expressed genes were mainly involved in immune related signaling pathways. Further investigation clarified that TTYH3 had a positive correlation with the infiltration of TAMs, Treg infiltration as well as T cell exhaustion and high TTYH3 expression indicated worse immunotherapy response and shorter survival after immune checkpoint blockade treatment. CONCLUSION This study not only revealed the diagnostic and prognostic value of TTYH3 but also provided TTYH3-based estimation of immunotherapy response for lung cancer patients, which might provide new strategies like anti-TTYH3 combined with immune therapy for the treatment of lung cancer.
Collapse
Affiliation(s)
- Zimeng Wei
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xingruo Zeng
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yufei Lei
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Hengjing He
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Muhammad Jamal
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Chengjie Zhang
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Haiyan Tan
- Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Songping Xie
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qiuping Zhang
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan, China.
| |
Collapse
|
6
|
Integrative Analysis of Pyroptosis-Related Prognostic Signature and Immunological Infiltration in Lung Squamous Cell Carcinoma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4944758. [PMID: 35692583 PMCID: PMC9177339 DOI: 10.1155/2022/4944758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/13/2022] [Accepted: 04/21/2022] [Indexed: 02/08/2023]
Abstract
Background Lung cancer is one of leading causes of human health threatening with approximately 2.09 million initially diagnosed cases and 1.76 million deaths worldwide annually. Pyroptosis is a programmed cell death mediated by Gasdermin family proteins. Pyroptosis could suppress the tumor oncogenesis and progression; nevertheless, pyroptosis could promote tumor growth by forming a suitable microenvironment. Methods LASSO Cox regression analysis was performed to construct prognostic pyroptosis-related gene (PRG) signature. A ceRNA was constructed to explore the potential lncRNA-miRNA-mRNA regulatory axis in LUSC. Results The expression of 26 PRGs were increased or decreased in LUSC. We also summarized simple nucleotide variation and copy number variation landscape of PRGs in LUSC. Prognosis analysis suggested a poor overall survival rate in LUSC patients with high expression of IL6, IL1B, ELANE, and CASP6. A pyroptosis-related prognostic signature was developed based on four prognostic PRGs. High-risk score LUSC patients had a poor overall survival rate versus low-risk score patients with an AUC of 0.565, 0.641, and 0.619 in 1-year, 3-year, and 5-year ROC curves, respectively. Moreover, the risk score was correlated with immune infiltration in LUSC. Further analysis revealed that pyroptosis-related prognostic signature was correlated with immune cell infiltration, tumor mutation burden, microsatellite instability, and drug sensitivity. We also constructed a ceRNA network and identified a lncRNA KCNQ1OT1/miR-328-3p/IL1B regulatory axis for LUSC. Conclusion A bioinformatics method was performed to develop a pyroptosis-related prognostic signature containing four genes (IL6, IL1B, ELANE, and CASP4) in LUSC. We also constructed a ceRNA network and identified a lncRNA KCNQ1OT1/miR-328-3p/IL1B regulatory axis for LUSC. Further in vivo and in vitro studies should be conducted to verify these results.
Collapse
|
7
|
Liu Y, Yu Y, Zhao S. Dual Attention Mechanisms and Feature Fusion Networks Based Method for Predicting LncRNA-Disease Associations. Interdiscip Sci 2022; 14:358-371. [PMID: 35067893 DOI: 10.1007/s12539-021-00492-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 11/02/2021] [Accepted: 11/07/2021] [Indexed: 11/30/2022]
Abstract
LncRNAs play a part in numerous momentous processes of biology such as disease diagnoses, preventions and treatments. The associations between various diseases and lncRNAs are one of the crucial approaches to learn the role and status of lncRNAs in human diseases. With the researches on lncRNA and diseases, multiple methods based on neural network have been employed to predict these associations. However, the deep and complicated characteristic representations of lncRNA-disease associations were failed to be extracted, and the discriminative contributions of the interactions, correlations, and similarities among miRNAs diseases, and lncRNAs for the correlation predictions were ignored. In this paper, based on the multibiology premise of lncRNAs, miRNAs, and diseases, a dual attention network was proposed to predict the model of lncRNA-disease associations for miRNAs, the disease characteristic matrix, and lncRNAs. Through two attention modules, we enable the model to learn the nonlinear, more complex and useful features of lncRNA, miRNA, and disease characteristic matrix. For the feature embedding matrix composed of lncRNA-disease, the connection between lncRNA-disease feature embedding matrix and lncRNA, miRNA, and disease characteristic matrix was enhanced through deconvolution and feature fusion layer. Compared with several latest methods, the method proposed in this paper can produce better performance. Researches on the cases of osteosarcoma, lung cancer, and gastric cancer have confirmed the effective recognition of potential lncRNA-disease associations.
Collapse
Affiliation(s)
- Yu Liu
- Dalian Key Lab of Digital Technology for National Culture, Dalian Minzu University, Dalian, 116600, China. .,Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Darul Ehsan, Malaysia.
| | - Yingying Yu
- Dalian Key Lab of Digital Technology for National Culture, Dalian Minzu University, Dalian, 116600, China
| | - Shimin Zhao
- Guangxi Vocational and Technical College, Nanning, 530000, Guangxi, China
| |
Collapse
|
8
|
Jiang S, Jia Y, Gao Z. LncRNA KCNQ1OT1 promotes apoptosis and oxidative stress of human lens epithelial cells through epigenetic regulation of WRN. Curr Eye Res 2022; 47:I-X. [PMID: 35179402 DOI: 10.1080/02713683.2022.2026975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE Long non-coding RNA KCNQ1OT1 is fundamental to age-related cataract (ARC), whereas the underlying mechanism is still unknown. Here, we explored the possible mechanism of KCNQ1OT1 in ARC. METHODS The expression of KCNQ1OT1 in ARC patients and H2O2-treated human lens epithelial cell line SRA01/04 was detected. Gene and protein expression were examined by quantitative real-time PCR and western blot. Cell viability and apoptosis were detected by CCK-8 assay and flow cytometry. The content of reactive oxygen species (ROS) was assessed by fluorescent probe DCFH-DA. The relationship among KCNQ1OT1, G9a, H3K9me1/2 and WRN was verified by RNA pull down and Chromatin immunoprecipitation. RESULTS KCNQ1OT1 was up-regulated in the anterior lens capsule tissues of ARC patients and H2O2-treated SRA01/04 cells. KCNQ1OT1 overexpression suppressed cell viability and facilitated apoptosis in H2O2-treated SRA01/04 cells. KCNQ1OT1 up-regulation enhanced the levels of ROS and malondialdehyde (MDA), and reduced the levels of superoxide dismutase (SOD) and catalase (CAT) in H2O2-treated SRA01/04 cells. WRN up-regulation led to a result opposite to KCNQ1OT1 overexpression. The influence of WRN up-regulation on cell viability, apoptosis and oxidative stress of SRA01/04 cells was rescued by KCNQ1OT1 overexpression. Additionally, KCNQ1OT1 interacted with G9a. Both G9a and H3K9me1/2 interacted with WRN promoter. G9a deficiency significantly enhanced WRN expression and repressed H3K9me1/2 expression in SRA01/04 cells, which was abrogated by KCNQ1OT1 up-regulation. CONCLUSION This study demonstrated that KCNQ1OT1 promoted apoptosis and oxidative stress of human LECs through G9a-driven epigenetic regulation of WRN. This work highlights a novel lncRNA involving key regulators of ARC.
Collapse
Affiliation(s)
- Shengqun Jiang
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical College, No.287 Changhuai Road, Bengbu 233004, Anhui Province, China
| | - Yanwen Jia
- Eye Institute, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, No 29 Xianglong Lane, Changzhou 211166, Jiangsu Province, China
| | - Ziqing Gao
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical College, No.287 Changhuai Road, Bengbu 233004, Anhui Province, China
| |
Collapse
|
9
|
Cagle P, Qi Q, Niture S, Kumar D. KCNQ1OT1: An Oncogenic Long Noncoding RNA. Biomolecules 2021; 11:1602. [PMID: 34827600 PMCID: PMC8615887 DOI: 10.3390/biom11111602] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are transcripts greater than 200 nucleotides that do not code for proteins but regulate gene expression. Recent studies indicate that lncRNAs are involved in the modulation of biological functions in human disease. KCNQ1 Opposite Strand/Antisense Transcript 1 (KCNQ1OT1) encodes a lncRNA from the opposite strand of KCNQ1 in the CDKN1C/KCNQ1OT1 cluster that is reported to play a vital role in the development and progression of cancer. KCNQ1OT1 regulates cancer cell proliferation, cell cycle, migration and invasion, metastasis, glucose metabolism, and immune evasion. The aberrant expression of KCNQ1OT1 in cancer patients is associated with poor prognosis and decreased survival. This review summarizes recent literature related to the biological functions and molecular mechanisms of KCNQ1OT1 in various human cancers, including colorectal, bladder, breast, oral, melanoma, osteosarcoma, lung, glioma, ovarian, liver, acute myeloid leukemia, prostate, and gastric. We also discuss the role of KCNQ1OT1 as a promising diagnostic biomarker and a novel therapeutic target in human cancers.
Collapse
Affiliation(s)
| | | | | | - Deepak Kumar
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA; (P.C.); (Q.Q.); (S.N.)
| |
Collapse
|
10
|
Chen Q, Lai D, Lan W, Wu X, Chen B, Liu J, Chen YPP, Wang J. ILDMSF: Inferring Associations Between Long Non-Coding RNA and Disease Based on Multi-Similarity Fusion. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:1106-1112. [PMID: 31443046 DOI: 10.1109/tcbb.2019.2936476] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The dysregulation and mutation of long non-coding RNAs (lncRNAs) have been proved to result in a variety of human diseases. Identifying potential disease-related lncRNAs may benefit disease diagnosis, treatment and prognosis. A number of methods have been proposed to predict the potential lncRNA-disease relationships. However, most of them may give rise to incorrect results due to relying on single similarity measure. This article proposes a novel framework (ILDMSF) by fusing the lncRNA similarities and disease similarities, which are measured by lncRNA-related gene and known lncRNA-disease interaction and disease semantic interaction, and known lncRNA-disease interaction, respectively. Further, the support vector machine is employed to identify the potential lncRNA-disease associations based on the integrated similarity. The leave-one-out cross validation is performed to compare ILDMSF with other state of the art methods. The experimental results demonstrate our method is prospective in exploring potential correlations between lncRNA and disease.
Collapse
|
11
|
Li D, Tong Q, Lian Y, Chen Z, Zhu Y, Huang W, Wen Y, Wang Q, Liang S, Li M, Zheng J, Liu Z, Liu H, Guo L. Inhibition of lncRNA KCNQ1OT1 Improves Apoptosis and Chemotherapy Drug Response in Small Cell Lung Cancer by TGF-β1 Mediated EMT. Cancer Res Treat 2021; 53:1042-1056. [PMID: 33705625 PMCID: PMC8524015 DOI: 10.4143/crt.2020.1208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/06/2021] [Indexed: 11/21/2022] Open
Abstract
Purpose Drug resistance is one of the main causes of chemotherapy failure in patients with small cell lung cancer (SCLC), and extensive biological studies into chemotherapy drug resistance are required. Materials and Methods In this study, we performed lncRNA microarray, in vitro functional assays, in vivo models and cDNA microarray to evaluate the impact of lncRNA in SCLC chemoresistance. Results The results showed that KCNQ1OT1 expression was upregulated in SCLC tissues and was a poor prognostic factor for patients with SCLC. Knockdown of KCNQ1OT1 inhibited cell proliferation, migration, chemoresistance and promoted apoptosis of SCLC cells. Mechanistic investigation showed that KCNQ1OT1 can activate transforming growth factor-β1 mediated epithelial-to-mesenchymal transition in SCLC cells. Conclusion Taken together, our study revealed the role of KCNQ1OT1 in the progression and chemoresistance of SCLC, and suggested KCNQ1OT1 as a potential diagnostic and prognostic biomarker in SCLC clinical management.
Collapse
Affiliation(s)
- Deyu Li
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Medical Oncology,Provincial Clinical College, Fujian Medical University, Fujian provincial hospital, Fuzhou, China
| | - Qin Tong
- Department of Radiation Oncology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Yuane Lian
- Department of Pathology, the Union Hospital of Fujian Medical University, Fuzhou, China
| | - Zhizhong Chen
- Department of Pathology ,Provincial Clinical College, Fujian Medical University, Fujian provincial hospital, Fuzhou, China
| | - Yaru Zhu
- Department of Cardiothoracic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Weimei Huang
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Wen
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qiongyao Wang
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shumei Liang
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Man Li
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jianjing Zheng
- Department of Medical Oncology,Provincial Clinical College, Fujian Medical University, Fujian provincial hospital, Fuzhou, China
| | - Zhenhua Liu
- Department of Medical Oncology,Provincial Clinical College, Fujian Medical University, Fujian provincial hospital, Fuzhou, China
| | - Huanxin Liu
- Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces, Guangzhou Medical University, Guangzhou, China
| | - Linlang Guo
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Lapucci A, Perrone G, Di Paolo A, Napoli C, Landini I, Roviello G, Calosi L, Naccarato AG, Falcone A, Bani D, Mini E, Nobili S. PNN and KCNQ1OT1 Can Predict the Efficacy of Adjuvant Fluoropyrimidine-Based Chemotherapy in Colorectal Cancer Patients. Oncol Res 2020; 28:631-644. [PMID: 33208224 PMCID: PMC7962934 DOI: 10.3727/096504020x16056983169118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The benefit of adjuvant chemotherapy in the early stages of colorectal cancer (CRC) is still disappointing and the prediction of treatment outcome quite difficult. Recently, through a transcriptomic approach, we evidenced a role of PNN and KCNQ1OT1 gene expression in predicting response to fluoropyrimidine-based adjuvant chemotherapy in stage III CRC patients. Thus, the aim of this study was to validate in an independent cohort of stages II–III CRC patients our previous findings. PNN and KCNQ1OT1 mRNA expression levels were evaluated in 74 formalin-fixed paraffin-embedded tumor and matched normal mucosa samples obtained by stages II–III CRC patients treated with fluoropyrimidine-based adjuvant chemotherapy. PININ, the protein encoded by PNN, was immunohistochemically evaluated in 15 tumor and corresponding normal mucosa samples, selected on the basis of a low, medium, or high mRNA expression tumor/mucosa ratio. PNN and KCNQ1OT1 mRNA mean expression levels were significantly higher in tumor compared with normal tissues. Patients with high PNN or KCNQ1OT1 tumor mRNA levels according to ROC-based cutoffs showed a shorter disease-free survival (DFS) compared with patients with low tumor mRNA gene expression. Also, patients with tumor mRNA expression values of both genes below the identified cutoffs had a significantly longer DFS compared with patients with the expression of one or both genes above the cutoffs. In a representative large cohort of stages II–III CRC untreated patients retrieved from GEO datasets, no difference in DFS was observed between patients with high and low PNN or KCNQ1OT1 gene expression levels. These data confirm our previous findings and underscore the relevance of PNN and KCNQ1OT1 expression in predicting DFS in early stages of CRC treated with fluoropyrimidine-based adjuvant chemotherapy. If further validated in a prospective case series, both biomarkers could be used to identify patients who benefit from this treatment and to offer alternative chemotherapy regimens to potential unresponsive patients. In relation to the suggested biological role of PNN and KCNQ1OT1 in CRC, they might also be exploited as potential therapeutic targets.
Collapse
Affiliation(s)
- Andrea Lapucci
- Department of Health Sciences, University of FlorenceFlorenceItaly
| | - Gabriele Perrone
- Department of Health Sciences, University of FlorenceFlorenceItaly
| | - Antonello Di Paolo
- Department of Clinical and Experimental Medicine, University of PisaPisaItaly
| | - Cristina Napoli
- Department of Health Sciences, University of FlorenceFlorenceItaly
| | - Ida Landini
- Department of Health Sciences, University of FlorenceFlorenceItaly
| | | | - Laura Calosi
- Department of Experimental and Clinical Medicine, University of FlorenceFlorenceItaly
| | - Antonio Giuseppe Naccarato
- Department of Translational Research and New Technologies in Medicine and Surgery, University of PisaPisaItaly
| | - Alfredo Falcone
- Department of Translational Research and New Technologies in Medicine and Surgery, University of PisaPisaItaly
| | - Daniele Bani
- Department of Experimental and Clinical Medicine, University of FlorenceFlorenceItaly
| | - Enrico Mini
- Department of Health Sciences, University of FlorenceFlorenceItaly
| | - Stefania Nobili
- Department of Health Sciences, University of FlorenceFlorenceItaly
| |
Collapse
|
13
|
Upregulation of KCNQ1OT1 promotes resistance to stereotactic body radiotherapy in lung adenocarcinoma by inducing ATG5/ATG12-mediated autophagy via miR-372-3p. Cell Death Dis 2020; 11:883. [PMID: 33082306 PMCID: PMC7575601 DOI: 10.1038/s41419-020-03083-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/23/2020] [Accepted: 08/27/2020] [Indexed: 12/22/2022]
Abstract
Stereotactic body radiotherapy (SBRT) has emerged as a standard treatment for non-small-cell lung cancer. However, its therapeutic advantages are limited with the development of SBRT resistance. The SBRT-resistant cell lines (A549/IR and H1975/IR) were established after exposure with hypofractionated irradiation. The differential lncRNAs were screened by microarray assay, then the expression was detected in LUAD tumor tissues and cell lines by qPCR. The influence on radiation response was assessed via in vitro and in vivo assays, and autophagy levels were evaluated by western blot and transmission electron microscopy. Bioinformatics prediction and rescue experiments were used to identify the pathways underlying SBRT resistance. High expression of KCNQ1OT1 was identified in LUAD SBRT-resistant cells and tissues, positively associated with a large tumor, advanced clinical stage, and a lower response rate to concurrent therapy. KCNQ1OT1 depletion significantly resensitized A549/IR and H1975/IR cells to radiation by inhibiting autophagy, which could be attenuated by miR-372-3p knockdown. Furthermore, autophagy-related 5 (ATG5) and autophagy-related 12 (ATG12) were confirmed as direct targets of miR-372-3p. Restoration of either ATG5 or ATG12 abrogated miR-372-3p-mediated autophagy inhibition and radiosensitivity. Our data describe that KCNQ1OT1 is responsible for SBRT resistance in LUAD through induction of ATG5- and ATG12-dependent autophagy via sponging miR-372-3p, which would be a potential strategy to enhance the antitumor effects of radiotherapy in LUAD.
Collapse
|
14
|
Wu Y, Bi QJ, Han R, Zhang Y. Long noncoding RNA KCNQ1OT1 is correlated with human breast cancer cell development through inverse regulation of hsa-miR-107. Biochem Cell Biol 2020; 98:338-344. [PMID: 32379482 DOI: 10.1139/bcb-2019-0271] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In this work, we investigated the expression pattern and regulatory function of long noncoding RNA (lncRNA) KCNQ1 opposite strand/antisense transcript 1 (KCNQ1OT1) in breast cancer. We found that KCNQ1OT1 was significantly upregulated in breast cancer cell lines. In lentiviral-transduced BT-549 and HCC1599 cells, KCNQ1OT1 knockdown impaired cancer cell functions, including in vitro proliferation and migration, and in vivo transplant growth. The possible sponging target of KCNQ1OT1, human microRNA-107 (hsa-miR-107), was confirmed to be bound by KCNQ1OT1, and was upregulated in breast cancer cells with KCNQ1OT1 downregulation. Further, hsa-miR-107 knockdown in KCNQ1OT1-downregulated cancer cells reversed its impairing effects on cancer cell proliferation and migration in vitro. Thus, loss of KCNQ1OT1 is associated with functional impairment in breast cancer cells, likely through inverse regulation of its sponging target, hsa-miR-107.
Collapse
Affiliation(s)
- Yanyan Wu
- Mammary gland thyroid Surgery, Affiliated Hospital of Jining Medical University, Jining, 272000, Shandong, China
| | - Qing-Jun Bi
- Department of Oncology, Fourth People’s Hospital of Zibo, Zibo, 255067, Shandong, China
| | - Rui Han
- Department of Oncology, Fourth People’s Hospital of Zibo, Zibo, 255067, Shandong, China
| | - Yajie Zhang
- Mammary gland thyroid Surgery, Affiliated Hospital of Jining Medical University, Jining, 272000, Shandong, China
| |
Collapse
|
15
|
Wang Y, Zhang L, Yang J, Sun R. LncRNA KCNQ1OT1 promotes cell proliferation, migration and invasion via regulating miR-129-5p/JAG1 axis in non-small cell lung cancer. Cancer Cell Int 2020; 20:144. [PMID: 32377169 PMCID: PMC7195752 DOI: 10.1186/s12935-020-01225-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/20/2020] [Indexed: 12/17/2022] Open
Abstract
Background Non-small cell lung cancer (NSCLC) is the most deadly cancer worldwide. LncRNA KCNQ1OT1 has been reported to be involved in the progression of various tumors, including NSCLC. However, the precise mechanism of KCNQ1OT1 in NSCLC requires further investigation. Methods The expression levels of KCNQ1OT1, miR-129-5p and JAG1 were detected by qRT-PCR or western blot. Kaplan–Meier survival analysis was used to assess the correlation between KCNQ1OT1 expression and the overall survival of NSCLC patients. CCK-8 assay was used to measure cell viability. Cell migration and invasion were detected by transwell assay. The targets of KCNQ1OT1 and miR-129-5p were predicted by bioinformatics, which was confirmed by dual-luciferase reporter assay or pull-down assay. Results KCNQ1OT1 expression was significantly enhanced, while miR-129-5p expression was dramatically reduced in NSCLC tissues and cells. Higher KCNQ1OT1 shortened overall survival and was positively associated with tumor stage and lymph node metastasis. KCNQ1OT1 knockdown inhibited proliferation, migration and invasion of NSCLC cells. Inhibition of miR-129-5p attenuated the inhibition of NSCLC cell viability, migration and invasion induced by KCNQ1OT1 knockdown. In addition, JAG1 was confirmed as a target of miR-129-5p. Knockdown of JAG1 reversed the effects of miR-129-5p knockdown on NSCLC progression. KCNQ1OT1 regulated JAG1 expression by sponging miR-129-5p in NSCLC cells. Conclusion KCNQ1OT1 induced proliferation, migration and invasion of NSCLC cells by sponging miR-129-5p and regulating JAG1 expression, indicating that KCNQ1OT1 was a therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pulmonary and Critical Care Medicine, The Guangdong Second Provincial General Hospital, No. 466 Xingang Middle Rd, Haizhu District, 510000 Guangzhou, China
| | - Lei Zhang
- 2Department of Transplant Centre, The Second Affiliated Hospital of Guangzhou Medical University, 510000 Guangzhou, China
| | - Jiasheng Yang
- Department of Pulmonary and Critical Care Medicine, The Guangdong Second Provincial General Hospital, No. 466 Xingang Middle Rd, Haizhu District, 510000 Guangzhou, China
| | - Ruilin Sun
- Department of Pulmonary and Critical Care Medicine, The Guangdong Second Provincial General Hospital, No. 466 Xingang Middle Rd, Haizhu District, 510000 Guangzhou, China
| |
Collapse
|
16
|
Sun J, Xie T, Jamal M, Tu Z, Li X, Wu Y, Li J, Zhang Q, Huang X. CLEC3B as a potential diagnostic and prognostic biomarker in lung cancer and association with the immune microenvironment. Cancer Cell Int 2020; 20:106. [PMID: 32265595 PMCID: PMC7110733 DOI: 10.1186/s12935-020-01183-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 03/23/2020] [Indexed: 02/06/2023] Open
Abstract
Background Lung cancer is the leading cause of cancer-related mortality globally. Discovering effective biomarkers for early diagnosis and prognosis is important to reduce the mortality rate and ensure efficient therapy for lung cancer patients. C-type lectin domain family 3 member B (CLEC3B) has been reported in various cancers, but its correlation with lung cancer remains elusive. Methods The GEO, TCGA and Oncomine databases were analyzed to examine the expression of CLEC3B in lung cancer. The CLEC3B mRNA levels in 15 patient tissue samples were detected by real-time PCR and the CLEC3B protein levels in 34 patient tissue samples were detected by immunohistochemistry. A Chi-square test was performed to analyze the correlation of CLEC3B expression and clinicopathological factors. The diagnostic value of CLEC3B was revealed by receiver operating characteristic (ROC) curves. Univariate and multivariate Cox proportional hazards regression models and Kaplan–Meier plots were used to evaluate the prognostic value of CLEC3B in lung cancer. The TIMER database was used to evaluate the correlation of CLEC3B and immune infiltration. Gene set enrichment analysis revealed tumor‐associated biological processes related to CLEC3B. Results CLEC3B is significantly downregulated in lung cancer patients compared with nontumor controls according to database analysis and patient tissue sample detection (p < 0.001). Specifically, CLEC3B is significantly downregulated in stage IA lung cancer patients (p < 0.001) and has a high diagnostic accuracy (area under the receiver operating characteristic curve > 0.9). Moreover, low expression of CLEC3B is related to poor progression-free survival (HR = 0.60, 95% CI 0.49–0.74, p = 8.3e−07) and overall survival (HR = 0.66, 95% CI 0.58–0.75, p = 2.1e−10), indicating it as a risk factor for lung cancer. Multivariate analysis value showed that low expression of CLEC3B may be an independent risk factor for disease‐free survival in lung cancer patients (HR = 0.655, 95% CI 0.430–0.996, Cox p = 0.048). In addition, we also investigated the potential role of CLEC3B in tumor-immune interactions and found that CLEC3B might be associated with the immune infiltration and immune activation of lung cancer, especially in squamous cell carcinoma. Conclusions Our findings indicate that CLEC3B expression is downregulated in lung cancer and reveal the diagnostic and prognostic potential of CLEC3B in lung cancer and its potential as an immune-related therapeutic target in lung cancer.
Collapse
Affiliation(s)
- Jiaxing Sun
- 1Department of Blood Transfusion, Zhongnan Hospital of Wuhan University, Wuhan, China.,2Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Tian Xie
- 1Department of Blood Transfusion, Zhongnan Hospital of Wuhan University, Wuhan, China.,2Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Muhammad Jamal
- 2Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Zhenbo Tu
- 2Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Xinran Li
- 3School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yingjie Wu
- 4Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jingyuan Li
- 2Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Qiuping Zhang
- 2Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Xiaoxing Huang
- 1Department of Blood Transfusion, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
17
|
Wang L, Zhang L, Shi W. Effect of knockdown of long-chain noncoding RNA KCNQ1 overlapping transcript 1 on growth and cisplatin sensitivity of HGC-27 cells. Shijie Huaren Xiaohua Zazhi 2020; 28:210-216. [DOI: 10.11569/wcjd.v28.i6.210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) had become one of the malignant tumors that threaten the safety of human life. At present, the molecular mechanism of the occurrence and development of GC has not been fully elucidated. The regulatory role of long-chain noncoding RNAs in these processes has not yet been elucidated.
AIM To investigate the effect of KCNQ1 overlapping transcript 1 (KCNQ1OT1) on the proliferation, invasion, migration, and cisplatin sensitivity of HGC-27 cells.
METHODS HCN-27 cells transfected with KCNQ1OT1-siRNA were used as a KCNQ1OT1-siRNA group, HGC-27 cells transfected with negative control siRNA were used as an NC-siRNA group, and normally cultured cells were used as a control group. After treatment of cells in the KCNQ1OT1-siRNA group and NC-siRNA group with cisplatin, cell viability was measured by Cell Counting Kit-8 assay, and the half-maximal inhibitory concentration (IC50) was calculated. Real-time quantitative polymerase chain reaction, Transwell assay, flow cytometry, and Western blot were used to detect KCNQ1OT1 expression level, cell proliferation, invasion, and migration, cycle distribution, and the expression of E-cadherin, N-cadherin, Vimentin, P-glycoprotein (P-gp), and multidrug resistance associated protein 1 (MRP1), respectively.
RESULTS Compared with the control group, there was no significant change in the indexes in the NC-siRNA group (P > 0.05). Compared with the control group or NC-siRNA group, the expression level of KCNQ1OT1, the percentages of cells in S phase and G2/M phase, the ability of cell proliferation, invasion, and migration, and the expression levels of N-cadherin and Vimentin in cells of the KCNQ1OT1-siRNA group were significantly reduced, while the percentage of cells in G0/G1 phase was significantly reduced (P > 0.05). Compared with the NC-siRNA group, the protein levels of P-gp and MRP1 in the KCNQ1OT1-siRNA group were significantly reduced (P < 0.05), and the IC50 was significantly reduced (P < 0.05).
CONCLUSION KCNQ1OT1 knockdown can inhibit the proliferation, invasion, and migration of HGC-27 cells and enhance their sensitivity to cisplatin.
Collapse
Affiliation(s)
- Liang Wang
- Department of Pharmacy, Tianjin Fifth Central Hospital, Tianjin 300450, China
| | - Long Zhang
- Pharmacology Group, Hebei Medical University, Shijiazhuang 050017, Hebei Province, China
| | - Wei Shi
- Pharmacology Group, Hebei Medical University, Shijiazhuang 050017, Hebei Province, China
| |
Collapse
|
18
|
Lu X, Wang F, Fu M, Li Y, Wang L. [ARTICLE WITHDRAWN] Long Noncoding RNA KCNQ1OT1 Accelerates the Progression of Ovarian Cancer via MicroRNA-212-3/LCN2 Axis. Oncol Res 2020; 28:135-146. [PMID: 31653278 PMCID: PMC7851512 DOI: 10.3727/096504019x15719983040135] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
ARTICLE WITHDRAWN: This article was withdrawn by the authors with the following Withdrawal Statement - The integrity of the current study is not acceptable. The authors intend to enrich the study to make it more valuable. Thus, the authors want to withdraw the current study. Please accept our apologies for this inconvenience and we hope for your understanding. Yours sincerely (on behalf of the authors), Xiaoqin Lu.
Collapse
Affiliation(s)
- Xiaoqin Lu
- *Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Fuying Wang
- *Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Meizhou Fu
- †Education and Training Department, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Yuankun Li
- *Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Lijun Wang
- *Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| |
Collapse
|
19
|
Liang S, Wang F, Han J, Chen K. Latent periodic process inference from single-cell RNA-seq data. Nat Commun 2020; 11:1441. [PMID: 32188848 PMCID: PMC7080821 DOI: 10.1038/s41467-020-15295-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 03/03/2020] [Indexed: 11/15/2022] Open
Abstract
The development of a phenotype in a multicellular organism often involves multiple, simultaneously occurring biological processes. Advances in single-cell RNA-sequencing make it possible to infer latent developmental processes from the transcriptomic profiles of cells at various developmental stages. Accurate characterization is challenging however, particularly for periodic processes such as cell cycle. To address this, we develop Cyclum, an autoencoder approach identifying circular trajectories in the gene expression space. Cyclum substantially improves the accuracy and robustness of cell-cycle characterization beyond existing approaches. Applying Cyclum to removing cell-cycle effects substantially improves delineations of cell subpopulations, which is useful for establishing various cell atlases and studying tumor heterogeneity.
Collapse
Affiliation(s)
- Shaoheng Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Department of Computer Science, Rice University, Houston, TX, 77005, USA.
| | - Fang Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jincheng Han
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
20
|
Huo C, Zhang MY, Li R, Zhou XJ, Liu TT, Li JP, Liu X, Qu YQ. Comprehensive analysis of TPX2-related ceRNA network as prognostic biomarkers in lung adenocarcinoma. Int J Med Sci 2020; 17:2427-2439. [PMID: 33029085 PMCID: PMC7532481 DOI: 10.7150/ijms.49053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/13/2020] [Indexed: 01/15/2023] Open
Abstract
Background and aim: Competing endogenous RNA (ceRNA) is believed to play vital roles in tumorigenesis. The goal of this study was to screen prognostic biomarkers in lung adenocarcinoma (LUAD). Methods: Common differentially expressed genes (DEGs) were collected from Gene Expression Omnibus (GEO) databases and The Cancer Genome Atlas databases (TCGA) using GEO2R and "limma" package in R, respectively. Overlapping DEGs were conducted using enrichment of functions and protein-protein interaction (PPI) network to discover significant candidate genes. By using a comprehensive analysis, we constructed an mRNA mediated ceRNA network. Survival rates were used Kaplan-Meier analysis. Statistical analysis was used to further identify the prognosis of studied genes. Results: Integrated analysis of GSE32863 and TCGA databases, a total of 886 overlapping DEGs, including 279 up-regulated and 607 down-regulated genes were identified. Considering the highest term of candidate genes in PPI, we identified TPX2, which was enriched in cell division signaling pathway. Besides, 35 differentially expressed miRNAs (DEmiRNAs) were predicted to target TPX2 and only 7 DEmiRNAs were identified to be prognostic biomarkers in LUAD. Then, 30 differentially expressed lncRNAs (DElncRNAs) were predicted to bind these 7 DEmiRNAs. Finally, we found that 7 DElncRNAs were correlated with the overall survival (all p <0.05). Furthermore, we identified elevated TPX2 was strongly correlated with the worse survival rate among 458 samples. Univariate and multivariate cox analysis showed TPX2 may act as an independent factor for prognosis in LUAD (p <0.05). Then pathway enrichment results suggested that TPX2 may facilitate tumorigenesis by participating in several cancer-related signaling pathways in LUAD, especially in Notch signal pathway. Conclusions: TPX2-related lncRNAs and miRNAs are related to the survival of LUAD. 7 lncRNAs, 7 miRNAs and TPX2 may serve as prognostic biomarkers in LUAD.
Collapse
Affiliation(s)
- Chen Huo
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Meng-Yu Zhang
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Rui Li
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xi-Jia Zhou
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Ting-Ting Liu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jian-Ping Li
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xiao Liu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yi-Qing Qu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan 250012, China
| |
Collapse
|
21
|
Sun R, Wang R, Chang S, Li K, Sun R, Wang M, Li Z. Long Non-Coding RNA in Drug Resistance of Non-Small Cell Lung Cancer: A Mini Review. Front Pharmacol 2019; 10:1457. [PMID: 31920650 PMCID: PMC6930187 DOI: 10.3389/fphar.2019.01457] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 11/13/2019] [Indexed: 12/29/2022] Open
Abstract
Lung cancer is one of main causes of cancer mortality and 83% of lung cancer cases are classified as non-small cell lung cancer (NSCLC). Patients with NSCLC usually have a poor prognosis and one of the leading causes is drug resistance. With the progress of drug therapy, the emergence and development of drug resistance affected the prognosis of patients severely. Accumulating evidence reveals that long non-coding RNAs (lncRNAs), as “dark matters” of the human genome, is of great significance to drug resistance in NSCLC. Herein, we review the role of lncRNAs in drug resistance in NSCLC.
Collapse
Affiliation(s)
- Ruizheng Sun
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medical, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Ranran Wang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Siyuan Chang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medical, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Kexin Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medical, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Rongsi Sun
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medical, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Mengnan Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medical, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Zheng Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medical, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| |
Collapse
|
22
|
Kang Y, Jia Y, Wang Q, Zhao Q, Song M, Ni R, Wang J. Long Noncoding RNA KCNQ1OT1 Promotes the Progression of Non-Small Cell Lung Cancer via Regulating miR-204-5p/ATG3 Axis. Onco Targets Ther 2019; 12:10787-10797. [PMID: 31849486 PMCID: PMC6911321 DOI: 10.2147/ott.s226044] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/22/2019] [Indexed: 02/06/2023] Open
Abstract
Purpose Non-small cell lung cancer (NSCLC) is the first leading cause of cancer-related death globally. Long noncoding RNA KCNQ1 overlapping transcript 1 (KCNQ1OT1) was involved in the progression of multiple cancers by sponging target miRNA. We aimed to explore the pathological mechanism of KCNQ1OT1 in NSCLC progression. Methods The expression of KCNQ1OT1, miR-204-5p and autophagy-related gene 3 (ATG3) was measured by quantitative real-time polymerase chain reaction (qRT-PCR). 3-(4, 5-Dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) assay and flow cytometry assay were conducted for the detection of cell proliferation and apoptosis, respectively. Western blot assay was performed to examine the protein levels of B-cell lymphoma-2 (BCL-2), BCL2-Associated X (Bax), cleaved caspase-3, cleaved caspase-9 and LC3Ⅱ/LC3Ⅰ and P62. The interaction between miR-204-5p and KCNQ1OT1 or ATG3 was validated by dual-luciferase reporter system and RNA immunoprecipitation (RIP) assay. Murine xenograft assay was conducted to explore the function of KCNQ1OT1 in vivo. Immunohistochemistry (IHC) staining assay was used for the analysis of ki67-positive cell percentage. Results The expression of KCNQ1OT1 and ATG3 was up-regulated whereas miR-204-5p was down-regulated in NSCLC tumors and cells. MiR-204-5p was inversely correlated with KCNQ1OT1 or ATG3. In addition, KCNQ1OT1 knockdown facilitated apoptosis, inhibited autophagy and proliferation of NSCLC cells in vitro and blocked tumor growth in vivo. However, the miR-204-5p inhibitor reversed the effects. More importantly, ATG3 was a target gene of miR-204-5p and ATG3 overexpression restored the effect of miR-204-5p on NSCLC cell progression. Conclusion KCNQ1OT1 promotes cell proliferation and autophagy and inhibits cell apoptosis via regulating miR-204-5p/ATG3 axis, providing a promising target for NSCLC therapy.
Collapse
Affiliation(s)
- Yan Kang
- Department Two of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yaoli Jia
- Department of Respiratory Medicine, Xuchang Central Hospital, Xuchang, Henan, People's Republic of China
| | - Qilong Wang
- Department Two of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Qianru Zhao
- Department of Geriatric Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Meng Song
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Ran Ni
- Department Two of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Jing Wang
- Department Two of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| |
Collapse
|
23
|
Pang L, Cheng Y, Zou S, Song J. Long noncoding RNA SNHG7 contributes to cell proliferation, migration, invasion and epithelial to mesenchymal transition in non-small cell lung cancer by regulating miR-449a/TGIF2 axis. Thorac Cancer 2019; 11:264-276. [PMID: 31793741 PMCID: PMC6996990 DOI: 10.1111/1759-7714.13245] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/22/2019] [Accepted: 10/25/2019] [Indexed: 12/22/2022] Open
Abstract
Background Non‐small cell lung cancer (NSCLC) is an intractable malignant lung cancer with high rates of metastasis and mortality. Currently, long noncoding RNA nuclear RNA host gene 7 (SNHG7) is recognized as a biomarker of multiple cancers. However, the role of SNHG7 in NSCLC requires further understanding. Methods The expression of SNHG7, miR‐449a and TGIF2 in NSCLC tumors and cells was examined by quantitative real time polymerase chain reaction (qRT‐PCR). Cell viability was measured by MTT assay. Cell migration and invasion was conducted using transwell assay. Protein expression of TGIF2, vimentin, N‐cadherin and E‐cadherin was detected by western blot. The interaction between miR‐449a and SNHG7 or TGIF2 was determined by luciferase reporter system, RIP and RNA pull‐down assay, respectively. Xenograft mice models were established by subcutaneously injecting A549 cells transfected with sh‐SNHG7 and sh‐control. Results SNHG7 expression was upregulated in NSCLC tumors and cells compared with normal tissues and cells. SNHG7 silencing repressed cell proliferation, migration, invasion and epithelial to mesenchymal transition (EMT) in NSCLC. Consistently, SNHG7 knockdown hindered tumor growth in vivo. The subsequent luciferase reporter system, RIP and RNA pull‐down assay validated the interaction between miR‐449a and SNHG7 or TGIF2. The rescue experiments displayed that miR‐449a inhibitor counteracted SNHG7 silencing induced inhibition on proliferation, migration, invasion and EMT. Similarly, restoration of TGIF2 reversed miR‐449a mediated inhibition on cell progression. In addition, the results indicated that SNHG7 could regulate cell progression by targeting miR‐449a/TGIF2 axis. Conclusion SNHG7 contributed to cell proliferation, migration, invasion and EMT in NSCLC by upregulating TGIF2 via sponging miR‐449a, representing a novel targeted therapy method for NSCLC.
Collapse
Affiliation(s)
- Lingling Pang
- Department of Respiratory Medicine, Yantai Yuhuangding Hospital, Yantai, China
| | - Yun Cheng
- Department of Respiratory Medicine, Yantai Muping District Traditional Chinese Medical Hospital, Yantai, China
| | - Shenchun Zou
- Department of Respiratory Medicine, Yantai Yuhuangding Hospital, Yantai, China
| | - Jie Song
- Department of Respiratory Medicine, Yantai Yuhuangding Hospital, Yantai, China
| |
Collapse
|
24
|
Du W, Sun J, Gu J, Zhang S, Zhang T. Bioinformatics analysis of LINC00426 expression in lung cancer and its correlation with patients' prognosis. Thorac Cancer 2019; 11:150-155. [PMID: 31691516 PMCID: PMC6938767 DOI: 10.1111/1759-7714.13228] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/04/2019] [Accepted: 10/04/2019] [Indexed: 12/11/2022] Open
Abstract
Background To investigate the expression of long noncoding RNA (lncRNA) LINC00426 (long intergenic nonprotein coding RNA 426) in non‐small cell lung cancer (NSCLC) patients and its correlation with their prognosis. Methods The expression of long noncoding RNA LINC00426 of non‐small cell lung cancer (NSCLC) in The Cancer Genome Atlas (TCGA) database was screened. According to the expression level of LINC00426 in tumor tissue of NSCLC patients, the patients were divided into high and low LINC00426 expression groups. The correlation between LINC00426 expression group and the prognosis of the patient was analyzed by log‐rank test. A total of 72 NSCLC patients who had undergone surgery were retrospectively included in this study. LINC00426 relative expression of tumor and normal lung tissue of the included 72 NSCLC patients were examined by real‐time quantitative PCR assay. The correlation between LINC00426 expression and the patients’ clinical characteristics were also evaluated. Results LINC00426 relative expression was not statistically different between cancer and normal tissue (P > 0.05) of NSCLC patients in the TCGA database. The amplification and deep deletion mutation of LINC00426 gene was found in 0.5% of NSCLC patients. The overall survival (OS) of the LINC00426 high expression group was significantly higher than that of the low expression group (HR = 0.81, P = 0.044), while there was no significant difference between the high and low expression group (HR = 0.97, P = 0.82) for disease‐free survival (DFS). LINC0042646 expression level was elevated in 46 cases in normal lung tissue compared to the tumor tissue of the 72 NSCLC patients. LINC0042646 expression level was significantly correlated with the clinical stage (P < 0.05). Conclusion Long noncoding RNA LINC00426 was downregulated in the tumor tissue of NSCLC patients and correlated with poor prognosis.
Collapse
Affiliation(s)
- Wenjun Du
- Department of Spine Center, Tianjin Union Medical Center (Tianjin People's Hospital), Tianjin, China
| | - Juan Sun
- Department of Radiology, Tianjin Union Medical Center (Tianjin People's Hospital), Tianjin, China
| | - Jundong Gu
- Department of Thoracic Surgery, Tianjin Union Medical Center (Tianjin People's Hospital), Tianjin, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center (Tianjin People's Hospital), Tianjin, China
| | - Tao Zhang
- Department of Trauma, Tianjin Hospital, Tianjin, China
| |
Collapse
|
25
|
Xuan P, Cao Y, Zhang T, Kong R, Zhang Z. Dual Convolutional Neural Networks With Attention Mechanisms Based Method for Predicting Disease-Related lncRNA Genes. Front Genet 2019; 10:416. [PMID: 31130990 PMCID: PMC6509943 DOI: 10.3389/fgene.2019.00416] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/16/2019] [Indexed: 12/30/2022] Open
Abstract
A lot of studies indicated that aberrant expression of long non-coding RNA genes (lncRNAs) is closely related to human diseases. Identifying disease-related lncRNAs (disease lncRNAs) is critical for understanding the pathogenesis and etiology of diseases. Most of the previous methods focus on prioritizing the potential disease lncRNAs based on shallow learning methods. The methods fail to extract the deep and complex feature representations of lncRNA-disease associations. Furthermore, nearly all the methods ignore the discriminative contributions of the similarity, association, and interaction relationships among lncRNAs, disease, and miRNAs for the association prediction. A dual convolutional neural networks with attention mechanisms based method is presented for predicting the candidate disease lncRNAs, and it is referred to as CNNLDA. CNNLDA deeply integrates the multiple source data like the lncRNA similarities, the disease similarities, the lncRNA-disease associations, the lncRNA-miRNA interactions, and the miRNA-disease associations. The diverse biological premises about lncRNAs, miRNAs, and diseases are combined to construct the feature matrix from the biological perspectives. A novel framework based on the dual convolutional neural networks is developed to learn the global and attention representations of the lncRNA-disease associations. The left part of the framework exploits the various information contained by the feature matrix to learn the global representation of lncRNA-disease associations. The different connection relationships among the lncRNA, miRNA, and disease nodes and the different features of these nodes have the discriminative contributions for the association prediction. Hence we present the attention mechanisms from the relationship level and the feature level respectively, and the right part of the framework learns the attention representation of associations. The experimental results based on the cross validation indicate that CNNLDA yields superior performance than several state-of-the-art methods. Case studies on stomach cancer, lung cancer, and colon cancer further demonstrate CNNLDA's ability to discover the potential disease lncRNAs.
Collapse
Affiliation(s)
- Ping Xuan
- School of Computer Science and Technology, Heilongjiang University, Harbin, China
| | - Yangkun Cao
- School of Computer Science and Technology, Heilongjiang University, Harbin, China
| | - Tiangang Zhang
- School of Mathematical Science, Heilongjiang University, Harbin, China
| | - Rui Kong
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhaogong Zhang
- School of Computer Science and Technology, Heilongjiang University, Harbin, China
| |
Collapse
|
26
|
Bian Y, Gao G, Zhang Q, Qian H, Yu L, Yao N, Qian J, Liu B, Qian X. KCNQ1OT1/miR-217/ZEB1 feedback loop facilitates cell migration and epithelial-mesenchymal transition in colorectal cancer. Cancer Biol Ther 2019; 20:886-896. [PMID: 30794031 DOI: 10.1080/15384047.2019.1579959] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Long noncoding RNAs are widely acknowledged as a group of regulatory factors in various diseases, especially in cancers. KCNQ1 overlapping transcript 1 (KCNQ1OT1) has been reported as oncogene in human cancers. However, the role of KCNQ1OT1 in colorectal cancer (CRC) has not been fully explained. Based on the database analysis, KCNQ1OT1 was highly expressed in CRC samples and predicted the poor prognosis for CRC patients. Functional experiments revealed that KCNQ1OT1 knockdown negatively affected the proliferation, migration and epithelial-mesenchymal transition (EMT) in CRC cells. Moreover, we identified the cytoplasmic localization of KCNQ1OT1 in CRC cells, indicating the post-transcriptional regulation of KCNQ1OT1 on gene expression. Mechanism experiments including RNA Immunoprecipitation (RIP) assay and dual luciferase reporter assays verified that KCNQ1OT1 acted as a competing endogenous RNA (ceRNA) in CRC by sponging microRNA-217 (miR-217) to up-regulate the expression of zinc finger E-box binding homeobox 1 (ZEB1). Further mechanism investigation revealed that ZEB1 enhanced the transcription activity of KCNQ1OT1 by acting as a transcription activator. Finally, rescue assays were designed to demonstrate the effect of KCNQ1OT1-miR-217-ZEB1 feedback loop on proliferation, migration, and EMT of CRC cells. In brief, our research findings revealed that ZEB1-induced upregulation of KCNQ1OT1 improved the proliferation, migration and EMT formation of CRC cells via regulation of miR-217/ZEB1 axis.
Collapse
Affiliation(s)
- Yinzhu Bian
- a Comprehensive Cancer Center , Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University , Nanjing , China.,b Department of Oncology, First People's Hospital of Yancheng , Fourth Affiliated Hospital of Nantong University , Yancheng , China
| | - Guangyi Gao
- c Department of Traditional Chinese Medicine , The Affiliated Huai'an Hospital of Xuzhou Medical University and Huai'an Second People's Hospital , Huai'an , Jiangsu , China
| | - Qun Zhang
- d Comprehensive Cancer Center, Nanjing Drum Tower Hospital , Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University , Nanjing , China
| | - Hanqing Qian
- d Comprehensive Cancer Center, Nanjing Drum Tower Hospital , Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University , Nanjing , China
| | - Lixia Yu
- d Comprehensive Cancer Center, Nanjing Drum Tower Hospital , Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University , Nanjing , China
| | - Ninghua Yao
- e Radiotherapy of oncology , The Affiliated hospital of Nantong University , Nantong , Jiangsu , China
| | - Jing Qian
- e Radiotherapy of oncology , The Affiliated hospital of Nantong University , Nantong , Jiangsu , China
| | - Baorui Liu
- d Comprehensive Cancer Center, Nanjing Drum Tower Hospital , Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University , Nanjing , China
| | - Xiaoping Qian
- a Comprehensive Cancer Center , Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University , Nanjing , China.,d Comprehensive Cancer Center, Nanjing Drum Tower Hospital , Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University , Nanjing , China
| |
Collapse
|