1
|
Steiert B, Andersen SE, McCaslin PN, Elwell CA, Faris R, Tijerina X, Smith P, Eldridge Q, Imai BS, Arrington JV, Yau PM, Mirrashidi KM, Johnson JR, Verschueren E, Von Dollen J, Jang GM, Krogan NJ, Engel JN, Weber MM. Global mapping of the Chlamydia trachomatis conventional secreted effector - host interactome reveals CebN interacts with nucleoporins and Rae1 to impede STAT1 nuclear translocation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.587017. [PMID: 38712050 PMCID: PMC11071493 DOI: 10.1101/2024.04.25.587017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Chlamydia trachomatis (C.t.), the leading cause of bacterial sexually transmitted infections, employs a type III secretion system (T3SS) to translocate two classes of effectors, inclusion membrane proteins and conventional T3SS (cT3SS) effectors, into the host cell to counter host defense mechanisms. Here we employed three assays to directly evaluate secretion during infection, validating secretion for 23 cT3SS effectors. As bioinformatic analyses have been largely unrevealing, we conducted affinity purification-mass spectrometry to identify host targets and gain insights into the functions of these effectors, identifying high confidence interacting partners for 21 cT3SS effectors. We demonstrate that CebN localizes to the nuclear envelope in infected and bystander cells where it interacts with multiple nucleoporins and Rae1, blocking STAT1 nuclear import following IFN-γ stimulation. By building a cT3SS effector-host interactome, we have identified novel pathways that are targeted during bacterial infection and have begun to address how C.t. effectors combat cell autonomous immunity.
Collapse
Affiliation(s)
- Brianna Steiert
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Shelby E. Andersen
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
- Present address: Department of Immunology and Microbiology, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
| | - Paige N. McCaslin
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Cherilyn A. Elwell
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Robert Faris
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Xavier Tijerina
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Parker Smith
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Quinn Eldridge
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Brian S. Imai
- Protein Sciences Facility, Roy J. Carver Biotechnology Center, University of Illinois Urbana–Champaign, Urbana, IL, USA
| | - Justine V. Arrington
- Protein Sciences Facility, Roy J. Carver Biotechnology Center, University of Illinois Urbana–Champaign, Urbana, IL, USA
| | - Peter M. Yau
- Protein Sciences Facility, Roy J. Carver Biotechnology Center, University of Illinois Urbana–Champaign, Urbana, IL, USA
| | | | - Jeffrey R. Johnson
- QB3, California Institute for Quantitative Biosciences, San Francisco, CA 94148, USA
| | - Erik Verschueren
- QB3, California Institute for Quantitative Biosciences, San Francisco, CA 94148, USA
| | - John Von Dollen
- QB3, California Institute for Quantitative Biosciences, San Francisco, CA 94148, USA
| | - Gwendolyn M. Jang
- QB3, California Institute for Quantitative Biosciences, San Francisco, CA 94148, USA
| | - Nevan J. Krogan
- QB3, California Institute for Quantitative Biosciences, San Francisco, CA 94148, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Joanne N. Engel
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Mary M. Weber
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
2
|
Abstract
Type III secretion systems (T3SSs) are utilized by Gram-negative pathogens to enhance their pathogenesis. This secretion system is associated with the delivery of effectors through a needle-like structure from the bacterial cytosol directly into a target eukaryotic cell. These effector proteins then manipulate specific eukaryotic cell functions to benefit pathogen survival within the host. The obligate intracellular pathogens of the family Chlamydiaceae have a highly evolutionarily conserved nonflagellar T3SS that is an absolute requirement for their survival and propagation within the host with about one-seventh of the genome dedicated to genes associated with the T3SS apparatus, chaperones, and effectors. Chlamydiae also have a unique biphasic developmental cycle where the organism alternates between an infectious elementary body (EB) and replicative reticulate body (RB). T3SS structures have been visualized on both EBs and RBs. And there are effector proteins that function at each stage of the chlamydial developmental cycle, including entry and egress. This review will discuss the history of the discovery of chlamydial T3SS and the biochemical characterization of components of the T3SS apparatus and associated chaperones in the absence of chlamydial genetic tools. These data will be contextualized into how the T3SS apparatus functions throughout the chlamydial developmental cycle and the utility of heterologous/surrogate models to study chlamydial T3SS. Finally, there will be a targeted discussion on the history of chlamydial effectors and recent advances in the field.
Collapse
Affiliation(s)
- Elizabeth A. Rucks
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Durham Research Center II, Omaha, Nebraska, USA
| |
Collapse
|
3
|
A Same-Genus Screening Approach Reveals Novel Effectors and New Possibilities for Investigating Chlamydia Pathogenesis. J Bacteriol 2021; 203:JB.00157-21. [PMID: 33753471 PMCID: PMC8117527 DOI: 10.1128/jb.00157-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Chlamydiae are obligate intracellular pathogens that rely on secreted effector proteins to establish their intracellular niche. In this issue of the Journal of Bacteriology, Yanatori et al describe a screen for C. pneumoniae effectors, performed in C. trachomatis, which identified several new proteins that are translocated during infection (Yanatori, Miura et al. 2021). More broadly, they demonstrate how new genetic approaches in C. trachomatis can be used to characterize the virulence factors of other Chlamydia species.
Collapse
|
4
|
Sigma 54-Regulated Transcription Is Associated with Membrane Reorganization and Type III Secretion Effectors during Conversion to Infectious Forms of Chlamydia trachomatis. mBio 2020; 11:mBio.01725-20. [PMID: 32900805 PMCID: PMC7482065 DOI: 10.1128/mbio.01725-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The factors that control the growth and infectious processes for Chlamydia are still poorly understood. This study used recently developed genetic tools to determine the regulon for one of the key transcription factors encoded by Chlamydia, sigma 54. Surrogate and computational analyses provide additional support for the hypothesis that sigma 54 plays a key role in controlling the expression of many components critical to converting and enabling the infectious capability of Chlamydia. These components include those that remodel the membrane for the extracellular environment and incorporation of an arsenal of type III secretion effectors in preparation for infecting new cells. Chlamydia bacteria are obligate intracellular organisms with a phylum-defining biphasic developmental cycle that is intrinsically linked to its ability to cause disease. The progression of the chlamydial developmental cycle is regulated by the temporal expression of genes predominantly controlled by RNA polymerase sigma (σ) factors. Sigma 54 (σ54) is one of three sigma factors encoded by Chlamydia for which the role and regulon are unknown. CtcC is part of a two-component signal transduction system that is requisite for σ54 transcriptional activation. CtcC activation of σ54 requires phosphorylation, which relieves inhibition by the CtcC regulatory domain and enables ATP hydrolysis by the ATPase domain. Prior studies with CtcC homologs in other organisms have shown that expression of the ATPase domain alone can activate σ54 transcription. Biochemical analysis of CtcC ATPase domain supported the idea of ATP hydrolysis occurring in the absence of the regulatory domain, as well as the presence of an active-site residue essential for ATPase activity (E242). Using recently developed genetic approaches in Chlamydia to induce expression of the CtcC ATPase domain, a transcriptional profile was determined that is expected to reflect the σ54 regulon. Computational evaluation revealed that the majority of the differentially expressed genes were preceded by highly conserved σ54 promoter elements. Reporter gene analyses using these putative σ54 promoters reinforced the accuracy of the model of the proposed regulon. Investigation of the gene products included in this regulon supports the idea that σ54 controls expression of genes that are critical for conversion of Chlamydia from replicative reticulate bodies into infectious elementary bodies.
Collapse
|
5
|
Slater SL, Frankel G. Advances and Challenges in Studying Type III Secretion Effectors of Attaching and Effacing Pathogens. Front Cell Infect Microbiol 2020; 10:337. [PMID: 32733819 PMCID: PMC7358347 DOI: 10.3389/fcimb.2020.00337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/04/2020] [Indexed: 12/24/2022] Open
Affiliation(s)
- Sabrina L Slater
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Gad Frankel
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
6
|
McDermott JE, Cort JR, Nakayasu ES, Pruneda JN, Overall C, Adkins JN. Prediction of bacterial E3 ubiquitin ligase effectors using reduced amino acid peptide fingerprinting. PeerJ 2019; 7:e7055. [PMID: 31211016 PMCID: PMC6557245 DOI: 10.7717/peerj.7055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 05/02/2019] [Indexed: 11/20/2022] Open
Abstract
Background Although pathogenic Gram-negative bacteria lack their own ubiquitination machinery, they have evolved or acquired virulence effectors that can manipulate the host ubiquitination process through structural and/or functional mimicry of host machinery. Many such effectors have been identified in a wide variety of bacterial pathogens that share little sequence similarity amongst themselves or with eukaryotic ubiquitin E3 ligases. Methods To allow identification of novel bacterial E3 ubiquitin ligase effectors from protein sequences we have developed a machine learning approach, the SVM-based Identification and Evaluation of Virulence Effector Ubiquitin ligases (SIEVE-Ub). We extend the string kernel approach used previously to sequence classification by introducing reduced amino acid (RED) alphabet encoding for protein sequences. Results We found that 14mer peptides with amino acids represented as simply either hydrophobic or hydrophilic provided the best models for discrimination of E3 ligases from other effector proteins with a receiver-operator characteristic area under the curve (AUC) of 0.90. When considering a subset of E3 ubiquitin ligase effectors that do not fall into known sequence based families we found that the AUC was 0.82, demonstrating the effectiveness of our method at identifying novel functional family members. Feature selection was used to identify a parsimonious set of 10 RED peptides that provided good discrimination, and these peptides were found to be located in functionally important regions of the proteins involved in E2 and host target protein binding. Our general approach enables construction of models based on other effector functions. We used SIEVE-Ub to predict nine potential novel E3 ligases from a large set of bacterial genomes. SIEVE-Ub is available for download at https://doi.org/10.6084/m9.figshare.7766984.v1 or https://github.com/biodataganache/SIEVE-Ub for the most current version.
Collapse
Affiliation(s)
- Jason E McDermott
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States of America.,Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, United States of America
| | - John R Cort
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Ernesto S Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Jonathan N Pruneda
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, United States of America
| | - Christopher Overall
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, United States of America
| | - Joshua N Adkins
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States of America
| |
Collapse
|
7
|
De Puysseleyr K, Kieckens E, De Puysseleyr L, Van den Wyngaert H, Ahmed B, Van Lent S, Creasy HH, Myers GSA, Vanrompay D. Development of a Chlamydia suis-specific antibody enzyme-linked immunosorbent assay based on the use of a B-cell epitope of the polymorphic membrane protein C. Transbound Emerg Dis 2018; 65:e457-e469. [PMID: 29314736 DOI: 10.1111/tbed.12783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Indexed: 12/21/2022]
Abstract
Chlamydia suis infections lead to economic loss in the pork industry. Chlamydia suis infections could be successfully treated with tetracyclines until the appearance of a tetracycline resistant phenotype, which was acquired via horizontal gene transfer of the tet(C) gene. Given the importance of C. suis as a swine pathogen and as a recently emerged tetracycline resistant pathogen with zoonotic potential, our aim was to develop a sensitive C. suis-specific antibody ELISA based on the polymorphic membrane proteins (Pmps). Chlamydia Pmps are important virulence factors and candidate antigens for serodiagnosis. We identified nine Pmps (PmpA to I) in C. suis strain MD56 using a recently developed Hidden-Markov model. PmpC was the most promising candidate for the development of a C. suis-specific antibody ELISA as the protein was absent in C. abortus, C. pecorum and C. psittaci which also infect pigs and as the protein contained C. suis-specific amino acid regions, absent in C. trachomatis PmpC. We identified an immunodominant B-cell epitope in C. suis PmpC using experimental porcine sera. The sensitivity and specificity of the PmpC ELISA was compared to the complement fixation test (CFT) and to a recombinant MOMP ELISA using experimental sera. The PmpC ELISA detected all positive control sera and was in contrast to CFT and the rMOMP ELISA 100% C. suis specific as positive control sera against other Chlamydia species did not react in the PmpC ELISA. The test was successfully validated using slaughterhouse sera and sera from clinically affected pigs. The PmpC ELISA could assist in diminishing the spread of C. suis infections in the pork industry.
Collapse
Affiliation(s)
- K De Puysseleyr
- Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - E Kieckens
- Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - L De Puysseleyr
- Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - H Van den Wyngaert
- Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - B Ahmed
- Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - S Van Lent
- Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - H H Creasy
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - G S A Myers
- i3 Institute, University of Technology, Sydney, NSW, Australia
| | - D Vanrompay
- Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| |
Collapse
|
8
|
Abstract
Species of Chlamydia are the etiologic agent of endemic blinding trachoma, the leading cause of bacterial sexually transmitted diseases, significant respiratory pathogens, and a zoonotic threat. Their dependence on an intracellular growth niche and their peculiar developmental cycle are major challenges to elucidating their biology and virulence traits. The last decade has seen tremendous advances in our ability to perform a molecular genetic analysis of Chlamydia species. Major achievements include the generation of large collections of mutant strains, now available for forward- and reverse-genetic applications, and the introduction of a system for plasmid-based transformation enabling complementation of mutations; expression of foreign, modified, or reporter genes; and even targeted gene disruptions. This review summarizes the current status of the molecular genetic toolbox for Chlamydia species and highlights new insights into their biology and new challenges in the nascent field of Chlamydia genetics.
Collapse
Affiliation(s)
- Barbara S Sixt
- Department for Molecular Genetics and Microbiology, Duke University, Durham, North Carolina 27710; .,Centre de Recherche des Cordeliers, INSERM U1138, Paris 75006, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris 75006, France.,Université Pierre et Marie Curie, Paris 75005, France
| | - Raphael H Valdivia
- Department for Molecular Genetics and Microbiology, Duke University, Durham, North Carolina 27710;
| |
Collapse
|
9
|
da Cunha M, Pais SV, Bugalhão JN, Mota LJ. The Chlamydia trachomatis type III secretion substrates CT142, CT143, and CT144 are secreted into the lumen of the inclusion. PLoS One 2017. [PMID: 28622339 PMCID: PMC5473537 DOI: 10.1371/journal.pone.0178856] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Chlamydia trachomatis is a human bacterial pathogen causing ocular and genital infections. It multiplies exclusively within an intracellular membrane-bound vacuole, the inclusion, and uses a type III secretion system to manipulate host cells by injecting them with bacterially-encoded effector proteins. In this work, we characterized the expression and subcellular localization in infected host cells of the C. trachomatis CT142, CT143, and CT144 proteins, which we previously showed to be type III secretion substrates. Transcriptional analyses in C. trachomatis confirmed the prediction that ct142, ct143 and ct144 are organized in an operon and revealed that their expression is likely driven by the main σ factor, σ66. In host cells infected by C. trachomatis, production of CT142 and CT143 could be detected by immunoblotting from 20–26 h post-infection. Immunofluorescence microscopy of infected cells revealed that from 20 h post-infection CT143 appeared mostly as globular structures outside of the bacterial cells but within the lumen of the inclusion. Furthermore, immunofluorescence microscopy of cells infected by C. trachomatis strains carrying plasmids producing CT142, CT143, or CT144 under the control of the ct142 promoter and with a C-terminal double hemagglutinin (2HA) epitope tag revealed that CT142-2HA, CT143-2HA or CT144-2HA showed an identical localization to chromosomally-encoded CT143. Moreover, CT142-2HA or CT144-2HA and CT143 produced by the same bacteria co-localized in the lumen of the inclusion. Overall, these data suggest that the CT142, CT143, and CT144 type III secretion substrates are secreted into the lumen of the inclusion where they might form a protein complex.
Collapse
Affiliation(s)
- Maria da Cunha
- UCIBIO—REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Sara V. Pais
- UCIBIO—REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Joana N. Bugalhão
- UCIBIO—REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Luís Jaime Mota
- UCIBIO—REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- * E-mail:
| |
Collapse
|
10
|
Vander Broek CW, Stevens JM. Type III Secretion in the Melioidosis Pathogen Burkholderia pseudomallei. Front Cell Infect Microbiol 2017; 7:255. [PMID: 28664152 PMCID: PMC5471309 DOI: 10.3389/fcimb.2017.00255] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/31/2017] [Indexed: 02/03/2023] Open
Abstract
Burkholderia pseudomallei is a Gram-negative intracellular pathogen and the causative agent of melioidosis, a severe disease of both humans and animals. Melioidosis is an emerging disease which is predicted to be vastly under-reported. Type III Secretion Systems (T3SSs) are critical virulence factors in Gram negative pathogens of plants and animals. The genome of B. pseudomallei encodes three T3SSs. T3SS-1 and -2, of which little is known, are homologous to Hrp2 secretion systems of the plant pathogens Ralstonia and Xanthomonas. T3SS-3 is better characterized and is homologous to the Inv/Mxi-Spa secretion systems of Salmonella spp. and Shigella flexneri, respectively. Upon entry into the host cell, B. pseudomallei requires T3SS-3 for efficient escape from the endosome. T3SS-3 is also required for full virulence in both hamster and murine models of infection. The regulatory cascade which controls T3SS-3 expression and the secretome of T3SS-3 have been described, as well as the effect of mutations of some of the structural proteins. Yet only a few effector proteins have been functionally characterized to date and very little work has been carried out to understand the hierarchy of assembly, secretion and temporal regulation of T3SS-3. This review aims to frame current knowledge of B. pseudomallei T3SSs in the context of other well characterized model T3SSs, particularly those of Salmonella and Shigella.
Collapse
Affiliation(s)
- Charles W Vander Broek
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of EdinburghMidlothian, United Kingdom
| | - Joanne M Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of EdinburghMidlothian, United Kingdom
| |
Collapse
|
11
|
Vouga M, Baud D, Greub G. Simkania negevensis, an insight into the biology and clinical importance of a novel member of the Chlamydiales order. Crit Rev Microbiol 2016; 43:62-80. [PMID: 27786615 DOI: 10.3109/1040841x.2016.1165650] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Simkania negevensis is a Chlamydia-related bacterium discovered in 1993 and represents the founding member of the Simkaniaceae family within the Chlamydiales order. As other Chlamydiales, it is an obligate intracellular bacterium characterized by a biphasic developmental cycle. Its similarities with the pathogenic Chlamydia trachomatis and Chlamydia pneumoniae make it an interesting bacterium. So far, little is known about its biology, but S. negevensis harbors various microbiological characteristics of interest, including a strong association of the Simkania-containing vacuole with the ER and the presence of an intron in the 23S rRNA encoding gene. Evidence of human exposition has been reported worldwide. However, there is a lack of robust clinical studies evaluating its implication in human diseases; current data suggest an association with pneumonia and bronchiolitis making S. negevensis a potential emerging pathogen. Owing to its fastidious growth requirements, the clinical relevance of S. negevensis is probably underestimated. In this review, we summarize the current knowledge on S. negevensis and explore future research challenges.
Collapse
Affiliation(s)
- Manon Vouga
- a Institute of Microbiology , Center for Research on Intracellular Bacteria, Faculty of Biology and Medicine, University and University Hospital of Lausanne , Lausanne , Switzerland.,b Department "Femme-Mère-Enfant" , Materno-Fetal and Obstetrics Research Unit, University Hospital , Lausanne , Switzerland
| | - David Baud
- a Institute of Microbiology , Center for Research on Intracellular Bacteria, Faculty of Biology and Medicine, University and University Hospital of Lausanne , Lausanne , Switzerland.,b Department "Femme-Mère-Enfant" , Materno-Fetal and Obstetrics Research Unit, University Hospital , Lausanne , Switzerland
| | - Gilbert Greub
- a Institute of Microbiology , Center for Research on Intracellular Bacteria, Faculty of Biology and Medicine, University and University Hospital of Lausanne , Lausanne , Switzerland.,c Infectious Diseases Unit , University hospital , Lausanne , Switzerland
| |
Collapse
|
12
|
Van Lent S, De Vos WH, Huot Creasy H, Marques PX, Ravel J, Vanrompay D, Bavoil P, Hsia RC. Analysis of Polymorphic Membrane Protein Expression in Cultured Cells Identifies PmpA and PmpH of Chlamydia psittaci as Candidate Factors in Pathogenesis and Immunity to Infection. PLoS One 2016; 11:e0162392. [PMID: 27631978 PMCID: PMC5025070 DOI: 10.1371/journal.pone.0162392] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 08/22/2016] [Indexed: 12/22/2022] Open
Abstract
The polymorphic membrane protein (Pmp) paralogous families of Chlamydia trachomatis, Chlamydia pneumoniae and Chlamydia abortus are putative targets for Chlamydia vaccine development. To determine whether this is also the case for Pmp family members of C. psittaci, we analyzed transcription levels, protein production and localization of several Pmps of C. psittaci. Pmp expression profiles were characterized using quantitative real-time PCR (RT-qPCR), immunofluorescence (IF) and immuno-electron microscopy (IEM) under normal and stress conditions. We found that PmpA was highly produced in all inclusions as early as 12 hpi in all biological replicates. In addition, PmpA and PmpH appeared to be unusually accessible to antibody as determined by both immunofluorescence and immuno-electron microscopy. Our results suggest an important role for these Pmps in the pathogenesis of C. psittaci, and make them promising candidates in vaccine development.
Collapse
Affiliation(s)
- Sarah Van Lent
- Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- * E-mail:
| | - Winnok H. De Vos
- Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Heather Huot Creasy
- Institute for Genome Sciences and Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, Maryland, Unites States of America
| | - Patricia X. Marques
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, Maryland, Unites States of America
| | - Jacques Ravel
- Institute for Genome Sciences and Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, Maryland, Unites States of America
| | - Daisy Vanrompay
- Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Patrik Bavoil
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, Maryland, Unites States of America
| | - Ru-ching Hsia
- University of Maryland, Baltimore, Electron Microscopy Core Imaging Facility, Maryland, Unites States of America
| |
Collapse
|
13
|
Van Lent S, Creasy HH, Myers GS, Vanrompay D. The Number, Organization, and Size of Polymorphic Membrane Protein Coding Sequences as well as the Most Conserved Pmp Protein Differ within and across Chlamydia Species. J Mol Microbiol Biotechnol 2016; 26:333-44. [DOI: 10.1159/000447092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/25/2016] [Indexed: 11/19/2022] Open
Abstract
Variation is a central trait of the polymorphic membrane protein (Pmp) family. The number of <i>pmp</i> coding sequences differs between <i>Chlamydia</i> species, but it is unknown whether the number of <i>pmp</i> coding sequences is constant within a <i>Chlamydia</i> species. The level of conservation of the Pmp proteins has previously only been determined for <i>Chlamydia trachomatis.</i> As different Pmp proteins might be indispensible for the pathogenesis of different <i>Chlamydia </i>species, this study investigated the conservation of Pmp proteins both within and across <i>C. trachomatis,</i><i>C. pneumoniae,</i><i>C. abortus,</i> and <i>C. psittaci.</i> The <i>pmp</i> coding sequences were annotated in 16 <i>C. trachomatis,</i> 6 <i>C. pneumoniae,</i> 2 <i>C. abortus,</i> and 16 <i>C. psittaci</i> genomes. The number and organization of polymorphic membrane coding sequences differed within and across the analyzed <i>Chlamydia </i>species. The length of coding sequences of <i>pmpA,</i><i>pmpB,</i> and <i>pmpH</i> was conserved among all analyzed genomes, while the length of <i>pmpE/F</i> and <i>pmpG,</i> and remarkably also of the subtype <i>pmpD,</i> differed among the analyzed genomes. PmpD, PmpA, PmpH, and PmpA were the most conserved Pmp in <i>C. trachomatis,</i><i>C. pneumoniae,</i><i>C. abortus,</i> and <i>C. psittaci</i>, respectively. PmpB was the most conserved Pmp across the 4 analyzed <i>Chlamydia</i> species.
Collapse
|
14
|
Mueller KE, Fields KA. Application of β-lactamase reporter fusions as an indicator of effector protein secretion during infections with the obligate intracellular pathogen Chlamydia trachomatis. PLoS One 2015; 10:e0135295. [PMID: 26258949 PMCID: PMC4530969 DOI: 10.1371/journal.pone.0135295] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/20/2015] [Indexed: 02/05/2023] Open
Abstract
Chlamydia spp. utilize multiple secretion systems, including the type III secretion system (T3SS), to deploy host-interactive effector proteins into infected host cells. Elucidation of secreted proteins has traditionally required ectopic expression in a surrogate T3SS followed by immunolocalization of endogenous candidate effectors to confirm secretion by chlamydiae. The ability to transform Chlamydia and achieve stable expression of recombinant gene products has enabled a more direct assessment of secretion. We adapted TEM-1 β-lactamase as a reporter system for assessment of chlamydial protein secretion. We provide evidence that this system facilitates visualization of secretion in the context of infection. Specifically, our findings provide definitive evidence that C. trachomatis CT695 is secreted during infection. Follow-up indirect immunofluorescence studies confirmed CT695 secretion and indicate that this effector can be secreted at multiple points during the chlamydial developmental cycle. Our results indicate that the BlaM-fusion reporter assay will allow efficacious identification of novel secreted proteins. Moreover, this approach can easily be adapted to enable more sophisticated studies of the secretion process in Chlamydia.
Collapse
Affiliation(s)
- Konrad E. Mueller
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, United States of America
| | - Kenneth A. Fields
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, United States of America
| |
Collapse
|
15
|
Chlamydia trachomatis In Vivo to In Vitro Transition Reveals Mechanisms of Phase Variation and Down-Regulation of Virulence Factors. PLoS One 2015. [PMID: 26207372 PMCID: PMC4514472 DOI: 10.1371/journal.pone.0133420] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Research on the obligate intracellular bacterium Chlamydia trachomatis demands culture in cell-lines, but the adaptive process behind the in vivo to in vitro transition is not understood. We assessed the genomic and transcriptomic dynamics underlying C. trachomatis in vitro adaptation of strains representing the three disease groups (ocular, epithelial-genital and lymphogranuloma venereum) propagated in epithelial cells over multiple passages. We found genetic features potentially underlying phase variation mechanisms mediating the regulation of a lipid A biosynthesis enzyme (CT533/LpxC), and the functionality of the cytotoxin (CT166) through an ON/OFF mechanism. We detected inactivating mutations in CT713/porB, a scenario suggesting metabolic adaptation to the available carbon source. CT135 was inactivated in a tropism-specific manner, with CT135-negative clones emerging for all epithelial-genital populations (but not for LGV and ocular populations) and rapidly increasing in frequency (~23% mutants per 10 passages). RNA-sequencing analyses revealed that a deletion event involving CT135 impacted the expression of multiple virulence factors, namely effectors known to play a role in the C. trachomatis host-cell invasion or subversion (e.g., CT456/Tarp, CT694, CT875/TepP and CT868/ChlaDub1). This reflects a scenario of attenuation of C. trachomatis virulence in vitro, which may take place independently or in a cumulative fashion with the also observed down-regulation of plasmid-related virulence factors. This issue may be relevant on behalf of the recent advances in Chlamydia mutagenesis and transformation where culture propagation for selecting mutants/transformants is mandatory. Finally, there was an increase in the growth rate for all strains, reflecting gradual fitness enhancement over time. In general, these data shed light on the adaptive process underlying the C. trachomatis in vivo to in vitro transition, and indicates that it would be prudent to restrict culture propagation to minimal passages and check the status of the CT135 genotype in order to avoid the selection of CT135-negative mutants, likely originating less virulent strains.
Collapse
|
16
|
Bavoil PM, Byrne GI. Analysis of CPAF mutants: new functions, new questions (the ins and outs of a chlamydial protease). Pathog Dis 2015; 71:287-91. [PMID: 24942261 DOI: 10.1111/2049-632x.12194] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 06/06/2014] [Indexed: 12/18/2022] Open
Abstract
The role of the chlamydial protease CPAF, previously described as a secreted serine protease processing a wealth of host and chlamydial proteins to promote chlamydial intracellular growth, has recently been questioned by studies from the groups of Tan and Sütterlin, who demonstrated that the reported proteolysis of almost a dozen substrates by CPAF occurred during preparation of cell lysates rather than in intact cells. Valdivia et al. have now compared near-isogenic pairs of CPAF-deficient and secretion-deficient mutants of Chlamydia trachomatis and their wild-type parent. Their report, published in this issue of Pathogens and Disease, is a landmark study in the emerging era of Chlamydia genetics. The results of Tan and Sütterlin are confirmed with a few additions. While CPAF's role in pathogenesis is diminished considerably from these studies, CPAF remains an important factor in chlamydial biology as (1) CPAF mutants produce less infectious yield than wild type; and (2) CPAF is responsible for proteolytic cleavage of vimentin and LAP-1, but only after lysis of the inclusion membrane, not upon CPAF secretion to the cytosol. Here, we briefly review the evidence in support of CPAF's active secretion from the mid-to-late inclusion and conclude that new experimentation to establish whether or not CPAF is actively secreted should precede any new investigation of CPAF's cellular activities during mid-to-late development.
Collapse
Affiliation(s)
- Patrik M Bavoil
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD, USA
| | | |
Collapse
|
17
|
Mojica SA, Hovis KM, Frieman MB, Tran B, Hsia RC, Ravel J, Jenkins-Houk C, Wilson KL, Bavoil PM. SINC, a type III secreted protein of Chlamydia psittaci, targets the inner nuclear membrane of infected cells and uninfected neighbors. Mol Biol Cell 2015; 26:1918-34. [PMID: 25788290 PMCID: PMC4436835 DOI: 10.1091/mbc.e14-11-1530] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 03/06/2015] [Indexed: 12/31/2022] Open
Abstract
SINC, a new type III secreted protein of the avian and human pathogen Chlamydia psittaci, uniquely targets the nuclear envelope of C. psittaci-infected cells and uninfected neighboring cells. Digitonin-permeabilization studies of SINC-GFP-transfected HeLa cells indicate that SINC targets the inner nuclear membrane. SINC localization at the nuclear envelope was blocked by importazole, confirming SINC import into the nucleus. Candidate partners were identified by proximity to biotin ligase-fused SINC in HEK293 cells and mass spectrometry (BioID). This strategy identified 22 candidates with high confidence, including the nucleoporin ELYS, lamin B1, and four proteins (emerin, MAN1, LAP1, and LBR) of the inner nuclear membrane, suggesting that SINC interacts with host proteins that control nuclear structure, signaling, chromatin organization, and gene silencing. GFP-SINC association with the native LEM-domain protein emerin, a conserved component of nuclear "lamina" structure, or with a complex containing emerin was confirmed by GFP pull down. Our findings identify SINC as a novel bacterial protein that targets the nuclear envelope with the capability of globally altering nuclear envelope functions in the infected host cell and neighboring uninfected cells. These properties may contribute to the aggressive virulence of C. psittaci.
Collapse
Affiliation(s)
- Sergio A Mojica
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD 21201
| | - Kelley M Hovis
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD 21201
| | - Matthew B Frieman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 20201
| | - Bao Tran
- Mass Spectrometry Center, University of Maryland School of Pharmacy, Baltimore, MD 21201
| | - Ru-ching Hsia
- Core Imaging Facility and Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201
| | - Jacques Ravel
- Institute for Genome Science, University of Maryland School of Medicine, Baltimore, MD 20201
| | - Clifton Jenkins-Houk
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Katherine L Wilson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Patrik M Bavoil
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD 21201
| |
Collapse
|
18
|
Borges V, Gomes JP. Deep comparative genomics among Chlamydia trachomatis lymphogranuloma venereum isolates highlights genes potentially involved in pathoadaptation. INFECTION GENETICS AND EVOLUTION 2015; 32:74-88. [PMID: 25745888 DOI: 10.1016/j.meegid.2015.02.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/23/2015] [Accepted: 02/26/2015] [Indexed: 11/19/2022]
Abstract
Lymphogranuloma venereum (LGV) is a human sexually transmitted disease caused by the obligate intracellular bacterium Chlamydia trachomatis (serovars L1-L3). LGV clinical manifestations range from severe ulcerative proctitis (anorectal syndrome), primarily caused by the epidemic L2b strains, to painful inguinal lymphadenopathy (the typical LGV bubonic form). Besides potential host-related factors, the differential disease severity and tissue tropism among LGV strains is likely a function of the genetic backbone of the strains. We aimed to characterize the genetic variability among LGV strains as strain- or serovar-specific mutations may underlie phenotypic signatures, and to investigate the mutational events that occurred throughout the pathoadaptation of the epidemic L2b lineage. By analyzing 20 previously published genomes from L1, L2, L2b and L3 strains and two new genomes from L2b strains, we detected 1497 variant sites and about 100 indels, affecting 453 genes and 144 intergenic regions, with 34 genes displaying a clear overrepresentation of nonsynonymous mutations. Effectors and/or type III secretion substrates (almost all of those described in the literature) and inclusion membrane proteins showed amino acid changes that were about fivefold more frequent than silent changes. More than 120 variant sites occurred in plasmid-regulated virulence genes, and 66% yielded amino acid changes. The identified serovar-specific variant sites revealed that the L2b-specific mutations are likely associated with higher fitness and pointed out potential targets for future highly discriminatory diagnostic/typing tests. By evaluating the evolutionary pathway beyond the L2b clonal radiation, we observed that 90.2% of the intra-L2b variant sites occurring in coding regions involve nonsynonymous mutations, where CT456/tarp has been the main target. Considering the progress on C. trachomatis genetic manipulation, this study may constitute an important contribution for prioritizing study targets for functional genomics aiming to dissect the impact of the identified intra-LGV polymorphisms on virulence or tropism dissimilarities among LGV strains.
Collapse
Affiliation(s)
- Vítor Borges
- Reference Laboratory of Bacterial Sexually Transmitted Infections, Department of Infectious Diseases, National Institute of Health, Av. Padre Cruz, 1649-016 Lisbon, Portugal; Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Av. Padre Cruz, 1649-016 Lisbon, Portugal
| | - João Paulo Gomes
- Reference Laboratory of Bacterial Sexually Transmitted Infections, Department of Infectious Diseases, National Institute of Health, Av. Padre Cruz, 1649-016 Lisbon, Portugal; Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Av. Padre Cruz, 1649-016 Lisbon, Portugal.
| |
Collapse
|
19
|
da Cunha M, Milho C, Almeida F, Pais SV, Borges V, Maurício R, Borrego MJ, Gomes JP, Mota LJ. Identification of type III secretion substrates of Chlamydia trachomatis using Yersinia enterocolitica as a heterologous system. BMC Microbiol 2014; 14:40. [PMID: 24533538 PMCID: PMC3931295 DOI: 10.1186/1471-2180-14-40] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Accepted: 02/10/2014] [Indexed: 12/18/2022] Open
Abstract
Background Chlamydia trachomatis is an obligate intracellular human pathogen causing ocular and urogenital infections that are a significant clinical and public health concern. This bacterium uses a type III secretion (T3S) system to manipulate host cells, through the delivery of effector proteins into their cytosol, membranes, and nucleus. In this work, we aimed to find previously unidentified C. trachomatis T3S substrates. Results We first analyzed the genome of C. trachomatis L2/434 strain for genes encoding mostly uncharacterized proteins that did not appear to possess a signal of the general secretory pathway and which had not been previously experimentally shown to be T3S substrates. We selected several genes with these characteristics and analyzed T3S of the encoding proteins using Yersinia enterocolitica as a heterologous system. We identified 23 C. trachomatis proteins whose first 20 amino acids were sufficient to drive T3S of the mature form of β-lactamase TEM-1 by Y. enterocolitica. We found that 10 of these 23 proteins were also type III secreted in their full-length versions by Y. enterocolitica, providing additional support that they are T3S substrates. Seven of these 10 likely T3S substrates of C. trachomatis were delivered by Y. enterocolitica into host cells, further suggesting that they could be effectors. Finally, real-time quantitative PCR analysis of expression of genes encoding the 10 likely T3S substrates of C. trachomatis showed that 9 of them were clearly expressed during infection of host cells. Conclusions Using Y. enterocolitica as a heterologous system, we identified 10 likely T3S substrates of C. trachomatis (CT053, CT105, CT142, CT143, CT144, CT161, CT338, CT429, CT656, and CT849) and could detect translocation into host cells of CT053, CT105, CT142, CT143, CT161, CT338, and CT429. Therefore, we revealed several C. trachomatis proteins that could be effectors subverting host cell processes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Luís Jaime Mota
- Infection Biology Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
20
|
Abstract
Chlamydia trachomatis is an obligate intracellular pathogen that replicates in a vacuole termed the inclusion. Many of the interactions of chlamydiae with the host cell are dependent upon bacterial protein synthesis and presumably exposure of these proteins to the cytosol. Because of the dearth of genetic tools for chlamydiae, previous studies examining secreted proteins required the use of heterologous bacterial systems. Recent advances in genetic manipulation of chlamydia now allow for transformation of the bacteria with plasmids. We describe here a shuttle vector system, pBOMB4, that permits expression of recombinant proteins under constitutive or conditional promoter control. We show that the inclusion membrane protein IncD is secreted in a type III-dependent manner from Yersinia pseudotuberculosis and also secreted from C. trachomatis in infected cells where it localizes appropriately to the inclusion membrane. IncD truncated of the first 30 amino acids containing the secretion signal is no longer secreted and is retained by the bacteria. Cytosolic exposure of secreted proteins can be confirmed by using CyaA, GSK, or microinjection assays. A protein predicted to be retained within the bacteria, NrdB is indeed localized to the chlamydia. In addition, we have shown that the chlamydial effector protein, CPAF, which is secreted into the host cell cytosol by a Sec-dependent pathway, also accesses the cytosol when expressed from this system. These assays should prove useful to assess the secretion of other chlamydial proteins that are potentially exposed to the cytosol of the host cell.
Collapse
|
21
|
Abstract
Members of the order Chlamydiales comprise a group of exquisitely evolved parasites of eukaryotic hosts that extends from single-celled amoeba to mammals. The most notable are human pathogens and include the agent of oculogenital disease Chlamydia trachomatis, the respiratory pathogen C. pneumoniae, and the zoonotic agent C. psittaci. All of these species are obligate intracellular bacteria that develop within parasitophorous vesicles termed inclusions. This demanding lifestyle necessitates orchestrated entry into nonphagocytic cells, creation of a privileged intracellular niche, and subversion of potent host defenses. All chlamydial genomes contain the coding capacity for a nonflagellar type III secretion system, and this mechanism has arisen as an essential contributor to chlamydial virulence. The emergence of tractable approaches to the genetic manipulation of chlamydiae raises the possibility of explosive progress in understanding this important contributor to chlamydial pathogenesis. This minireview considers challenges and recent advances that have revealed how chlamydiae have maintained conserved aspects of T3S while exploiting diversification to yield a system that exerts a fundamental role in the unique biology of Chlamydia species.
Collapse
|