1
|
Wang K, Tu N, Feng H, Zhou Y, Bu L. Preoperative prognostic prediction for invasive pulmonary adenocarcinoma: Impact of 18F-FDG PET/CT semi-quantitative parameters associated with new histological subtype classification. Clin Radiol 2024; 79:e1539-e1548. [PMID: 39341726 DOI: 10.1016/j.crad.2024.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/29/2024] [Accepted: 08/30/2024] [Indexed: 10/01/2024]
Abstract
AIMS To explore the preoperative predictive value of 18F-FDG PET/CT for poor prognostic histologic subtypes of invasive pulmonary adenocarcinoma (IPA) under new classification. MATERIALS AND METHODS This study included 316 patients. Histopathology of IPA was evaluated by recording the percentage of each histologic component. PET/CT parameters were compared among IPAs with different risks of recurrence. Optimum cutoff values of PET/CT parameters were calculated using ROC curve analysis. Overall survival (OS) and disease-free survival (DFS) were calculated using Kaplan-Meier method, and survival differences between groups were tested using log-rank test. Multivariate analysis for survival was performed using the Cox regression model. RESULTS Patients were divided into low (LRR), intermediate (IRR), and modified high (mHRR) risk of recurrence group incorporating typical (HRR-T) and nontypical (HRR-NT) subgroups based on histologic patterns. There were significant differences in SUVmax, SUVmean, SUVmin, SUVSD, TLG, and tumor size among three groups. HRR-NT had lower SUVmax, SUVmean, SUVmin, SUVSD and TLG than HRR-T subgroup, and higher SUVmax, SUVmean, SUVmin, SUVSD, MTV, TLG and tumor size than IRR group. ROC curve analysis showed that SUVmax had highest AUC (0.815) in distinguishing LRR and IRR. TLG had highest AUC (0.741) in distinguishing IRR and mHRR. Multivariable analysis showed that tumor size and SUVmax were independent predictors of DFS and OS. CONCLUSIONS High risk of recurrence of IPA exhibited higher 18F-FDG uptake and tumor size. Tumor size and SUVmax could be used as preoperative surrogates for the IASLC grading system. 18F-FDG PET/CT can improve the preoperative prognostic prediction for IPA patients.
Collapse
Affiliation(s)
- K Wang
- PET-CT/MRI and Molecular Imaging Center, Renmin Hospital of Wuhan University, Wuhan 430000, Hubei, China
| | - N Tu
- PET-CT/MRI and Molecular Imaging Center, Renmin Hospital of Wuhan University, Wuhan 430000, Hubei, China
| | - H Feng
- PET-CT/MRI and Molecular Imaging Center, Renmin Hospital of Wuhan University, Wuhan 430000, Hubei, China
| | - Y Zhou
- PET-CT/MRI and Molecular Imaging Center, Renmin Hospital of Wuhan University, Wuhan 430000, Hubei, China
| | - L Bu
- PET-CT/MRI and Molecular Imaging Center, Renmin Hospital of Wuhan University, Wuhan 430000, Hubei, China.
| |
Collapse
|
2
|
Wang B, Pei J, Xu S, Liu J, Yu J. A glutamine tug-of-war between cancer and immune cells: recent advances in unraveling the ongoing battle. J Exp Clin Cancer Res 2024; 43:74. [PMID: 38459595 PMCID: PMC10921613 DOI: 10.1186/s13046-024-02994-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/22/2024] [Indexed: 03/10/2024] Open
Abstract
Glutamine metabolism plays a pivotal role in cancer progression, immune cell function, and the modulation of the tumor microenvironment. Dysregulated glutamine metabolism has been implicated in cancer development and immune responses, supported by mounting evidence. Cancer cells heavily rely on glutamine as a critical nutrient for survival and proliferation, while immune cells require glutamine for activation and proliferation during immune reactions. This metabolic competition creates a dynamic tug-of-war between cancer and immune cells. Targeting glutamine transporters and downstream enzymes involved in glutamine metabolism holds significant promise in enhancing anti-tumor immunity. A comprehensive understanding of the intricate molecular mechanisms underlying this interplay is crucial for developing innovative therapeutic approaches that improve anti-tumor immunity and patient outcomes. In this review, we provide a comprehensive overview of recent advances in unraveling the tug-of-war of glutamine metabolism between cancer and immune cells and explore potential applications of basic science discoveries in the clinical setting. Further investigations into the regulation of glutamine metabolism in cancer and immune cells are expected to yield valuable insights, paving the way for future therapeutic interventions.
Collapse
Affiliation(s)
- Bolin Wang
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China
| | - Jinli Pei
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China
| | - Shengnan Xu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China
| | - Jie Liu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China.
| | - Jinming Yu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
3
|
Liu X, Zou Q, Sun Y, Liu H, Cailiang G. Role of multiple dual-phase 18F-FDG PET/CT metabolic parameters in differentiating adenocarcinomas from squamous cell carcinomas of the lung. Heliyon 2023; 9:e20180. [PMID: 37767476 PMCID: PMC10520777 DOI: 10.1016/j.heliyon.2023.e20180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Purpose To evaluate the ability of multiple dual-phase 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) metabolic parameters to distinguish the histological subtypes of non-small cell lung cancer (NSCLC). Methods Data from 127 patients with non-small cell lung cancer who underwent preoperative dual-phase 18F-FDG PET/CT scanning at the PET-CT center of our hospital from December 2020 to October 2021 were collected, and the metabolic parameters of their primary lesions were measured and analyzed retrospectively. Intraclass correlation coefficients (ICC) were calculated for consistency between readers. Metabolic parameters in the early (SUVpeak, SUVmean, SUVmin, SUVmax, MTV, and TLG) and delayed phases (dpSUVpeak, dpSUVmean, dpSUVmin, dpSUVmax, dpMTV, and dpTLG) were calculated. We drew receiver operating characteristic (ROC) curves to compare the differences in different metabolic parameters between the adenocarcinoma (AC) and squamous cell carcinoma (SCC) groups and evaluated the ability of different metabolic parameters to distinguish AC from SCC. Results Inter-reader agreement, as assessed by the intraclass correlation coefficient (ICC), was good (ICC = 0.71, 95% CI:0.60-0.79). The mean MTV, SUVmax, TLG, SUVpeak, SUVmean, dpSUVmax, dpTLG, dpSUVpeak, dpSUVmean, and dpSUVmin of the tumors were significantly higher in SCC lesions than in AC lesions (P = 0.049, < 0.001, 0.016, < 0.001, 0.001, < 0.001, 0.018, < 0.001, 0.001, and 0.001, respectively). The diagnostic efficacy of the metabolic parameters in 18F-FDG PET/CT for differentiating adenocarcinoma from squamous cell carcinoma ranged from high to low as follows: SUVpeak (AUC = 0.727), SUVmax (AUC = 0.708), dpSUVmax (AUC = 0.699), dpSUVpeak (AUC = 0.698), TLG (AUC = 0.695), and dpTLG (AUC = 0.692), SUVmean (AUC = 0.690), dpSUVmean (AUC = 0.687), dpSUVmin (AUC = 0.680), SUVmin (AUC = 0.676), and MTV (AUC = 0.657). Conclusions Squamous cell carcinoma of the lung had higher mean MTV, SUVmax, TLG, SUVpeak, SUVmean, SUVmin, dpSUVpeak, dpSUVmean, dpSUVmin, dpSUVmax, and dpTLG than AC, which can be helpful tools in differentiating between the two. The metabolic parameters of the delayed phase (2 h after injection) 18F-FDG PET/CT did not improve the diagnostic efficacy in distinguishing lung AC from SCC. Conventional dual-phase 18F-FDG PET/CT is not recommended.
Collapse
Affiliation(s)
| | | | - Yu Sun
- Department of Nuclear Medicine, Chongqing University Three Gorges Hospital, Wanzhou, 404100, Chongqing, China
| | - Huiting Liu
- Department of Nuclear Medicine, Chongqing University Three Gorges Hospital, Wanzhou, 404100, Chongqing, China
| | - Gao Cailiang
- Department of Nuclear Medicine, Chongqing University Three Gorges Hospital, Wanzhou, 404100, Chongqing, China
| |
Collapse
|
4
|
Dong G, Li YH, Guo JS, Lin QQ, Deng MY, Xue WH, Li XY, Meng FH. Discovery of novel thymidylate synthase (TS) inhibitors that influence cancer angiogenesis and metabolic reprogramming in NSCLC cells. Eur J Med Chem 2023; 258:115600. [PMID: 37437348 DOI: 10.1016/j.ejmech.2023.115600] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/13/2023] [Accepted: 06/24/2023] [Indexed: 07/14/2023]
Abstract
Based on previous work, further search for more effective and less damaging thymidylate synthase (TS) inhibitors was the focus of this study. After further optimization of the structure, in this study, a series of (E)-N-(2-benzyl hydrazine-1-carbonyl) phenyl-2,4-deoxy-1,2,3,4-tetrahydro pyrimidine-5-sulfonamide derivatives were synthesized and reported for the first time. All target compounds were screened by enzyme activity assay and cell viability inhibition assay. On the one hand, the hit compound DG1 could bind directly to TS proteins intracellularly and promote apoptosis in A549 and H1975 cells. Simultaneously, DG1 could inhibit cancer tissue proliferation more effectively than Pemetrexed (PTX) in the A549 xenograft mouse model. On the other hand, the inhibitory effect of DG1 on NSCLC angiogenesis was verified both in vivo and in vitro. In parallel, DG1 was further uncovered to inhibit the expression of CD26, ET-1, FGF-1, and EGF by angiogenic factor antibody microarray. Moreover, RNA-seq and PCR-array assays revealed that DG1 could inhibit NSCLC proliferation by affecting metabolic reprogramming. Collectively, these data demonstrated that DG1as a TS inhibitor could be promising in treating NSCLC angiogenesis, deserving further investigation.
Collapse
Affiliation(s)
- Gang Dong
- School of Pharmacy, China Medical University, Shenyang, 110122, PR China
| | - Yu-Heng Li
- School of Pharmacy, China Medical University, Shenyang, 110122, PR China
| | - Jing-Si Guo
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China
| | - Qi-Qi Lin
- School of Pharmacy, China Medical University, Shenyang, 110122, PR China
| | - Mei-Yan Deng
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Liaoning, Shenyang, 110004, PR China
| | - Wen-Han Xue
- School of Pharmacy, China Medical University, Shenyang, 110122, PR China
| | - Xin-Yang Li
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China.
| | - Fan-Hao Meng
- School of Pharmacy, China Medical University, Shenyang, 110122, PR China.
| |
Collapse
|
5
|
Ni J, Dai W, Liu C, Ling Y, Mou H. A pan-cancer analysis of SLC1A5 in human cancers. Heliyon 2023; 9:e17598. [PMID: 37408893 PMCID: PMC10319225 DOI: 10.1016/j.heliyon.2023.e17598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023] Open
Abstract
Background The alanine-serine-cysteine transporter 2, ASCT2 (solute carrier family 1 member 5, SLC1A5), is a major transporter of the amino acid, glutamine. Although SLC1A5 has been reported to be associated with some types of cancer, less pan-cancer analysis, which would give a comprehensive understanding of SLC1A5 across human cancers, has been carried out. Methods We used the TCGA and GEO databases to investigate the oncogenic role of SLC1A5. We examined gene and protein expression, survival, genetic mutations, protein phosphorylation, immunocyte infiltration and the related genes correlated pathways. In HCT116 cells, SLC1A5 was silenced by siRNAs and the mRNA and protein was checked by Q-PCR and WB, respectively and the cellular function was assessed by CCK8, cell cycle and apoptosis. Results We found that SLC1A5 was over-expressed in multiple types of cancer and that elevated expression of SLC1A5 was associated with poor survival in many cancers. The missense mutation of R330 H/C was associated with poor survival, especially in uterine carcinosarcoma. Furthermore, we found enhanced phosphorylation of S503 in uterine corpus endometrial carcinoma and lung adenocarcinoma. In addition, elevated SLC1A5 expression was associated with immune cell infiltration in many cancers. KEGG and GO analysis showed that SLC1A5 and its related genes were involved in central carbon metabolism in cancer, due to their amino acid transport activity. The cellular function indicated that SLC1A5 may influence the cell proliferation by affecting DNA synthesis. Conclusions Our findings highlighted the important role of SLC1A5 in tumorigenesis and provided insights into potential cancer treatment strategies.
Collapse
Affiliation(s)
- Juan Ni
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Experimental Research Centre, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
| | - Wumin Dai
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Experimental Research Centre, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
| | - Chun Liu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yutian Ling
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Experimental Research Centre, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
| | - Hanzhou Mou
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Experimental Research Centre, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
| |
Collapse
|
6
|
Zhou L, Zhang Q, Zhu Q, Zhan Y, Li Y, Huang X. Role and therapeutic targeting of glutamine metabolism in non‑small cell lung cancer (Review). Oncol Lett 2023; 25:159. [PMID: 36936031 PMCID: PMC10017915 DOI: 10.3892/ol.2023.13745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/13/2023] [Indexed: 03/09/2023] Open
Abstract
The Warburg effect indicates that cancer cells survive through glycolysis under aerobic conditions; as such, the topic of cancer metabolism has aroused interest. It is requisite to further explore cancer metabolism, as it helps to simultaneously explain the process of carcinogenesis and guide therapy. The flexible metabolism of cancer cells, which is the result of metabolic reprogramming, can meet the basic needs of cells, even in a nutrition-deficient environment. Glutamine is the most abundant non-essential amino acid in the circulation, and along with glucose, comprise the two basic nutrients of cancer cell metabolism. Glutamine is crucial in non-small cell lung cancer (NSCLC) cells and serves an important role in supporting cell growth, activating signal transduction and maintaining redox homeostasis. In this perspective, the present review aims to provide a new therapeutic strategy of NSCLC through inhibiting the metabolism of glutamine. This review not only summarizes the significance of glutamine metabolism in NSCLC cells, but also enumerates traditional glutamine inhibitors along with new targets. It also puts forward the concept of combination therapy and patient stratification with the aim of comprehensively showing the effect and prospect of targeted glutamine metabolism in NSCLC therapy. This review was completed by searching for keywords including 'glutamine', 'NSCLC' and 'therapy' on PubMed, and screening out articles.
Collapse
Affiliation(s)
- Lei Zhou
- The First Clinical Medical College, Nanchang University, Nanchang, Jiangxi 330036, P.R. China
| | - Qi Zhang
- The National Engineering Research Center for Bioengineering Drugs and The Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330036, P.R. China
| | - Qing Zhu
- The National Engineering Research Center for Bioengineering Drugs and The Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330036, P.R. China
| | - Yuan Zhan
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yong Li
- Department of Anesthesiology, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Correspondence to: Dr Yong Li, Department of Anesthesiology, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu, Nanchang, Jiangxi 330006, P.R. China, E-mail:
| | - Xuan Huang
- The National Engineering Research Center for Bioengineering Drugs and The Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330036, P.R. China
- Dr Xuan Huang, The National Engineering Research Center for Bioengineering Drugs and The Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Road, Honggutan, Nanchang, Jiangxi 330036, P.R. China, E-mail:
| |
Collapse
|
7
|
Hu J, Ling Z, Li W, Su Z, Lu J, Zeng Q, Cheng B, Tao X. Glutamine promotes the proliferation of epithelial cells via mTOR/S6 pathway in oral lichen planus. J Oral Pathol Med 2023; 52:150-160. [PMID: 36459062 DOI: 10.1111/jop.13391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/15/2022] [Accepted: 11/23/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUND Although abnormal cell proliferation and apoptosis are associated with the pathogenesis of oral lichen planus (OLP), the exactly mechanism of which is not yet known. It has been reported that glutamine (Gln) can promote cell proliferation and inhibit apoptosis of various tumor cells. This study aims to evaluate the effect of Gln metabolism on the balance of proliferation and apoptosis in epithelial cells of OLP. METHODS Thirty human OLP specimens and 11 normal controls were stained by immunohistochemistry to detect the levels of proliferation and Gln metabolism related proteins. Then, the critical role of Gln in cell proliferation and apoptosis was determined by Gln deprivation or treatment with glutaminase inhibitor (CB-839) to intervene Gln metabolism in human gingival epithelial cells. Cell proliferation was detected using CCK8, p-mTOR and p-S6 proteins were detected using Western Blot, cell apoptosis and cell cycle were detected using flow cytometry, and cell stress was detected using immunofluorescence. RESULTS Compared with normal controls, OLP specimens showed higher levels of Ki-67 and Gln metabolism-related proteins, including Gln transporter (ASCT2), glutaminase (GLS), and pathway proteins (p-mTOR and p-S6). In vitro, Gln promoted cell proliferation and simultaneously upregulated the activity of mTOR/S6 pathway. Moreover, rapamycin, an mTOR pathway inhibitor, could effectively block the Gln-induced cell proliferation. MHY1485, an mTOR pathway agonist, could effectively reverse the decline of cell proliferation under Gln deprivation. In addition, inhibiting Gln metabolism caused the accumulation of intracellular radical oxygen species (ROS) and induced cell apoptosis. However, N-acetylcysteine reversed this state and then decreased cell apoptosis by eliminating intracellular ROS. CONCLUSION Gln metabolism is essential to maintain the balance of proliferation and apoptosis in oral epithelial cells, and inhibition of Gln metabolism may have a beneficial effect on OLP treatment.
Collapse
Affiliation(s)
- Jiaqi Hu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Zihang Ling
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Wei Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Zhangci Su
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Jingyi Lu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Qi Zeng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Bin Cheng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xiaoan Tao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
8
|
Huang M, Xiong D, Pan J, Zhang Q, Sei S, Shoemaker RH, Lubet RA, Montuenga LM, Wang Y, Slusher BS, You M. Targeting Glutamine Metabolism to Enhance Immunoprevention of EGFR-Driven Lung Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105885. [PMID: 35861366 PMCID: PMC9475521 DOI: 10.1002/advs.202105885] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Lung cancer is the leading cause of cancer death worldwide. Vaccination against EGFR can be one of the venues to prevent lung cancer. Blocking glutamine metabolism has been shown to improve anticancer immunity. Here, the authors report that JHU083, an orally active glutamine antagonist prodrug designed to be preferentially activated in the tumor microenvironment, has potent anticancer effects on EGFR-driven mouse lung tumorigenesis. Lung tumor development is significantly suppressed when treatment with JHU083 is combined with an EGFR peptide vaccine (EVax) than either single treatment. Flow cytometry and single-cell RNA sequencing of the lung tumors reveal that JHU083 increases CD8+ T cell and CD4+ Th1 cell infiltration, while EVax elicits robust Th1 cell-mediated immune responses and protects mice against EGFRL858R mutation-driven lung tumorigenesis. JHU083 treatment decreases immune suppressive cells, including both monocytic- and granulocytic-myeloid-derived suppressor cells, regulatory T cells, and pro-tumor CD4+ Th17 cells in mouse models. Interestingly, Th1 cells are found to robustly upregulate oxidative metabolism and adopt a highly activated and memory-like phenotype upon glutamine inhibition. These results suggest that JHU083 is highly effective against EGFR-driven lung tumorigenesis and promotes an adaptive T cell-mediated tumor-specific immune response that enhances the efficacy of EVax.
Collapse
Affiliation(s)
- Mofei Huang
- Center for Cancer PreventionHouston Methodist Cancer CenterHouston Methodist Research InstituteHoustonTX77030USA
| | - Donghai Xiong
- Center for Cancer PreventionHouston Methodist Cancer CenterHouston Methodist Research InstituteHoustonTX77030USA
| | - Jing Pan
- Center for Cancer PreventionHouston Methodist Cancer CenterHouston Methodist Research InstituteHoustonTX77030USA
| | - Qi Zhang
- Center for Cancer PreventionHouston Methodist Cancer CenterHouston Methodist Research InstituteHoustonTX77030USA
| | - Shizuko Sei
- Chemopreventive Agent Development Research GroupDivision of Cancer PreventionNational Cancer InstituteBethesdaMD20850USA
| | - Robert H. Shoemaker
- Chemopreventive Agent Development Research GroupDivision of Cancer PreventionNational Cancer InstituteBethesdaMD20850USA
| | - Ronald A. Lubet
- Chemopreventive Agent Development Research GroupDivision of Cancer PreventionNational Cancer InstituteBethesdaMD20850USA
| | - Luis M. Montuenga
- Program in Solid Tumors and BiomarkersCenter for Applied Medical Research (CIMA)University of NavarraPamplona31009Spain
- Department of Histology and PathologyUniversity of NavarraPamplona31009Spain
- Respiratory Tract Tumors GroupIdisnaPamplona31000Spain
- Respiratory Tract Tumors ProgramCIBERONCMadrid28013Spain
| | - Yian Wang
- Center for Cancer PreventionHouston Methodist Cancer CenterHouston Methodist Research InstituteHoustonTX77030USA
| | - Barbara S. Slusher
- Johns Hopkins Drug DiscoveryJohns Hopkins University School of MedicineBaltimoreMD21205USA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMD2128USA
| | - Ming You
- Center for Cancer PreventionHouston Methodist Cancer CenterHouston Methodist Research InstituteHoustonTX77030USA
| |
Collapse
|
9
|
Tang E, Liu S, Zhang Z, Zhang R, Huang D, Gao T, Zhang T, Xu G. Therapeutic Potential of Glutamine Pathway in Lung Cancer. Front Oncol 2022; 11:835141. [PMID: 35223460 PMCID: PMC8873175 DOI: 10.3389/fonc.2021.835141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 12/31/2021] [Indexed: 12/31/2022] Open
Abstract
Cancer cells tend to obtain the substances needed for their development depending on altering metabolic characteristics. Among the reorganized metabolic pathways, Glutamine pathway, reprogrammed to be involved in the physiological process including energy supply, biosynthesis and redox homeostasis, occupies an irreplaceable role in tumor cells and has become a hot topic in recent years. Lung cancer currently maintains a high morbidity and mortality rate among all types of tumors and has been a health challenge that researchers have longed to overcome. Therefore, this study aimed to clarify the essential role of glutamine pathway played in the metabolism of lung cancer and its potential therapeutic value in the interventions of lung cancer.
Collapse
|
10
|
Wang Y, Pan Y, Wu J, Luo Y, Fang Z, Xu R, Teng W, Chen M, Li Y. A Novel Predictive Model Incorporating Ferroptosis-Related Gene Signatures for Overall Survival in Patients with Lung Adenocarcinoma. MEDICAL SCIENCE MONITOR : INTERNATIONAL MEDICAL JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2022; 28:e934050. [PMID: 35102130 PMCID: PMC8817619 DOI: 10.12659/msm.934050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is the predominant histological type of lung cancer with high morbidity and mortality. Ferroptosis is regarded as a new pattern of programmed cell death concerned with the progression of lung cancer characterized by lipid peroxidation. Nevertheless, the prognostic role of ferroptosis-related genes for LUAD warrant to be explored. MATERIAL AND METHODS RNA sequencing and relevant clinical patient data were obtained from public-access databanks. A prognostic model was constructed through the LASSO Cox regression in the cancer genome atlas cohort. The diagnostic value of the prognostic model was further evaluated in the gene expression omnibus cohort. RESULTS Most of the ferroptosis-related genes (69.9%) were differentially expressed between tumor and adjacent non-cancerous tissues. 43 differentially expressed genes showed a close association with the prognosis of LUAD patients (adjusted p-value <0.05). An 18-gene signature was built and applied to assign patients into high vs low-risk groups. Compared with the high-risk group, patients defined as the low-risk group suffered significantly prolonged OS. Both uni- and multivariate analyses demonstrated that the signature-based score served as a crucial role in influencing the OS of LUAD patients (hazard ratio >1, p<0.001). The immunity-related signaling pathway was enriched in the functional analysis and the infiltration of the immune cells showed a great difference between groups. CONCLUSIONS The predictive model could be applied for prognostic prediction for LUAD. Targeting ferroptosis could be a possible curative strategy against LUAD, and immunomodulation may be one of the potential mechanisms.
Collapse
Affiliation(s)
- Yuli Wang
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China (mainland)
| | - Yanbin Pan
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China (mainland)
| | - Jianchun Wu
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China (mainland)
| | - Yingbin Luo
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China (mainland)
| | - Zhihong Fang
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China (mainland)
| | - Rongzhong Xu
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China (mainland)
| | - Wenjing Teng
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China (mainland)
| | - Min Chen
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China (mainland)
| | - Yan Li
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China (mainland)
| |
Collapse
|
11
|
van Genugten EAJ, Weijers JAM, Heskamp S, Kneilling M, van den Heuvel MM, Piet B, Bussink J, Hendriks LEL, Aarntzen EHJG. Imaging the Rewired Metabolism in Lung Cancer in Relation to Immune Therapy. Front Oncol 2022; 11:786089. [PMID: 35070990 PMCID: PMC8779734 DOI: 10.3389/fonc.2021.786089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/10/2021] [Indexed: 12/14/2022] Open
Abstract
Metabolic reprogramming is recognized as one of the hallmarks of cancer. Alterations in the micro-environmental metabolic characteristics are recognized as important tools for cancer cells to interact with the resident and infiltrating T-cells within this tumor microenvironment. Cancer-induced metabolic changes in the micro-environment also affect treatment outcomes. In particular, immune therapy efficacy might be blunted because of somatic mutation-driven metabolic determinants of lung cancer such as acidity and oxygenation status. Based on these observations, new onco-immunological treatment strategies increasingly include drugs that interfere with metabolic pathways that consequently affect the composition of the lung cancer tumor microenvironment (TME). Positron emission tomography (PET) imaging has developed a wide array of tracers targeting metabolic pathways, originally intended to improve cancer detection and staging. Paralleling the developments in understanding metabolic reprogramming in cancer cells, as well as its effects on stromal, immune, and endothelial cells, a wave of studies with additional imaging tracers has been published. These tracers are yet underexploited in the perspective of immune therapy. In this review, we provide an overview of currently available PET tracers for clinical studies and discuss their potential roles in the development of effective immune therapeutic strategies, with a focus on lung cancer. We report on ongoing efforts that include PET/CT to understand the outcomes of interactions between cancer cells and T-cells in the lung cancer microenvironment, and we identify areas of research which are yet unchartered. Thereby, we aim to provide a starting point for molecular imaging driven studies to understand and exploit metabolic features of lung cancer to optimize immune therapy.
Collapse
Affiliation(s)
- Evelien A J van Genugten
- Department of Medical Imaging, Radboud University Medical Centre (Radboudumc), Nijmegen, Netherlands
| | - Jetty A M Weijers
- Department of Medical Imaging, Radboud University Medical Centre (Radboudumc), Nijmegen, Netherlands
| | - Sandra Heskamp
- Department of Medical Imaging, Radboud University Medical Centre (Radboudumc), Nijmegen, Netherlands
| | - Manfred Kneilling
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University, Tuebingen, Germany.,Department of Dermatology, Eberhard Karls University, Tuebingen, Germany
| | | | - Berber Piet
- Department of Respiratory Diseases, Radboudumc, Nijmegen, Netherlands
| | - Johan Bussink
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboudumc, Netherlands
| | - Lizza E L Hendriks
- Department of Pulmonary Diseases, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre (UMC), Maastricht, Netherlands
| | - Erik H J G Aarntzen
- Department of Medical Imaging, Radboud University Medical Centre (Radboudumc), Nijmegen, Netherlands
| |
Collapse
|
12
|
MiR-133a-3p overexpression-induced elevation of cisplatin-mediated chemosensitivity to non-small cell lung cancer by targeting replication factor C3. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Chen L, Liu K, Zhao X, Shen H, Zhao K, Zhu W. Habitat Imaging-Based 18F-FDG PET/CT Radiomics for the Preoperative Discrimination of Non-small Cell Lung Cancer and Benign Inflammatory Diseases. Front Oncol 2021; 11:759897. [PMID: 34692548 PMCID: PMC8526895 DOI: 10.3389/fonc.2021.759897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/14/2021] [Indexed: 12/25/2022] Open
Abstract
Purpose To propose and evaluate habitat imaging-based 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) radiomics for preoperatively discriminating non-small cell lung cancer (NSCLC) and benign inflammatory diseases (BIDs). Methods Three hundred seventeen 18F-FDG PET/CT scans were acquired from patients who underwent aspiration biopsy or surgical resection. All volumes of interest (VOIs) were semiautomatically segmented. Each VOI was separated into variant subregions, namely, habitat imaging, based on our adapted clustering-based habitat generation method. Radiomics features were extracted from these subregions. Three feature selection methods and six classifiers were applied to construct the habitat imaging-based radiomics models for fivefold cross-validation. The radiomics models whose features extracted by conventional habitat-based methods and nonhabitat method were also constructed. For comparison, the performances were evaluated in the validation set in terms of the area under the receiver operating characteristic curve (AUC). Pairwise t-test was applied to test the significant improvement between the adapted habitat-based method and the conventional methods. Results A total of 1,858 radiomics features were extracted. After feature selection, habitat imaging-based 18F-FDG PET/CT radiomics models were constructed. The AUC of the adapted clustering-based habitat radiomics was 0.7270 ± 0.0147, which showed significantly improved discrimination performance compared to the conventional methods (p <.001). Furthermore, the combination of features extracted by our adaptive habitat imaging-based method and non-habitat method showed the best performance than the other combinations. Conclusion Habitat imaging-based 18F-FDG PET/CT radiomics shows potential as a biomarker for discriminating NSCLC and BIDs, which indicates that the microenvironmental variations in NSCLC and BID can be captured by PET/CT.
Collapse
Affiliation(s)
- Ling Chen
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, China
| | - Kanfeng Liu
- Positron Emission Tomography (PET) Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xin Zhao
- Positron Emission Tomography (PET) Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hui Shen
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, China
| | - Kui Zhao
- Positron Emission Tomography (PET) Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wentao Zhu
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, China
| |
Collapse
|
14
|
Zhang G, Dong R, Kong D, Liu B, Zha Y, Luo M. The Effect of GLUT1 on Survival Rate and the Immune Cell Infiltration of Lung Adenocarcinoma and Squamous Cell Carcinoma: A Meta and Bioinformatics Analysis. Anticancer Agents Med Chem 2021; 22:223-238. [PMID: 34238200 DOI: 10.2174/1871520621666210708115406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC) are two major subtypes of non-small cell lung cancer (NSCLC). Studies have shown that abnormal expression of glucose transport type 1 (GLUT1) in NSCLC patients has been associated with progression, aggressiveness, and poor clinical outcome. However, the clinical effect of GLUT1 expression on LUAD and LUSC is unclear. OBJECTIVE This study aims to learn more about the character of GLUT1 in LUAD and LUSC. METHODS A meta-analysis was performed to evaluate the GLUT1 protein level, and bioinformatics analysis was used to detect the GLUT1 mRNA expression level, survival differences, and the infiltration abundance of immune cells in samples from TCGA. Meanwhile, functional and network analysis was conducted to detect important signaling pathways and key genes with the Gene Expression Omnibus (GEO) dataset. RESULTS Our results showed that GLUT1 was over-expressed both in LUAD and LUSC. LUAD patients with high GLUT1 expression had a poor prognosis. Additionally, GLUT1 was related to B cell and neutrophil infiltration of LUAD. In LUSC, GLUT1 was correlated with tumor purity, B cell, CD8+ T cell, CD4+ T cell, macrophage, neutrophil, and dendritic cell infiltration. The GEO dataset analysis results suggested GLUT1 potentially participated in the p53 signaling pathway and metabolism of xenobiotics by cytochrome P450 and was associated with KDR, TOX3, AGR2, FOXA1, ERBB3, ANGPT1, and COL4A3 gene in LUAD and LUSC. CONCLUSION GLUT1 might be a potential biomarker for aggressive progression and poor prognosis in LUAD, and a therapeutic biomarker in LUSC.
Collapse
Affiliation(s)
- Guihua Zhang
- Guizhou University School of Medicine, Guizhou University, Gui Yang, China
| | - Rong Dong
- Guizhou University School of Medicine, Guizhou University, Gui Yang, China
| | - Demiao Kong
- Department of Thoracic Surgery, Guizhou Provincial People's Hospital, Gui Yang, China
| | - Bo Liu
- Department of Thoracic Surgery, Guizhou Provincial People's Hospital, Gui Yang, China
| | - Yan Zha
- Guizhou University School of Medicine, Guizhou University, Gui Yang, China
| | - Meng Luo
- Guizhou University School of Medicine, Guizhou University, Gui Yang, China
| |
Collapse
|
15
|
Kandasamy P, Zlobec I, Nydegger DT, Pujol-Giménez J, Bhardwaj R, Shirasawa S, Tsunoda T, Hediger MA. Oncogenic KRAS mutations enhance amino acid uptake by colorectal cancer cells via the hippo signaling effector YAP1. Mol Oncol 2021; 15:2782-2800. [PMID: 34003553 PMCID: PMC8486573 DOI: 10.1002/1878-0261.12999] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/14/2021] [Accepted: 05/14/2021] [Indexed: 12/28/2022] Open
Abstract
Oncogenic KRAS mutations develop unique metabolic dependencies on nutrients to support tumor metabolism and cell proliferation. In particular, KRAS mutant cancer cells exploit amino acids (AAs) such as glutamine and leucine, to accelerate energy metabolism, redox balance through glutathione synthesis and macromolecule biosynthesis. However, the identities of the amino acid transporters (AATs) that are prominently upregulated in KRAS mutant cancer cells, and the mechanism regulating their expression have not yet been systematically investigated. Here, we report that the majority of the KRAS mutant colorectal cancer (CRC) cells upregulate selected AATs (SLC7A5/LAT1, SLC38A2/SNAT2, and SLC1A5/ASCT2), which correlates with enhanced uptake of AAs such as glutamine and leucine. Consistently, knockdown of oncogenic KRAS downregulated the expression of AATs, thereby decreasing the levels of amino acids taken up by CRC cells. Moreover, overexpression of mutant KRAS upregulated the expression of AATs (SLC7A5/LAT1, SLC38A2/SNAT2, and SLC1A5/ASCT2) in KRAS wild-type CRC cells and mouse embryonic fibroblasts. In addition, we show that the YAP1 (Yes-associated protein 1) transcriptional coactivator accounts for increased expression of AATs and mTOR activation in KRAS mutant CRC cells. Specific knockdown of AATs by shRNAs or pharmacological blockage of AATs effectively inhibited AA uptake, mTOR activation, and cell proliferation. Collectively, we conclude that oncogenic KRAS mutations enhance the expression of AATs via the hippo effector YAP1, leading to mTOR activation and CRC cell proliferation.
Collapse
Affiliation(s)
- Palanivel Kandasamy
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension, Inselspital, University of Bern, Switzerland.,Department of Biomedical Research, University of Bern, Switzerland
| | - Inti Zlobec
- Translational Research Unit (TRU), Institute of Pathology, University of Bern, Switzerland
| | - Damian T Nydegger
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension, Inselspital, University of Bern, Switzerland.,Department of Biomedical Research, University of Bern, Switzerland
| | - Jonai Pujol-Giménez
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension, Inselspital, University of Bern, Switzerland.,Department of Biomedical Research, University of Bern, Switzerland
| | - Rajesh Bhardwaj
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension, Inselspital, University of Bern, Switzerland.,Department of Biomedical Research, University of Bern, Switzerland
| | - Senji Shirasawa
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, Japan
| | - Toshiyuki Tsunoda
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, Japan
| | - Matthias A Hediger
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension, Inselspital, University of Bern, Switzerland.,Department of Biomedical Research, University of Bern, Switzerland
| |
Collapse
|
16
|
Zhang Z, Shen L, Wang Y, Wang J, Zhang H, Xia F, Wan J, Zhang Z. MRI Radiomics Signature as a Potential Biomarker for Predicting KRAS Status in Locally Advanced Rectal Cancer Patients. Front Oncol 2021; 11:614052. [PMID: 34026605 PMCID: PMC8138318 DOI: 10.3389/fonc.2021.614052] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/18/2021] [Indexed: 12/21/2022] Open
Abstract
Background and Purpose Locally advanced rectal cancer (LARC) is a heterogeneous disease with little information about KRAS status and image features. The purpose of this study was to analyze the association between T2 magnetic resonance imaging (MRI) radiomics features and KRAS status in LARC patients. Material and Methods Eighty-three patients with KRAS status information and T2 MRI images between 2012.05 and 2019.09 were included. Least absolute shrinkage and selection operator (LASSO) regression was performed to assess the associations between features and gene status. The patients were divided 7:3 into training and validation sets. The C-index and the average area under the receiver operator characteristic curve (AUC) were used for performance evaluation. Results The clinical characteristics of 83 patients in the KRAS mutant and wild-type cohorts were balanced. Forty-two (50.6%) patients had KRAS mutations, and 41 (49.4%) patients had wild-type KRAS. A total of 253 radiomics features were extracted from the T2-MRI images of LARC patients. One radiomic feature named X.LL_scaled_std, a standard deviation value of scaled wavelet-transformed low-pass channel filter, was selected from 253 features (P=0.019). The radiomics-based C-index values were 0.801 (95% CI: 0.772-0.830) and 0.703 (95% CI: 0.620-0.786) in the training and validation sets, respectively. Conclusion Radiomics features could differentiate KRAS status in LARC patients based on T2-MRI images. Further validation in a larger dataset is necessary in the future.
Collapse
Affiliation(s)
- ZhiYuan Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - LiJun Shen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Yan Wang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Jiazhou Wang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Hui Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Fan Xia
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - JueFeng Wan
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Zhen Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| |
Collapse
|
17
|
Xia M, Li X, Diao Y, Du B, Li Y. Targeted inhibition of glutamine metabolism enhances the antitumor effect of selumetinib in KRAS-mutant NSCLC. Transl Oncol 2020; 14:100920. [PMID: 33137541 PMCID: PMC7644669 DOI: 10.1016/j.tranon.2020.100920] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/02/2020] [Accepted: 10/14/2020] [Indexed: 01/09/2023] Open
Abstract
The glutamine utilization of KRAS-mutant NSCLC is higher than that of KRAS wild-type. Targeted GLS1 and MEK inhibition enhance antitumor activity in vitro and in vivo. The therapeutic response can be well identified by 18F-FDG PET imaging. Dual inhibition of GLS1 and MEK induce redox and energetic stress. Dual inhibition of GLS1 and MEK suppress the phosphorylation of AKT.
Regulated by the tumor microenvironment, the metabolic network of the tumor is reprogrammed, driven by oncogenes and tumor suppressor genes. The metabolic phenotype of tumors of different driven-genes and different tissue types is extremely heterogeneous. KRAS-mutant non-small cell lung cancer (NSCLC) has glutamine dependence. In this study, we demonstrated that glutamine utilization of KRAS-mutant NSCLC was higher than that of KRAS wild-type. CB839, an efficient glutaminase inhibitor, synergized with the MEK inhibitor selumetinib to enhance antitumor activity in KRAS-mutant NSCLC cells and xenografts, and the therapeutic response could be well identified by 18F-FDG PET imaging. Combination therapy induced redox stress, manifesting as a decrease in mitochondrial membrane potential and an increase in ROS levels, and energetic stress manifesting as suppression of glycolysis and glutamine degradation. The phosphorylation of AKT was also suppressed. These effects combined to induce autophagy and thereby caused cancer cell death. Our results suggest that dual inhibition of the MEK-ERK pathway and glutamine metabolism activated by KRAS mutation may be an effective treatment strategy for KRAS-driven NSCLC.
Collapse
Affiliation(s)
- Meng Xia
- Department of Nuclear Medicine, The First Hospital of China Medical University, 155 Nanjin Street, Shenyang 110000, China
| | - Xuena Li
- Department of Nuclear Medicine, The First Hospital of China Medical University, 155 Nanjin Street, Shenyang 110000, China
| | - Yao Diao
- Department of Nuclear Medicine, The First Hospital of China Medical University, 155 Nanjin Street, Shenyang 110000, China
| | - Bulin Du
- Department of Nuclear Medicine, The First Hospital of China Medical University, 155 Nanjin Street, Shenyang 110000, China
| | - Yaming Li
- Department of Nuclear Medicine, The First Hospital of China Medical University, 155 Nanjin Street, Shenyang 110000, China.
| |
Collapse
|
18
|
Heterogeneity of Glucose Transport in Lung Cancer. Biomolecules 2020; 10:biom10060868. [PMID: 32517099 PMCID: PMC7356687 DOI: 10.3390/biom10060868] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
Increased glucose uptake is a known hallmark of cancer. Cancer cells need glucose for energy production via glycolysis and the tricarboxylic acid cycle, and also to fuel the pentose phosphate pathway, the serine biosynthetic pathway, lipogenesis, and the hexosamine pathway. For this reason, glucose transport inhibition is an emerging new treatment for different malignancies, including lung cancer. However, studies both in animal models and in humans have shown high levels of heterogeneity in the utilization of glucose and other metabolites in cancer, unveiling a complexity that is difficult to target therapeutically. Here, we present an overview of different levels of heterogeneity in glucose uptake and utilization in lung cancer, with diagnostic and therapeutic implications.
Collapse
|
19
|
Xie YJ, Gao WN, Wu QB, Yao XJ, Jiang ZB, Wang YW, Wang WJ, Li W, Hussain S, Liu L, Leung ELH, Fan XX. Chelidonine selectively inhibits the growth of gefitinib-resistant non-small cell lung cancer cells through the EGFR-AMPK pathway. Pharmacol Res 2020; 159:104934. [PMID: 32464330 DOI: 10.1016/j.phrs.2020.104934] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 02/08/2023]
Abstract
Tyrosine kinase inhibitors (TKIs) have been widely used for the clinical treatment of patients with non-small cell lung cancer (NSCLC) harboring mutations in the EGFR. Unfortunately, due to the secondary mutation in EGFR, eventual drug-resistance is inevitable. Therefore, to overcome the resistance, new agent is urgently required. Chelidonine, extracted from the roots of Chelidonium majus, was proved to effectively suppress the growth of NSCLC cells with EGFR double mutation. Proteomics analysis indicated that mitochondrial respiratory chain was significantly inhibited by chelidonine, and inhibitor of AMPK effectively blocked the apoptosis induced by chelidonine. Molecular dynamics simulations indicated that chelidonine could directly bind to EGFR and showed a much higher binding affinity to EGFRL858R/T790M than EGFRWT, which demonstrated that chelidonine could selectively inhibit the phosphorylation of EGFR in cells with EGFR double-mutation. In vivo study revealed that chelidonine has a similar inhibitory effect like second generation TKI Afatinib. In conclusion, targeting EGFR and inhibition of mitochondrial function is a promising anti-cancer therapeutic strategy for inhibiting NSCLC with EGFR mutation and TKI resistance.
Collapse
Affiliation(s)
- Ya-Jia Xie
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR, PR China
| | - Wei-Na Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR, PR China; Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Qi-Biao Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR, PR China
| | - Xiao-Jun Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR, PR China
| | - Ze-Bo Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR, PR China
| | - Yu-Wei Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR, PR China
| | - Wen-Jun Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR, PR China
| | - Wei Li
- TianJin NanKai Hospital, TianJin, PR China
| | - Shahid Hussain
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR, PR China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR, PR China.
| | - Elaine Lai-Han Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR, PR China.
| | - Xing-Xing Fan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR, PR China.
| |
Collapse
|