1
|
Chave J. Species abundance, urn models, and neutrality. C R Biol 2024; 347:119-135. [PMID: 39354840 DOI: 10.5802/crbiol.162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 10/03/2024]
|
2
|
Pearman WS, Duffy GA, Gemmell NJ, Morales SE, Fraser CI. Long-distance movement dynamics shape host microbiome richness and turnover. FEMS Microbiol Ecol 2024; 100:fiae089. [PMID: 38857884 PMCID: PMC11212666 DOI: 10.1093/femsec/fiae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/22/2024] [Accepted: 06/08/2024] [Indexed: 06/12/2024] Open
Abstract
Host-associated microbial communities are shaped by host migratory movements. These movements can have contrasting impacts on microbiota, and understanding such patterns can provide insight into the ecological processes that contribute to community diversity. Furthermore, long-distance movements to new environments are anticipated to occur with increasing frequency due to host distribution shifts resulting from climate change. Understanding how hosts transport their microbiota with them could be of importance when examining biological invasions. Although microbial community shifts are well-documented, the underlying mechanisms that lead to the restructuring of these communities remain relatively unexplored. Using literature and ecological simulations, we develop a framework to elucidate the major factors that lead to community change. We group host movements into two types-regular (repeated/cyclical migratory movements, as found in many birds and mammals) and irregular (stochastic/infrequent movements that do not occur on a cyclical basis, as found in many insects and plants). Ecological simulations and prior research suggest that movement type and frequency, alongside environmental exposure (e.g. internal/external microbiota) are key considerations for understanding movement-associated community changes. From our framework, we derive a series of testable hypotheses, and suggest means to test them, to facilitate future research into host movement and microbial community dynamics.
Collapse
Affiliation(s)
- William S Pearman
- Department of Marine Science, University of Otago, 310 Castle St, Dunedin 9016, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, 270 Great King Street, Dunedin 9016, New Zealand
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, 720 Cumberland St, Dunedin 9016, New Zealand
| | - Grant A Duffy
- Department of Marine Science, University of Otago, 310 Castle St, Dunedin 9016, New Zealand
| | - Neil J Gemmell
- Department of Anatomy, School of Biomedical Sciences, University of Otago, 270 Great King Street, Dunedin 9016, New Zealand
| | - Sergio E Morales
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, 720 Cumberland St, Dunedin 9016, New Zealand
| | - Ceridwen I Fraser
- Department of Marine Science, University of Otago, 310 Castle St, Dunedin 9016, New Zealand
| |
Collapse
|
3
|
Overcast I, Noguerales V, Meramveliotakis E, Andújar C, Arribas P, Creedy TJ, Emerson BC, Vogler AP, Papadopoulou A, Morlon H. Inferring the ecological and evolutionary determinants of community genetic diversity. Mol Ecol 2023; 32:6093-6109. [PMID: 37221561 DOI: 10.1111/mec.16958] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 05/25/2023]
Abstract
Understanding the relative contributions of ecological and evolutionary processes to the structuring of ecological communities is needed to improve our ability to predict how communities may respond to future changes in an increasingly human-modified world. Metabarcoding methods make it possible to gather population genetic data for all species within a community, unlocking a new axis of data to potentially unveil the origins and maintenance of biodiversity at local scales. Here, we present a new eco-evolutionary simulation model for investigating community assembly dynamics using metabarcoding data. The model makes joint predictions of species abundance, genetic variation, trait distributions and phylogenetic relationships under a wide range of parameter settings (e.g. high speciation/low dispersal or vice versa) and across a range of community states, from pristine and unmodified to heavily disturbed. We first demonstrate that parameters governing metacommunity and local community processes leave detectable signatures in simulated biodiversity data axes. Next, using a simulation-based machine learning approach we show that neutral and non-neutral models are distinguishable and that reasonable estimates of several model parameters within the local community can be obtained using only community-scale genetic data, while phylogenetic information is required to estimate those describing metacommunity dynamics. Finally, we apply the model to soil microarthropod metabarcoding data from the Troodos mountains of Cyprus, where we find that communities in widespread forest habitats are structured by neutral processes, while high-elevation and isolated habitats act as an abiotic filter generating non-neutral community structure. We implement our model within the ibiogen R package, a package dedicated to the investigation of island, and more generally community-scale, biodiversity using community-scale genetic data.
Collapse
Affiliation(s)
- Isaac Overcast
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
- Department of Vertebrate Zoology, American Museum of Natural History, New York, New York, USA
| | - Víctor Noguerales
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), San Cristóbal de La Laguna, Spain
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | | | - Carmelo Andújar
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), San Cristóbal de La Laguna, Spain
| | - Paula Arribas
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), San Cristóbal de La Laguna, Spain
| | - Thomas J Creedy
- Department of Life Sciences, Natural History Museum, London, UK
| | - Brent C Emerson
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), San Cristóbal de La Laguna, Spain
| | - Alfried P Vogler
- Department of Life Sciences, Natural History Museum, London, UK
- Department of Life Sciences, Imperial College London, Ascot, UK
| | - Anna Papadopoulou
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Hélène Morlon
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
4
|
Borthagaray AI, Cunillera-Montcusí D, Bou J, Tornero I, Boix D, Anton-Pardo M, Ortiz E, Mehner T, Quintana XD, Gascón S, Arim M. Heterogeneity in the isolation of patches may be essential for the action of metacommunity mechanisms. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1125607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
The spatial isolation gradient of communities and the gradient in the species dispersal ability are recognized as determinants of biodiversity in metacommunities. In spite of this, mean field models, spatially explicit models, and experiments were mainly focused on idealized spatial arrangements of communities leaving aside the combining role of dispersal and isolation gradients in metacommunity processes. Consequently, we have an incipient understanding of the role of the real spatial arrangement of communities on biodiversity patterns. We focus on six metacommunities for which confident information about the spatial arrangement of water bodies is available. Using coalescent metacommunity models and null models that randomize the location of water bodies, we estimated the potential effect of the landscape on biodiversity and its dependence on species dispersal ability. At extremely low or high dispersal abilities, the location of ponds does not influence diversity because different communities are equally affected by the low or high incoming dispersal. At intermediate dispersal abilities, peripheral communities present a much lower richness and higher beta diversity than central communities. Moreover, metacommunities from real landscapes host more biodiversity than randomized landscapes, a result that is determined by the heterogeneity in the geographic isolation of communities. In a dispersal gradient, mass effects systematically increase the local richness and decrease beta diversity. However, the spatial arrangement of patches only has a large importance in metacommunity processes at intermediate dispersal abilities, which ensures access to central locations but limits dispersal in isolated communities. The ongoing reduction in spatial extent and simplification of the landscape may consequently undermine the metacommunity processes that support biodiversity, something that should be explicitly considered in preserving and restoring strategies.
Collapse
|
5
|
Shifting Importance of Abiotic versus Biotic Filtering from Intact Mature Forests to Post-Clearcut Secondary Forests. FORESTS 2022. [DOI: 10.3390/f13050672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Although ecologists often emphasize the roles of environmental- versus biotic-filtering in structuring forest communities, the relative importance of these processes could vary among undisturbed versus disturbed forests. To test this assumption, we gathered leaf traits and site conditions data from intact mature forests (control), moderately disturbed shrublands, and severely disturbed plantations from subtropical China. We found that plantations had higher leaf area, specific leaf area, leaf nitrogen and phosphorus concentrations but lower leaf thickness, dry matter content, and C:N than the shrubland or mature forest, suggesting the dominance of resource acquisition strategy in plantations versus conservation strategy in the mature forests. Plantations also had significantly lower trait ranges than mature forest or shrubland, suggesting the play of stringent environmental filtering in the plantation. However, intraspecific trait variations in leaf dry matter content and C:N were substantial in plantation, while interspecific variation in leaf thickness was high in mature forests, suggesting the importance of intra- versus inter-specific competition in plantation versus mature forests. Results from our species-level analysis were consistent with the community-level results mentioned above. Overall, our study demonstrates the shifting importance of environmental and biotic filtering from disturbed to undisturbed forests.
Collapse
|
6
|
Bauer B, Berti E, Ryser R, Gauzens B, Hirt MR, Rosenbaum B, Digel C, Ott D, Scheu S, Brose U. Biotic filtering by species' interactions constrains food-web variability across spatial and abiotic gradients. Ecol Lett 2022; 25:1225-1236. [PMID: 35286010 DOI: 10.1111/ele.13995] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/24/2021] [Accepted: 02/11/2022] [Indexed: 11/27/2022]
Abstract
Despite intensive research on species dissimilarity patterns across communities (i.e. β-diversity), we still know little about their implications for variation in food-web structures. Our analyses of 50 lake and 48 forest soil communities show that, while species dissimilarity depends on environmental and spatial gradients, these effects are only weakly propagated to the networks. Moreover, our results show that species and food-web dissimilarities are consistently correlated, but that much of the variation in food-web structure across spatial, environmental, and species gradients remains unexplained. Novel food-web assembly models demonstrate the importance of biotic filtering during community assembly by (1) the availability of resources and (2) limiting similarity in species' interactions to avoid strong niche overlap and thus competitive exclusion. This reveals a strong signature of biotic filtering processes during local community assembly, which constrains the variability in structural food-web patterns across local communities despite substantial turnover in species composition.
Collapse
Affiliation(s)
- Barbara Bauer
- Institute of Ecology, Friedrich Schiller University Jena, Jena, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Zoological Institute and Museum & Institute for Botany and Landscape Ecology, University of Greifswald, Greifswald, Germany
| | - Emilio Berti
- Institute of Ecology, Friedrich Schiller University Jena, Jena, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Remo Ryser
- Institute of Ecology, Friedrich Schiller University Jena, Jena, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Benoit Gauzens
- Institute of Ecology, Friedrich Schiller University Jena, Jena, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Myriam R Hirt
- Institute of Ecology, Friedrich Schiller University Jena, Jena, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Benjamin Rosenbaum
- Institute of Ecology, Friedrich Schiller University Jena, Jena, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | | | - David Ott
- Institute of Landscape Ecology, University of Münster, Münster, Germany.,Centre for Biodiversity Monitoring, Zoological Research Museum Alexander Koenig, Bonn, Germany
| | - Stefan Scheu
- JFB Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany.,Centre of Biodiversity and Sustainable Land Use, University of Göttingen, Göttingen, Germany
| | - Ulrich Brose
- Institute of Ecology, Friedrich Schiller University Jena, Jena, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
7
|
Marjakangas E, Muñoz G, Turney S, Albrecht J, Neuschulz EL, Schleuning M, Lessard J. Trait‐based inference of ecological network assembly: a conceptual framework and methodological toolbox. ECOL MONOGR 2021. [DOI: 10.1002/ecm.1502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Emma‐Liina Marjakangas
- Centre for Biodiversity Dynamics, Department of Biology Norwegian University of Science and Technology Trondheim Norway
- Finnish Museum of Natural History University of Helsinki Helsinki Finland
| | - Gabriel Muñoz
- Department of Biology, Faculty of Arts and Sciences Concordia University, 7141 Sherbrooke Street West, Montreal Quebec Canada
| | - Shaun Turney
- Department of Biology, Faculty of Arts and Sciences Concordia University, 7141 Sherbrooke Street West, Montreal Quebec Canada
| | - Jörg Albrecht
- Senckenberg Biodiversity and Climate Research Centre (SBiK‐F), Senckenberganlage 25 Frankfurt am Main Germany
| | - Eike Lena Neuschulz
- Senckenberg Biodiversity and Climate Research Centre (SBiK‐F), Senckenberganlage 25 Frankfurt am Main Germany
| | - Matthias Schleuning
- Senckenberg Biodiversity and Climate Research Centre (SBiK‐F), Senckenberganlage 25 Frankfurt am Main Germany
| | - Jean‐Philippe Lessard
- Department of Biology, Faculty of Arts and Sciences Concordia University, 7141 Sherbrooke Street West, Montreal Quebec Canada
| |
Collapse
|
8
|
Pontarp M. Ecological opportunity and adaptive radiations reveal eco-evolutionary perspectives on community structure in competitive communities. Sci Rep 2021; 11:19560. [PMID: 34599238 PMCID: PMC8486866 DOI: 10.1038/s41598-021-98842-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/14/2021] [Indexed: 11/09/2022] Open
Abstract
It is well known that ecological and evolutionary processes act in concert while shaping biological communities. Diversification can, for example, arise through ecological opportunity and adaptive radiations and competition play an essential role in such diversification. Eco-evolutionary components of competition are thus important for our understanding of community assembly. Such understanding in turn facilitates interpretation of trait- and phylogenetic community patterns in the light of the processes that shape them. Here, I investigate the link between competition, diversification, and trait- and phylogenetic- community patterns using a trait-based model of adaptive radiations. I evaluate the paradigm that competition is an ecological process that drives large trait- and phylogenetic community distances through limiting similarity. Contrary to the common view, I identify low or in some cases counterintuitive relationships between competition and mean phylogenetic distances due to diversification late in evolutionary time and peripheral parts of niche space when competition is weak. Community patterns as a function of competition also change as diversification progresses as the relationship between competition and trait similarity among species can flip from positive to negative with time. The results thus provide novel perspectives on community assembly and emphasize the importance of acknowledging eco-evolutionary processes when interpreting community data.
Collapse
Affiliation(s)
- Mikael Pontarp
- Department of Biology, Lund University Biology Building, Sölvegatan 35, 223 62, Lund, Sweden.
| |
Collapse
|
9
|
Gross N, Le Bagousse-Pinguet Y, Liancourt P, Saiz H, Violle C, Munoz F. Unveiling ecological assembly rules from commonalities in trait distributions. Ecol Lett 2021; 24:1668-1680. [PMID: 34128304 DOI: 10.1111/ele.13789] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/02/2020] [Accepted: 05/03/2021] [Indexed: 11/30/2022]
Abstract
Deciphering the effect of neutral and deterministic processes on community assembly is critical to understand and predict diversity patterns. The information held in community trait distributions is commonly assumed as a signature of these processes, but empirical and modelling attempts have most often failed to untangle their confounding, sometimes opposing, impacts. Here, we simulated the assembly of trait distributions through stochastic (dispersal limitation) and/or deterministic scenarios (environmental filtering and niche differentiation). We characterized the shape of trait distributions using the skewness-kurtosis relationship. We identified commonalities in the co-variation between the skewness and the kurtosis of trait distributions with a unique signature for each simulated assembly scenario. Our findings were robust to variation in the composition of regional species pools, dispersal limitation and environmental conditions. While ecological communities can exhibit a high degree of idiosyncrasy, identification of commonalities across multiple communities can help to unveil ecological assembly rules in real-world ecosystems.
Collapse
Affiliation(s)
- Nicolas Gross
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Ecosystème Prairial, Clermont-Ferrand, France
| | | | - Pierre Liancourt
- Institute of Botany of the Czech Academy of Science, Průhonice, Czech Republic.,Plant Ecology Group, University of Tübingen, Tübingen, Germany
| | - Hugo Saiz
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Cyrille Violle
- CEFE, Univ Montpellier - CNRS - EPHE - IRD - Univ Paul Valéry Montpellier, Montpellier Cedex 5, France
| | | |
Collapse
|
10
|
Barthelemy E, Fortunel C, Jaunatre M, Munoz F. Imprints of Past Habitat Area Reduction on Extant Taxonomic, Functional, and Phylogenetic Composition. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.634413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Past environmental changes have shaped the evolutionary and ecological diversity of extant organisms. Specifically, climatic fluctuations have made environmental conditions alternatively common or rare over time. Accordingly, most taxa have undergone restriction of their distribution to local refugia during habitat contraction, from which they could expand when suitable habitat became more common. Assessing how past restrictions in refugia have shaped species distributions and genetic diversity has motivated much research in evolutionary biology and biogeography. But there is still lack of clear synthesis on whether and how the taxonomic, functional and phylogenetic composition of extant multispecies assemblages retains the imprint of past restriction in refugia. We devised an original eco-evolutionary model to investigate the temporal dynamics of a regional species pool inhabiting a given habitat today, and which have experienced habitat reduction in the past. The model includes three components: (i) a demographic component driving stochastic changes in population sizes and extinctions due to habitat availability, (ii) a mutation and speciation component representing how divergent genotypes emerge and define new species over time, and (iii) a trait evolution component representing how trait values have changed across descendants over time. We used this model to simulate dynamics of multispecies assemblages that occupied a restricted refugia in the past and could expand their distribution subsequently. We characterized the past restriction in refugia in terms of two parameters representing the ending time of past refugia, and the extent of habitat restriction in the refugia. We characterized extant patterns of taxonomic, functional and phylogenetic diversity depending on these parameters. We found that extant relative abundances reflect the lasting influence of more recent refugia on demographic dynamics, while phylogenetic composition reflects the influence of more ancient habitat change. Extant functional diversity depends on the interplay between diversification dynamics and trait evolution, offering new options to jointly infer current trait adaptation and past trait evolution dynamics.
Collapse
|
11
|
Zhang T, Domke GM, Russell MB, Lichstein JW. An index for measuring functional extension and evenness in trait space. Ecol Evol 2021; 11:7461-7473. [PMID: 34188827 PMCID: PMC8216966 DOI: 10.1002/ece3.7577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 03/09/2021] [Accepted: 03/23/2021] [Indexed: 11/10/2022] Open
Abstract
Most existing functional diversity indices focus on a single facet of functional diversity. Although these indices are useful for quantifying specific aspects of functional diversity, they often present some conceptual or practical limitations in estimating functional diversity. Here, we present a new functional extension and evenness (FEE) index that encompasses two important aspects of functional diversity. This new index is based on the straightforward notion that a community has high diversity when its species are distant from each other in trait space. The index quantifies functional diversity by evaluating the overall extension of species traits and the interspecific differences of a species assemblage in trait space. The concept of minimum spanning tree (MST) of points was adopted to obtain the essential distribution properties for a species assembly in trait space. We combined the total length of MST branches (extension) and the variation of branch lengths (evenness) into a raw FEE0 metric and then translated FEE0 to a species richness-independent FEE index using a null model approach. We assessed the properties of FEE and used multiple approaches to evaluate its performance. The results show that the FEE index performs well in quantifying functional diversity and presents the following desired properties: (a) It allows a fair comparison of functional diversity across different species richness levels; (b) it preserves the essence of single-facet indices while overcoming some of their limitations; (c) it standardizes comparisons among communities by taking into consideration the trait space of the shared species pool; and (d) it has the potential to distinguish among different community assembly processes. With these attributes, we suggest that the FEE index is a promising metric to inform biodiversity conservation policy and management, especially in applications at large spatial and/or temporal scales.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Forest ResourcesUniversity of MinnesotaSt. PaulMNUSA
| | - Grant M. Domke
- Northern Research StationUSDA Forest ServiceSt. PaulMNUSA
| | | | | |
Collapse
|
12
|
Thompson SED, Chisholm RA, Rosindell J. pycoalescence and rcoalescence: Packages for simulating spatially explicit neutral models of biodiversity. Methods Ecol Evol 2020. [DOI: 10.1111/2041-210x.13451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Samuel E. D. Thompson
- Department of Life Sciences, Silwood Park Campus Imperial College London Ascot UK
- Faculty of Science Department of Biological Sciences National University of Singapore Singapore
| | - Ryan A. Chisholm
- Department of Life Sciences, Silwood Park Campus Imperial College London Ascot UK
| | - James Rosindell
- Faculty of Science Department of Biological Sciences National University of Singapore Singapore
| |
Collapse
|
13
|
Ecological Specialization and Rarity of Arable Weeds: Insights from a Comprehensive Survey in France. PLANTS 2020; 9:plants9070824. [PMID: 32630061 PMCID: PMC7411668 DOI: 10.3390/plants9070824] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 01/04/2023]
Abstract
The definition of “arable weeds” remains contentious. Although much attention has been devoted to specialized, segetal weeds, many taxa found in arable fields also commonly occur in other habitats. The extent to which adjacent habitats are favorable to the weed flora and act as potential sources of colonizers in arable fields remains unclear. In addition, weeds form assemblages with large spatiotemporal variability, so that many taxa in weed flora are rarely observed in plot-based surveys. We thus addressed the following questions: How often do weeds occur in other habitats than arable fields? How does including field edges extend the taxonomic and ecological diversity of weeds? How does the weed flora vary across surveys at different spatial and temporal scales? We built a comprehensive dataset of weed taxa in France by compiling weed flora, lists of specialized segetal weeds, and plot-based surveys in agricultural fields, with different spatial and temporal coverages. We informed life forms, biogeographical origins and conservation status of these weeds. We also defined a broader dataset of plants occupying open habitats in France and assessed habitat specialization of weeds and of other plant species absent from arable fields. Our results show that many arable weeds are frequently recorded in both arable fields and non-cultivated open habitats and are, on average, more generalist than species absent from arable fields. Surveys encompassing field edges included species also occurring in mesic grasslands and nitrophilous fringes, suggesting spill-over from surrounding habitats. A total of 71.5% of the French weed flora was not captured in plot-based surveys at regional and national scales, and many rare and declining taxa were of Mediterranean origin. This result underlines the importance of implementing conservation measures for specialist plant species that are particularly reliant on arable fields as a habitat, while also pointing out biotic homogenization of agricultural landscapes as a factor in the declining plant diversity of farmed landscapes. Our dataset provides a reference species pool for France, with associated ecological and biogeographical information.
Collapse
|
14
|
Jabot F, Laroche F, Massol F, Arthaud F, Crabot J, Dubart M, Blanchet S, Munoz F, David P, Datry T. Assessing metacommunity processes through signatures in spatiotemporal turnover of community composition. Ecol Lett 2020; 23:1330-1339. [PMID: 32567194 DOI: 10.1111/ele.13523] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/03/2020] [Accepted: 04/06/2020] [Indexed: 11/29/2022]
Abstract
Although metacommunity ecology has been a major field of research in the last decades, with both conceptual and empirical outputs, the analysis of the temporal dynamics of metacommunities has only emerged recently and consists mostly of repeated static analyses. Here we propose a novel analytical framework to assess metacommunity processes using path analyses of spatial and temporal diversity turnovers. We detail the principles and practical aspects of this framework and apply it to simulated datasets to illustrate its ability to decipher the respective contributions of entangled drivers of metacommunity dynamics. We then apply it to four empirical datasets. Empirical results support the view that metacommunity dynamics may be generally shaped by multiple ecological processes acting in concert, with environmental filtering being variable across both space and time. These results reinforce our call to go beyond static analyses of metacommunities that are blind to the temporal part of environmental variability.
Collapse
Affiliation(s)
- Franck Jabot
- Université Clermont Auvergne, INRAE, UR LISC, Centre de Clermont-Ferrand, 9 avenue Blaise Pascal CS 20085, F-63178, Aubière, France
| | - Fabien Laroche
- INRAE, UR EFNO, Centre de Nogent-sur-Vernisson, Nogent-sur-Vernisson, France
| | - François Massol
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, SPICI group, F-59000, Lille, France.,Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Florent Arthaud
- Univ. Savoie Mont Blanc, INRAE, CARRTEL, 74200, Thonon-les-Bains, France
| | - Julie Crabot
- INRAE, UR Riverly, Centre de Lyon-Villeurbanne, 5 rue de la Doua, 69625, Villeurbanne Cedex, France
| | - Maxime Dubart
- CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - IRD - EPHE, 1919 route de Mende, 34293, Montpellier cedex 5, France
| | - Simon Blanchet
- CNRS, Université Toulouse III Paul Sabatier, Station d'Écologie Théorique et Expérimentale, UMR 5321, 2 route du CNRS, 09200, Moulis, France
| | - François Munoz
- University Grenoble-Alpes, LECA, Grenoble Cedex 9, France
| | - Patrice David
- CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - IRD - EPHE, 1919 route de Mende, 34293, Montpellier cedex 5, France
| | - Thibault Datry
- INRAE, UR Riverly, Centre de Lyon-Villeurbanne, 5 rue de la Doua, 69625, Villeurbanne Cedex, France
| |
Collapse
|
15
|
Laroche F, Violle C, Taudière A, Munoz F. Analyzing snapshot diversity patterns with the Neutral Theory can show functional groups' effects on community assembly. Ecology 2020; 101:e02977. [PMID: 31944275 DOI: 10.1002/ecy.2977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/29/2019] [Accepted: 12/04/2019] [Indexed: 11/07/2022]
Abstract
A central question of community ecology is to understand how the interplay between processes of the Neutral Theory (e.g., immigration and ecological drift) and niche-based processes (e.g., environmental filtering, intra- and interspecific density dependence) shape species diversity in competitive communities. The articulation between these two categories of mechanisms can be studied through the lens of the intermediate organizational level of "functional groups" (FGs), defined as clusters of species with similar traits. Indeed, FGs stress ecological differences among species and are thus likely to unravel non-neutral interactions within communities. Here we presented a novel approach to explore how FGs affect species coexistence by comparing species and functional diversity patterns. Our framework considers the Neutral Theory as a mechanistic null hypothesis. It assesses how much the functional diversity deviates from species diversity in communities, and compares this deviation, called the "average functional deviation," to a neutral baseline. We showed that the average functional deviation can indicate reduced negative density dependence or environmental filtering among FGs. We validated our framework using simulations illustrating the two situations. We further analyzed tropical tree communities in Western Ghats, India. Our analysis of the average functional deviation revealed environmental filtering between deciduous and evergreen FGs along a broad rainfall gradient. By contrast, we did not find clear evidence for reduced density dependence among FGs. We predict that applying our approach to new case studies where environmental gradients are milder and FGs are more clearly associated to resource partitioning should reveal the missing pattern of reduced density dependence among FGs.
Collapse
Affiliation(s)
| | - Cyrille Violle
- CEFE, Université Paul Valéry Montpellier 3, Université Montpellier, EPHE, CNRS, IRD, Montpellier, France
| | - Adrien Taudière
- CEFE, Université Paul Valéry Montpellier 3, Université Montpellier, EPHE, CNRS, IRD, Montpellier, France
| | - François Munoz
- University Grenoble-Alpes, LECA, 2233 Rue de la Piscine, Grenoble, 38041, France.,Institut Français de Pondichéry, UMIFRE 21 MAEE-CNRS, 11 St. Louis Street, Pondicherry, India
| |
Collapse
|
16
|
Ruffley M, Peterson K, Week B, Tank DC, Harmon LJ. Identifying models of trait-mediated community assembly using random forests and approximate Bayesian computation. Ecol Evol 2019; 9:13218-13230. [PMID: 31871640 PMCID: PMC6912896 DOI: 10.1002/ece3.5773] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/23/2019] [Accepted: 09/15/2019] [Indexed: 11/08/2022] Open
Abstract
Ecologists often use dispersion metrics and statistical hypothesis testing to infer processes of community formation such as environmental filtering, competitive exclusion, and neutral species assembly. These metrics have limited power in inferring assembly models because they rely on often-violated assumptions. Here, we adapt a model of phenotypic similarity and repulsion to simulate the process of community assembly via environmental filtering and competitive exclusion, all while parameterizing the strength of the respective ecological processes. We then use random forests and approximate Bayesian computation to distinguish between these models given the simulated data. We find that our approach is more accurate than using dispersion metrics and accounts for uncertainty in model selection. We also demonstrate that the parameter determining the strength of the assembly processes can be accurately estimated. This approach is available in the R package CAMI; Community Assembly Model Inference. We demonstrate the effectiveness of CAMI using an example of plant communities living on lava flow islands.
Collapse
Affiliation(s)
- Megan Ruffley
- Department of Biological SciencesUniversity of IdahoMoscowIDUSA
- Institute for Bioinformatics and Evolutionary Studies (IBEST)MoscowIDUSA
- Stillinger HerbariumUniversity of IdahoMoscowIDUSA
| | - Katie Peterson
- Department of Biological SciencesUniversity of IdahoMoscowIDUSA
- Institute for Bioinformatics and Evolutionary Studies (IBEST)MoscowIDUSA
- Stillinger HerbariumUniversity of IdahoMoscowIDUSA
| | - Bob Week
- Department of Biological SciencesUniversity of IdahoMoscowIDUSA
- Institute for Bioinformatics and Evolutionary Studies (IBEST)MoscowIDUSA
| | - David C. Tank
- Department of Biological SciencesUniversity of IdahoMoscowIDUSA
- Institute for Bioinformatics and Evolutionary Studies (IBEST)MoscowIDUSA
- Stillinger HerbariumUniversity of IdahoMoscowIDUSA
| | - Luke J. Harmon
- Department of Biological SciencesUniversity of IdahoMoscowIDUSA
- Institute for Bioinformatics and Evolutionary Studies (IBEST)MoscowIDUSA
| |
Collapse
|
17
|
Kondratyeva A, Grandcolas P, Pavoine S. Reconciling the concepts and measures of diversity, rarity and originality in ecology and evolution. Biol Rev Camb Philos Soc 2019; 94:1317-1337. [PMID: 30861626 PMCID: PMC6850657 DOI: 10.1111/brv.12504] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 12/29/2022]
Abstract
The concept of biological diversity, or biodiversity, is at the core of evolutionary and ecological studies. Many indices of biodiversity have been developed in the last four decades, with species being one of the central units of these indices. However, evolutionary and ecological studies need a precise description of species' characteristics to best quantify inter-species diversity, as species are not equivalent and exchangeable. One of the first concepts characterizing species in biodiversity studies was abundance-based rarity. Abundance-based rarity was then complemented by trait- and phylo-based rarity, called species' trait-based and phylogenetic originalities, respectively. Originality, which is a property of an individual species, represents a species' contribution to the overall diversity of a reference set of species. Originality can also be defined as the rarity of a species' characteristics such as the state of a functional trait, which is often assumed to be represented by the position of the species on a phylogenetic tree. We review and compare various approaches for measuring originality, rarity and diversity and demonstrate that (i) even if attempts to bridge these concepts do exist, only a few ecological and evolutionary studies have tried to combine them all in the past two decades; (ii) phylo- and trait-based diversity indices can be written as a function of species rarity and originality measures in several ways; and (iii) there is a need for the joint use of these three types of indices to understand community assembly processes and species' roles in ecosystem functioning in order to protect biodiversity efficiently.
Collapse
Affiliation(s)
- Anna Kondratyeva
- Centre d'Ecologie et des Sciences de la Conservation (CESCO), Département Homme et Environnement, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, 57 Rue Cuvier, CP 135, 75005ParisFrance
- Institut Systématique Evolution Biodiversité (ISYEB), Département Origines et Evolution, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université EPHE, 57 Rue Cuvier, CP 50, 75005ParisFrance
| | - Philippe Grandcolas
- Institut Systématique Evolution Biodiversité (ISYEB), Département Origines et Evolution, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université EPHE, 57 Rue Cuvier, CP 50, 75005ParisFrance
| | - Sandrine Pavoine
- Centre d'Ecologie et des Sciences de la Conservation (CESCO), Département Homme et Environnement, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, 57 Rue Cuvier, CP 135, 75005ParisFrance
| |
Collapse
|
18
|
Denelle P, Violle C, Munoz F. Distinguishing the signatures of local environmental filtering and regional trait range limits in the study of trait–environment relationships. OIKOS 2019. [DOI: 10.1111/oik.05851] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Pierre Denelle
- CEFE UMR 5175, CNRS – Univ. de Montpellier – Univ. Paul‐Valéry Montpellier – EPHE – 1919 route de Mende, FR‐34293 Montpellier Cedex 5 France
| | - Cyrille Violle
- CEFE UMR 5175, CNRS – Univ. de Montpellier – Univ. Paul‐Valéry Montpellier – EPHE – 1919 route de Mende, FR‐34293 Montpellier Cedex 5 France
| | | |
Collapse
|
19
|
Sydenham MAK, Moe SR, Steinert M, Eldegard K. Univariate Community Assembly Analysis (UniCAA): Combining hierarchical models with null models to test the influence of spatially restricted dispersal, environmental filtering, and stochasticity on community assembly. Ecol Evol 2019; 9:1473-1488. [PMID: 30805175 PMCID: PMC6374725 DOI: 10.1002/ece3.4868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/05/2018] [Accepted: 12/07/2018] [Indexed: 11/08/2022] Open
Abstract
Identifying the influence of stochastic processes and of deterministic processes, such as dispersal of individuals of different species and trait-based environmental filtering, has long been a challenge in studies of community assembly. Here, we present the Univariate Community Assembly Analysis (UniCAA) and test its ability to address three hypotheses: species occurrences within communities are (a) limited by spatially restricted dispersal; (b) environmentally filtered; or (c) the outcome of stochasticity-so that as community size decreases-species that are common outside a local community have a disproportionately higher probability of occurrence than rare species. The comparison with a null model allows assessing if the influence of each of the three processes differs from what one would expect under a purely stochastic distribution of species. We tested the framework by simulating "empirical" metacommunities under 15 scenarios that differed with respect to the strengths of spatially restricted dispersal (restricted vs. not restricted); habitat isolation (low, intermediate, and high immigration rates); and environmental filtering (strong, intermediate, and no filtering). Through these tests, we found that UniCAA rarely produced false positives for the influence of the three processes, yielding a type-I error rate ≤5%. The type-II error rate, that is, production of false negatives, was also acceptable and within the typical cutoff (20%). We demonstrate that the UniCAA provides a flexible framework for retrieving the processes behind community assembly and propose avenues for future developments of the framework.
Collapse
Affiliation(s)
- Markus A. K. Sydenham
- Faculty of Environmental Sciences and Natural Resource ManagementNorwegian University of Life SciencesÅsNorway
| | - Stein R. Moe
- Faculty of Environmental Sciences and Natural Resource ManagementNorwegian University of Life SciencesÅsNorway
| | - Mari Steinert
- Faculty of Environmental Sciences and Natural Resource ManagementNorwegian University of Life SciencesÅsNorway
| | - Katrine Eldegard
- Faculty of Environmental Sciences and Natural Resource ManagementNorwegian University of Life SciencesÅsNorway
| |
Collapse
|
20
|
Loranger J, Munoz F, Shipley B, Violle C. What makes trait-abundance relationships when both environmental filtering and stochastic neutral dynamics are at play? OIKOS 2018. [DOI: 10.1111/oik.05398] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Jessy Loranger
- CNRS, CEFE UMR 5175, Univ. de Montpellier - Univ. Paul Valéry - EPHE; Montpellier Cedex 5 France
- Univ. de Sherbrooke; Sherbrooke Canada
| | - François Munoz
- Laboratoire d'Écologie Alpine, Univ. Grenoble Alpes; FR-38000 Grenoble France
| | | | - Cyrille Violle
- CNRS, CEFE UMR 5175, Univ. de Montpellier - Univ. Paul Valéry - EPHE; Montpellier Cedex 5 France
| |
Collapse
|