1
|
Chen P, Zhang J, Wu S, Zhang X, Zhou W, Guan Z, Tang H. CircRNAs: a novel potential strategy to treat breast cancer. Front Immunol 2025; 16:1563655. [PMID: 40176810 PMCID: PMC11961433 DOI: 10.3389/fimmu.2025.1563655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/20/2025] [Indexed: 04/04/2025] Open
Abstract
Breast cancer is among the most prevalent malignant tumors worldwide, with triple-negative breast cancer (TNBC) being the most aggressive subtype and lacking effective treatment options. Circular RNAs (circRNAs) are noncoding RNAs that play crucial roles in the development of tumors, including breast cancer. This article examines the progress of research on circRNAs in breast cancer, focusing on four main areas: 1) breast cancer epidemiology, classification, and treatment; 2) the structure, discovery process, characteristics, formation, and functions of circRNAs; 3) the expression, mechanisms, clinical relevance, and recent advances in the study of circRNAs in breast cancer cells and the immune microenvironment, particularly in TNBC; and 4) the challenges and future prospects of the use of circRNAs in BC research.
Collapse
Affiliation(s)
- Pangzhou Chen
- The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| | - Jinhui Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Song Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaoyu Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wen Zhou
- The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| | - Ziyun Guan
- The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
2
|
Wang MH, Liu ZH, Zhang HX, Liu HC, Ma LH. Hsa_circRNA_000166 accelerates breast cancer progression via the regulation of the miR-326/ELK1 and miR-330-5p/ELK1 axes. Ann Med 2024; 56:2424515. [PMID: 39529543 PMCID: PMC11559033 DOI: 10.1080/07853890.2024.2424515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/18/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
PURPOSES To probe the expression, clinical significance, roles, and molecular mechanisms of circRNA_000166 in breast cancer (BC). METHODS Clinical tissue samples were gathered from 84 BC patients who underwent surgery at the Affiliated Hospital of Chengde Medical College. Clinical data were obtained from medical records and postoperative follow-up. Expression levels of circRNA_000166, miR-326, miR-330-5p, and ELK1 mRNA in BC tissues and cells were measured by qRT-PCR, and ELK1 protein levels were assessed by WB. Pearson's correlation analysis evaluated the interrelationships between these RNAs in clinical samples. Luciferase reporter assays verified the interactions between miR-326/miR-330-5p and circRNA_000166, as well as between miR-326/miR-330-5p and ELK1. Cell proliferation, migration, and apoptosis were examined using CCK-8, colony formation, transwell, and flow cytometry assays, respectively. RESULTS CircRNA_000166 was highly expressed in BC tissues and inversely correlated with miR-326/miR-330-5p levels but positively with ELK1 mRNA levels. ELK1 mRNA also inversely associated with miR-326/miR-330-5p levels in BC tissues. Importantly, our findings demonstrated that circRNA_000166 targets miR-326 and miR-330-5p, while ELK1 is the target of miR-326 and miR-330-5p in BC cells. CircRNA_000166 levels positively correlated with tumour size, TNM stage, histological grade, and lymph node metastasis, and negatively associated with postoperative progression-free survival (PFS) and overall survival (OS) in BC patients. CircRNA_000166 was also highly expressed in BC cells, and knockdown of circRNA_000166 reduced proliferation and migration, and increased apoptosis via miR-326/ELK1 and miR-330-5p/ELK1 pathways in vitro. CONCLUSION CircRNA_000166 enhances BC progression through miR-326/ELK1 and miR-330-5p/ELK1 pathways and shows potential as a biomarker for BC diagnosis and treatment.
Collapse
Affiliation(s)
- Ming-Hui Wang
- Department of Breast Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Zi-Hui Liu
- Department of Pathology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Hong-Xu Zhang
- Department of Breast Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Han-Cheng Liu
- Department of Breast Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Li-Hui Ma
- Department of Breast Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| |
Collapse
|
3
|
Yao X, Yang Z, Hou G, Jiang J, Wang L, Jiang J. TRIM24/ZFX affects the stemness and resistance to 5-FU of colorectal cancer cells. J Chemother 2024:1-12. [PMID: 39221698 DOI: 10.1080/1120009x.2024.2376422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/07/2024] [Accepted: 06/27/2024] [Indexed: 09/04/2024]
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer death, and about 10% of all malignancies are CRC. Cancer stem cells are considered main culprits in CRC treatment resistance and disease recurrence. This study explored the effects of tripartite motif containing 24 (TRIM24) and zinc finger protein, X-linked (ZFX) on CRC cell stemness and 5-FU resistance. A 5-FU-resistant cell line (HT29-5-FU) was constructed for functional analysis of CRC 5-FU-resistant cells. qRT-PCR and western blot (WB) were employed to analyze mRNA and protein levels of ZFX in 5-FU resistant cells and sensitive cells. WB was also utilized to analyze the surface markers of stem cells in each group. CCK-8 assay determined the IC50 values of different cell groups treated with 5-FU. The sphere-forming ability of cells in each group was determined using tumor sphere assay. Dual-luciferase reporter gene assay validated binding of ZFX to TRIM24. ZFX was highly expressed in HT29-5-FU cells. Silencing ZFX significantly reduced the 5-FU resistance and IC50 value of HT29-5-FU cells, and the surface markers and cell sphere-forming ability of stem cells were also significantly reduced. The function of HT29 cells was opposite when ZFX was overexpressed. In CRC cells, TRIM24 was an upstream transcription factor of ZFX, and they interacted with each other. TRIM24 activated the expression of ZFX to influence the stemness and 5-FU resistance of cells. The TRIM24/ZFX regulatory axis affected the stemness of CRC cells and their sensitivity to 5-FU, providing potential drug targets for novel therapeutic avenues for CRC.
Collapse
Affiliation(s)
- Xuming Yao
- Department of Oncology, The Affliated Hospital of Jiaxing University (The First Hospital of Jiaxing), Jiaxing, Zhejiang, China
| | - Zhiping Yang
- Department of Oncology, The Affliated Hospital of Jiaxing University (The First Hospital of Jiaxing), Jiaxing, Zhejiang, China
| | - Guoxin Hou
- Department of Oncology, The Affliated Hospital of Jiaxing University (The First Hospital of Jiaxing), Jiaxing, Zhejiang, China
| | - Jialu Jiang
- Department of Oncology, The Affliated Hospital of Jiaxing University (The First Hospital of Jiaxing), Jiaxing, Zhejiang, China
| | - Lvbin Wang
- Department of Oncology, The Affliated Hospital of Jiaxing University (The First Hospital of Jiaxing), Jiaxing, Zhejiang, China
| | - Jin Jiang
- Department of Oncology, The Affliated Hospital of Jiaxing University (The First Hospital of Jiaxing), Jiaxing, Zhejiang, China
| |
Collapse
|
4
|
Zhu J, Li Q, Wu Z, Xu W, Jiang R. Circular RNA-mediated miRNA sponge & RNA binding protein in biological modulation of breast cancer. Noncoding RNA Res 2024; 9:262-276. [PMID: 38282696 PMCID: PMC10818160 DOI: 10.1016/j.ncrna.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/30/2024] Open
Abstract
Circular RNAs (circRNAs) and small non-coding RNAs of the head-to-junction circle in the construct play critical roles in gene regulation and are significantly associated with breast cancer (BC). Numerous circRNAs are potential cancer biomarkers that may be used for diagnosis and prognosis. Widespread expression of circRNAs is regarded as a feature of gene expression in highly diverged eukaryotes. Recent studies show that circRNAs have two main biological modulation models: sponging and RNA-binding. This review explained the biogenesis of circRNAs and assessed emerging findings on their sponge function and role as RNA-binding proteins (RBPs) to better understand how their interaction alters cellular function in BC. We focused on how sponges significantly affect the phenotype and progression of BC. We described how circRNAs exercise the translation functions in ribosomes. Furthermore, we reviewed recent studies on RBPs, and post-protein modifications influencing BC and provided a perspective on future research directions for treating BC.
Collapse
Affiliation(s)
- Jing Zhu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qian Li
- Medical Department, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Zhongping Wu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wei Xu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Rilei Jiang
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
5
|
Qu B, Liu J, Peng Z, Xiao Z, Li S, Wu J, Li S, Luo J. CircSOD2 polarizes macrophages towards the M1 phenotype to alleviate cisplatin resistance in gastric cancer cells by targeting the miR-1296/STAT1 axis. Gene 2023; 887:147733. [PMID: 37625563 DOI: 10.1016/j.gene.2023.147733] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/06/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
Cisplatin is the first-line drug for gastric cancer (GC). Cisplatin resistance is the most important cause of poor prognosis for GC. Increasing evidence has identified the important role of macrophage polarization in chemoresistance. CircRNAs are newly discovered non-coding RNAs, characterized by covalently closed loops with high stability. Previous studies have reported a significant difference between circRNA profiles expressed in classically activated M1 macrophages, and those expressed in alternatively activated M2 macrophages. However, the underlying mechanism behind the regulation of GC cisplatin resistance by macrophages remains unclear. In our study, we observed the aberrant high expression of circSOD2 in M1 macrophages derived from THP-1. These expression patterns were confirmed in macrophages from patients with GC. Detection of the M1 and M2 markers confirmed that overexpression of circSOD2 enhances M1 polarization. The viability of cisplatin-treated GC cells was significantly reduced in the presence of macrophages overexpressing circSOD2, and cisplatin-induced apoptosis increased dramatically. In vivo experiments showed that macrophages expressing circSOD2 enhanced the effect of cisplatin. Moreover, we demonstrated that circSOD2 acts as a microRNA sponge for miR-1296 and regulates the expression of its target gene STAT1 (signal transducer and activator of transcription 1). CircSOD2 exerts its function through the miR-1296/STAT1 axis. Inhibition of circSOD2/miR-1296/STAT1 may therefore reduce M1 polarization. Overexpression of circSOD2 promotes the polarization of M1 macrophages and enhances the effect of cisplatin in GC. CircSOD2 is a novel positive regulator of M1 macrophages and may serve as a potential target for GC chemotherapy.
Collapse
Affiliation(s)
- Bing Qu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Jiasheng Liu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Zhiyang Peng
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Zhe Xiao
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Shijun Li
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Jianguo Wu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Shengbo Li
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Jianfei Luo
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| |
Collapse
|
6
|
Zepeda-Enríquez P, Silva-Cázares MB, López-Camarillo C. Novel Insights into Circular RNAs in Metastasis in Breast Cancer: An Update. Noncoding RNA 2023; 9:55. [PMID: 37736901 PMCID: PMC10514845 DOI: 10.3390/ncrna9050055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023] Open
Abstract
Circular RNAs (circRNAs) are single-stranded closed non-coding RNA molecules that are aberrantly expressed and produce tumor-specific gene signatures in human cancers. They exert biological functions by acting as transcriptional regulators, microRNA sponges, and protein scaffolds, regulating the formation of protein-RNA complexes and, ultimately, regulating gene expression. Triple-negative breast cancer (TNBC) is one of the most aggressive cancers of the mammary gland and has a poor prognosis. Studies of circRNAs in TNBC are limited but have demonstrated these molecules' pivotal roles in cell proliferation, invasion, metastasis, and resistance to chemo/radiotherapy, suggesting that they could be potential prognostic biomarkers and novel therapeutic targets. Here, we reviewed the status of actual knowledge about circRNA biogenesis and functions and summarized novel findings regarding their roles in TNBC development and progression. In addition, we discussed recent data about the importance of exosomes in the transport and export of circRNAs in TNBC. Deep knowledge of circRNA functions in metastasis and therapy responses could be an invaluable guide in the identification of novel therapeutic targets for advancing the treatment of TNBC.
Collapse
Affiliation(s)
- Paola Zepeda-Enríquez
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, CDMX 03100, Mexico;
| | - Macrina B. Silva-Cázares
- Coordinación Academica Región Altiplano, Universidad Autónoma de San Luis Potosí, Matehuala 78700, Mexico;
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, CDMX 03100, Mexico;
| |
Collapse
|
7
|
Palcau AC, Brandi R, Mehterov NH, Botti C, Blandino G, Pulito C. Exploiting Long Non-Coding RNAs and Circular RNAs as Pharmacological Targets in Triple-Negative Breast Cancer Treatment. Cancers (Basel) 2023; 15:4181. [PMID: 37627209 PMCID: PMC10453179 DOI: 10.3390/cancers15164181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Breast cancer is one of the most frequent causes of cancer death among women worldwide. In particular, triple-negative breast cancer (TNBC) represents the most aggressive breast cancer subtype because it is characterized by the absence of molecular targets, thus making it an orphan type of malignancy. The discovery of new molecular druggable targets is mandatory to improve treatment success. In that context, non-coding RNAs represent an opportunity for modulation of cancer. They are RNA molecules with apparently no protein coding potential, which have been already demonstrated to play pivotal roles within cells, being involved in different processes, such as proliferation, cell cycle regulation, apoptosis, migration, and diseases, including cancer. Accordingly, they could be used as targets for future TNBC personalized therapy. Moreover, the peculiar characteristics of non-coding RNAs make them reliable biomarkers to monitor cancer treatment, thus, to monitor recurrence or chemoresistance, which are the most challenging aspects in TNBC. In the present review, we focused on the oncogenic or oncosuppressor role of long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) mostly involved in TNBC, highlighting their mode of action and depicting their potential role as a biomarker and/or as targets of new non-coding RNA-based therapeutics.
Collapse
Affiliation(s)
- Alina Catalina Palcau
- Translational Oncology Research Unit, Department of Research, Advanced Diagnostic and Technological Innovation, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.C.P.); (R.B.); (G.B.)
| | - Renata Brandi
- Translational Oncology Research Unit, Department of Research, Advanced Diagnostic and Technological Innovation, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.C.P.); (R.B.); (G.B.)
| | - Nikolay Hristov Mehterov
- Department of Medical Biology, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria;
- Research Institute, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Claudio Botti
- Breast Surgery Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Giovanni Blandino
- Translational Oncology Research Unit, Department of Research, Advanced Diagnostic and Technological Innovation, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.C.P.); (R.B.); (G.B.)
| | - Claudio Pulito
- Translational Oncology Research Unit, Department of Research, Advanced Diagnostic and Technological Innovation, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.C.P.); (R.B.); (G.B.)
| |
Collapse
|
8
|
Weidle UH, Birzele F. Triple-negative Breast Cancer: Identification of circRNAs With Efficacy in Preclinical In Vivo Models. Cancer Genomics Proteomics 2023; 20:117-131. [PMID: 36870692 PMCID: PMC9989670 DOI: 10.21873/cgp.20368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/19/2022] [Accepted: 01/20/2023] [Indexed: 03/06/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with insufficient options for therapy. In order to identify new targets and treatment modalities we searched the literature for circular RNAs (circRNAs) which mediate efficacy in TNBC-related in vivo preclinical models. In addition to 5 down-regulated circRNAs which modulate tumor-suppressive pathways, we identified 15 up-regulated circRNAs. Down- and up-regulated refers to expression in corresponding non-transformed cells and tissues. The up-regulated circRNAs comprise five transmembrane receptors and secreted proteins as targets, five transcription factors and transcription-associated targets, four cell-cycle related circRNAs and one involved in paclitaxel resistance. In this review article we discuss drug-discovery related aspects and modalities of therapeutic intervention. Down-regulated circRNAs can be reconstituted by re-expression of corresponding circRNAs in tumor cells or up-regulation of corresponding targets. Up-regulated circRNAs can be inhibited by small-interfering RNA (siRNA) or short hairpin RNA (shRNA)-based approaches or inhibition of the corresponding targets with small molecules or antibody-related moieties.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Development, Roche Innovation Center, Penzberg, Germany;
| | - Fabian Birzele
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
9
|
Circ_0001777 Affects Triple-negative Breast Cancer Progression Through the miR-95-3p/AKAP12 Axis. Clin Breast Cancer 2023; 23:143-154. [PMID: 36513585 DOI: 10.1016/j.clbc.2022.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 10/14/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Triple Negative Breast Cancer (TNBC) is 1 of the most serious cancer. Circular RNA_0001777 (circ_0001777) expression was decreased in TNBC tissues. However, the molecular mechanism of circ_0001777 remains unknown. METHODS The expression of circ_0001777, microRNA-95-3p (miR-95-3p) and A-kinase anchor protein 12 (AKAP12) were detected by quantitative real-time fluorescence polymerase chain reaction (qRT-PCR). A series of in vitro experiments were designed to explore the function of circ_0001777 in TNBC cells and the regulatory mechanism between circ_0001777 and miR-95-3p and AKAP12 in TNBC cells. Western blot examined the relative protein levels in TNBC cells. Bioinformatics prediction site predicted the relationship between miR-95-3p and circ_0001777 or AKAP12 and was verified by Dual-luciferase reporter assays. The xenotransplantation model was established to study the role of circ_0001777 in vivo. RESULTS The expression of circ_0001777 and AKAP12 was decreased in TNBC tissues, while the expression of miR-95-3p was increased. Circ_0001777 can sponge miR-95-3p, and AKAP12 is the target of miR-95-3p. In vitro complement experiments, overexpression of circ_0001777 significantly decreased the malignant behavior of TNBC, while co-transfection of miR-95-3p partially up-regulated this change. In addition, AKAP12 knockdown increased the proliferation, migration, and invasion of TNBC cells inhibited by overexpression of circ_0001777. Mechanically, circ_0001777 regulates AKAP12 expression in TNBC cells by sponge miR-95-3p. In addition, in vivo studies have shown that overexpression of circ_0001777 inhibits tumor growth. CONCLUSION Overexpression of circ_0001777 decreased proliferation, migration, and invasion of TNBC cells by regulating the miR-95-3p/AKAP12 axis, suggesting that circ_0001777/miR-95-3p/AKAP12 axis may be a potential regulatory mechanism for the treatment of TNBC.
Collapse
|
10
|
Wang L, Jin W, Wu X, Liu Y, Gu W. Circ_0000520 interacts with miR-512-5p to upregulate KIAA0100 to promote malignant behaviors in lung cancer. Histol Histopathol 2023; 38:73-89. [PMID: 35866672 DOI: 10.14670/hh-18-498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND CircRNAs function as pivotal molecules to regulate the malignant development of lung cancer. This study was designed to research the functional role and how it acted in lung cancer progression. METHODS Circ_0000520, microRNA-512-5p (miR-512-5p) and Breast cancer-overexpressed gene 1 (KIAA0100) levels were measured through reverse transcription-quantitative polymerase chain reaction assay. Cell Counting Kit-8 assay and EdU assay were used to examine cell proliferation. Cell cycle and apoptosis were evaluated via flow cytometry. The protein levels were determined using western blot. Cell migration and invasion were assessed by wound healing assay and transwell assay. The circ_0000520 function in vivo was explored by tumor xenograft assay. The molecular interaction was analyzed via Dual-luciferase reporter assay. RESULTS Circ_0000520 was obviously upregulated in lung cancer tissues and cells. Silence of circ_0000520 inhibited proliferation, cell cycle progression, migration, invasion and angiogenesis but promoted cell apoptosis. Circ_0000520 downregulation reduced tumor growth of lung cancer in vivo. Circ_0000520 served as a miR-512-5p sponge. The oncogenic function of circ_0000520 was partly achieved by sponging miR-512-5p in lung cancer. KIAA0100 was a target of miR-512-5p and miR-512-5p inhibited the malignant behaviors of lung cancer cells via downregulating KIAA0100. Circ_0000520 targeted miR-512-5p to regulate the level of KIAA0100. CONCLUSION All these data demonstrated that circ_0000520 was able to drive the progression of lung cancer via the mediation of miR-512-5p/KIAA0100 axis. Circ_0000520 might be a potential biomarker for lung cancer.
Collapse
Affiliation(s)
- Linxuan Wang
- Department of Respiratory and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Wenjing Jin
- Department of Respiratory and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Xiaochi Wu
- Department of Respiratory and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Yuan Liu
- Department of Respiratory and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Wenchao Gu
- Department of Respiratory and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, Shanghai, China.
| |
Collapse
|
11
|
SHI WEI, LIN JIANXIA, JIN RONG, XIE XIANJING, LIANG YAN. Expression and function of long non-coding RNA DLX6-AS1 in endometrial cancer. BIOCELL 2023. [DOI: 10.32604/biocell.2023.026037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
12
|
Hsa_circ_0000520 Promotes Non-Small Cell Lung Cancer Progression through the miR-1258/AKT3 Axis. JOURNAL OF ONCOLOGY 2022; 2022:3676685. [PMID: 36593867 PMCID: PMC9805391 DOI: 10.1155/2022/3676685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 10/09/2022] [Accepted: 11/05/2022] [Indexed: 12/25/2022]
Abstract
Background There are several previous studies suggesting that circular RNAs (circRNAs) are involved in tumorigenesis of non-small cell lung cancer (NSCLC). Nevertheless, the role of circRNA_0000520 (circ_0000520) in this disease has not yet been studied. Methods circ_0000520, microRNA (miR)-1258, and AKT serine/threonine kinase 3 (AKT3) mRNA expression levels were detected by qPCR. CCK-8, EdU, and Transwell assays were utilized to detect NSCLC cells' malignant biological behaviors. The targeted relationship between miR-1258 and AKT3 3'-UTR or circ_0000520 was verified through the dual-luciferase reporter gene assay. Western blotting was utilized to measure the AKT3 expression after circ_0000520 and miR-1258 were selectively regulated. Results circ_0000520 was upregulated in NSCLC. Highly expressed circ_0000520 is linked to the NSCLC patient's advanced TNM stage and lymph node metastasis. circ_0000520 overexpression facilitated NSCLC cell growth, migration, and invasion. miR-1258 was identified as the downstream target of circ_0000520. miR-1258 overexpression weakened the effect of circ_0000520 overexpression on NSCLC cells. miR-1258 targeted and inhibited AKT3. circ_0000520 positively regulated the AKT3 expression in NSCLC cells by sponging miR-1258. Conclusion circ_0000520 upregulates AKT3 by competitively binding with miR-1258 to facilitate NSCLC progression.
Collapse
|
13
|
Pane K, Zanfardino M, Grimaldi AM, Baldassarre G, Salvatore M, Incoronato M, Franzese M. Discovering Common miRNA Signatures Underlying Female-Specific Cancers via a Machine Learning Approach Driven by the Cancer Hallmark ERBB. Biomedicines 2022; 10:biomedicines10061306. [PMID: 35740327 PMCID: PMC9219956 DOI: 10.3390/biomedicines10061306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 11/29/2022] Open
Abstract
Big data processing, using omics data integration and machine learning (ML) methods, drive efforts to discover diagnostic and prognostic biomarkers for clinical decision making. Previously, we used the TCGA database for gene expression profiling of breast, ovary, and endometrial cancers, and identified a top-scoring network centered on the ERBB2 gene, which plays a crucial role in carcinogenesis in the three estrogen-dependent tumors. Here, we focused on microRNA expression signature similarity, asking whether they could target the ERBB family. We applied an ML approach on integrated TCGA miRNA profiling of breast, endometrium, and ovarian cancer to identify common miRNA signatures differentiating tumor and normal conditions. Using the ML-based algorithm and the miRTarBase database, we found 205 features and 158 miRNAs targeting ERBB isoforms, respectively. By merging the results of both databases and ranking each feature according to the weighted Support Vector Machine model, we prioritized 42 features, with accuracy (0.98), AUC (0.93–95% CI 0.917–0.94), sensitivity (0.85), and specificity (0.99), indicating their diagnostic capability to discriminate between the two conditions. In vitro validations by qRT-PCR experiments, using model and parental cell lines for each tumor type showed that five miRNAs (hsa-mir-323a-3p, hsa-mir-323b-3p, hsa-mir-331-3p, hsa-mir-381-3p, and hsa-mir-1301-3p) had expressed trend concordance between breast, ovarian, and endometrium cancer cell lines compared with normal lines, confirming our in silico predictions. This shows that an integrated computational approach combined with biological knowledge, could identify expression signatures as potential diagnostic biomarkers common to multiple tumors.
Collapse
Affiliation(s)
- Katia Pane
- IRCCS Synlab SDN, 80143 Naples, Italy; (K.P.); (A.M.G.); (M.S.); (M.I.); (M.F.)
| | - Mario Zanfardino
- IRCCS Synlab SDN, 80143 Naples, Italy; (K.P.); (A.M.G.); (M.S.); (M.I.); (M.F.)
- Correspondence:
| | - Anna Maria Grimaldi
- IRCCS Synlab SDN, 80143 Naples, Italy; (K.P.); (A.M.G.); (M.S.); (M.I.); (M.F.)
| | - Gustavo Baldassarre
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, 33081 Aviano, Italy;
| | - Marco Salvatore
- IRCCS Synlab SDN, 80143 Naples, Italy; (K.P.); (A.M.G.); (M.S.); (M.I.); (M.F.)
| | | | - Monica Franzese
- IRCCS Synlab SDN, 80143 Naples, Italy; (K.P.); (A.M.G.); (M.S.); (M.I.); (M.F.)
| |
Collapse
|
14
|
Foruzandeh Z, Dorabadi DG, Sadeghi F, Zeinali-Sehrig F, Zaefizadeh M, Rahmati Y, Alivand MR. Circular RNAs as novel biomarkers in triple-negative breast cancer: a systematic review. Mol Biol Rep 2022; 49:9825-9840. [PMID: 35534586 DOI: 10.1007/s11033-022-07502-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/21/2022] [Indexed: 11/25/2022]
Abstract
More effective prognostic and diagnostic tools are urgently required for early detecting and treating triple-negative breast cancer, which is the most acute type of breast cancer because of its lower survival rate, aggressiveness, and non-response to various common treatments. So, it remains the most harmful malignancy for women worldwide. Recently, circular RNAs, as a group of non-coding RNAs, with covalently closed loop and high stability have been discovered, which can modulate gene expression through competing with endogenous microRNA sponges. This finding provided further insight into novel approaches for controlling genes affected in many disorders and malignancies. This review concentrates on the dysregulated expression of circRNAs like their diagnostic and prognostic values in TNBC. This review aims to focus on the abnormal expression of circRNAs and their diagnostic and prognostic values in TNBC. We used PubMed, Embase, and Web of Science databases and ClinicalTrials.gov to systematically search for all relevant clinical studies. This review is based on articles published in databases up to April 2022 with the following keywords: "Circular RNA", "CircRNA", "Triple-Negative Breast Cancer" and "TNBC". We conducted a review of published CircRNA profiled-research articles to identify candidate CircRNA biomarkers for TNBC. The review is registered on JBI at https://jbi.global/systematic-review-register . Accumulating evidence has shown that several circRNAs are downregulated and some are upregulated in TNBC. The results of these studies confirm that circRNAs might be potential biomarkers with the diagnostic, prognostic, and therapeutic target value for TNBC. We also consider the connection between circRNAs and TNBC cell proliferation, apoptosis, metastasis, and chemotherapy resistance and sensitivity.
Collapse
Affiliation(s)
- Zahra Foruzandeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davood Ghavi Dorabadi
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzaneh Sadeghi
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Fatemeh Zeinali-Sehrig
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Yazdan Rahmati
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Alivand
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Eye Research Center, the Five Senses Health Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Feng Z, Li L, Tu Y, Shu X, Zhang Y, Zeng Q, Luo L, Wu A, Chen W, Cao Y, Li Z. Identification of Circular RNA-Based Immunomodulatory Networks in Colorectal Cancer. Front Oncol 2022; 11:779706. [PMID: 35155186 PMCID: PMC8833313 DOI: 10.3389/fonc.2021.779706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) have been recently proposed as hub molecules in various diseases, especially in tumours. We found that circRNAs derived from ribonuclease P RNA component H1 (RPPH1) were highly expressed in colorectal cancer (CRC) samples from Gene Expression Omnibus (GEO) datasets. OBJECTIVE We sought to identify new circRNAs derived from RPPH1 and investigate their regulation of the competing endogenous RNA (ceRNA) and RNA binding protein (RBP) networks of CRC immune infiltration. METHODS The circRNA expression profiles miRNA and mRNA data were extracted from the GEO and The Cancer Genome Atlas (TCGA) datasets, respectively. The differentially expressed (DE) RNAs were identified using R software and online server tools, and the circRNA-miRNA-mRNA and circRNA-protein networks were constructed using Cytoscape. The relationship between targeted genes and immune infiltration was identified using the GEPIA2 and TIMER2 online server tools. RESULTS A ceRNA network, including eight circRNAs, five miRNAs, and six mRNAs, was revealed. Moreover, a circRNA-protein network, including eight circRNAs and 49 proteins, was established. The targeted genes, ENOX1, NCAM1, SAMD4A, and ZC3H10, are closely related to CRC tumour-infiltrating macrophages. CONCLUSIONS We analysed the characteristics of circRNA from RPPH1 as competing for endogenous RNA binding miRNA or protein in CRC macrophage infiltration. The results point towards the development of a new diagnostic and therapeutic paradigm for CRC.
Collapse
Affiliation(s)
- Zongfeng Feng
- Department of General Surgery, First Affiliated Hospital of Nanchang University, Nanchang, China.,Laboratory of Digestive Surgery, Nanchang University, Nanchang, China.,Medical Innovation Center, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Leyan Li
- Laboratory of Digestive Surgery, Nanchang University, Nanchang, China.,Medical Innovation Center, the First Affiliated Hospital of Nanchang University, Nanchang, China.,Queen Mary School, Medical Department of Nanchang University, Nanchang, China
| | - Yi Tu
- Department of Pathology, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xufeng Shu
- Department of General Surgery, First Affiliated Hospital of Nanchang University, Nanchang, China.,Laboratory of Digestive Surgery, Nanchang University, Nanchang, China.,Medical Innovation Center, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yang Zhang
- Department of General Surgery, First Affiliated Hospital of Nanchang University, Nanchang, China.,Laboratory of Digestive Surgery, Nanchang University, Nanchang, China.,Medical Innovation Center, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qingwen Zeng
- Department of General Surgery, First Affiliated Hospital of Nanchang University, Nanchang, China.,Laboratory of Digestive Surgery, Nanchang University, Nanchang, China.,Medical Innovation Center, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lianghua Luo
- Department of General Surgery, First Affiliated Hospital of Nanchang University, Nanchang, China.,Laboratory of Digestive Surgery, Nanchang University, Nanchang, China.,Medical Innovation Center, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ahao Wu
- Department of General Surgery, First Affiliated Hospital of Nanchang University, Nanchang, China.,Laboratory of Digestive Surgery, Nanchang University, Nanchang, China
| | - Wenzheng Chen
- Department of General Surgery, First Affiliated Hospital of Nanchang University, Nanchang, China.,Laboratory of Digestive Surgery, Nanchang University, Nanchang, China.,Medical Innovation Center, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yi Cao
- Department of General Surgery, First Affiliated Hospital of Nanchang University, Nanchang, China.,Laboratory of Digestive Surgery, Nanchang University, Nanchang, China.,Medical Innovation Center, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhengrong Li
- Department of General Surgery, First Affiliated Hospital of Nanchang University, Nanchang, China.,Laboratory of Digestive Surgery, Nanchang University, Nanchang, China.,Medical Innovation Center, the First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|