1
|
Kato F, Bandou R, Yamaguchi Y, Inouye K, Inouye M. Characterization of a membrane toxin-antitoxin system, tsaAT, from Staphylococcus aureus. FEBS J 2024; 291:5015-5036. [PMID: 39356479 DOI: 10.1111/febs.17289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/01/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024]
Abstract
Bacterial toxin-antitoxin (TA) systems consist of a toxin that inhibits essential cellular processes, such as DNA replication, transcription, translation, or ATP synthesis, and an antitoxin neutralizing their cognate toxin. These systems have roles in programmed cell death, defense against phage, and the formation of persister cells. Here, we characterized the previously identified Staphylococcus aureus TA system, tsaAT, which consists of two putative membrane proteins: TsaT and TsaA. Expression of the TsaT toxin caused cell death and disrupted membrane integrity, whereas TsaA did not show any toxicity and neutralized the toxicity of TsaT. Furthermore, subcellular fractionation analysis demonstrated that both TsaA and TsaT localized to the cytoplasmic membrane of S. aureus expressing either or both 3xFLAG-tagged TsaA and 3xFLAG-tagged TsaT. Taken together, these results demonstrate that the TsaAT TA system consists of two membrane proteins, TsaA and TsaT, where TsaT disrupts membrane integrity, ultimately leading to cell death. Although sequence analyses showed that the tsaA and tsaT genes were conserved among Staphylococcus species, amino acid substitutions between TsaT orthologs highlighted the critical role of the 6th residue for its toxicity. Further amino acid substitutions indicated that the glutamic acid residue at position 63 in the TsaA antitoxin and the cluster of five lysine residues in the TsaT toxin are involved in TsaA's neutralization reaction. This study is the first to describe a bacterial TA system wherein both toxin and antitoxin are membrane proteins. These findings contribute to our understanding of S. aureus TA systems and, more generally, give new insight into highly diverse bacterial TA systems.
Collapse
Affiliation(s)
- Fuminori Kato
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Risa Bandou
- Faculty of Dentistry, Hiroshima University, Japan
| | - Yoshihiro Yamaguchi
- Department of Biology, Graduate School of Sciences, Osaka Metropolitan University, Japan
| | - Keiko Inouye
- Department of Biochemistry and Molecular Biology, Center for Advanced Biotechnology and Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Masayori Inouye
- Department of Biochemistry and Molecular Biology, Center for Advanced Biotechnology and Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, USA
| |
Collapse
|
2
|
Sharma A, Singh N, Bhasin M, Tiwari P, Chopra P, Varadarajan R, Singh R. Deciphering the role of VapBC13 and VapBC26 toxin antitoxin systems in the pathophysiology of Mycobacterium tuberculosis. Commun Biol 2024; 7:1417. [PMID: 39478197 PMCID: PMC11525840 DOI: 10.1038/s42003-024-06998-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/01/2024] [Indexed: 11/02/2024] Open
Abstract
The expansion of VapBC TA systems in M. tuberculosis has been linked with its fitness and survival upon exposure to stress conditions. Here, we have functionally characterized VapBC13 and VapBC26 TA modules of M. tuberculosis. We report that overexpression of VapC13 and VapC26 toxins in M. tuberculosis results in growth inhibition and transcriptional reprogramming. We have also identified various regulatory proteins as hub nodes in the top response network of VapC13 and VapC26 overexpression strains. Further, analysis of RNA protection ratios revealed potential tRNA targets for VapC13 and VapC26. Using in vitro ribonuclease assays, we demonstrate that VapC13 and VapC26 degrade serT and leuW tRNA, respectively. However, no significant changes in rRNA cleavage profiles were observed upon overexpression of VapC13 and VapC26 in M. tuberculosis. In order to delineate the role of these TA systems in M. tuberculosis physiology, various mutant strains were constructed. We show that in comparison to the parental strain, ΔvapBC13 and ΔvapBC26 strains were mildly susceptible to oxidative stress. Surprisingly, the growth patterns of parental and mutant strains were comparable in aerosol-infected guinea pigs. These observations imply that significant functional redundancy exists for some TA systems from M. tuberculosis.
Collapse
Affiliation(s)
- Arun Sharma
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad-Gurugram expressway, Faridabad, Haryana, India
| | - Neelam Singh
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad-Gurugram expressway, Faridabad, Haryana, India
| | - Munmun Bhasin
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Prabhakar Tiwari
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad-Gurugram expressway, Faridabad, Haryana, India
| | - Pankaj Chopra
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad-Gurugram expressway, Faridabad, Haryana, India
| | - Raghavan Varadarajan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Ramandeep Singh
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad-Gurugram expressway, Faridabad, Haryana, India.
| |
Collapse
|
3
|
Pani S, Mohapatra SS. Phenotypic heterogeneity in bacteria: the rise of antibiotic persistence, clinical implications, and therapeutic opportunities. Arch Microbiol 2024; 206:446. [PMID: 39460765 DOI: 10.1007/s00203-024-04173-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/27/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
The rising incidence of antimicrobial resistance (AMR) and the diminishing antibiotics discovery pipeline have created an unprecedented scenario where minor infections could become untreatable. AMR phenomenon is genetically encoded, and various genetic determinants have been implicated in their emergence and spread. Nevertheless, several non-genetic phenomena are also involved in antibiotic treatment failure which requires a systematic investigation. It has been observed that in an isogenic population of bacteria, not all cells behave or respond the same way to an antibiotic, because of the inherent heterogeneity among them. This heterogeneity is not always heritable but rather phenotypic. Three distinct types of phenotypic heterogeneity, namely tolerance, persistence, and heteroresistance have been observed in bacteria having significant clinical implications influencing the treatment outcome. While tolerance is when a population can survive high doses of antibiotics without changing the minimum inhibitory concentration (MIC) of the drug, persistence occurs in a subpopulation of bacteria that can survive exposure to high antibiotic doses. In contrast, when a subpopulation shows a very high MIC in comparison to the rest of the population, the phenomenon is called heteroresistance. In this article, we have highlighted bacterial persistence with a focus on their emergence and the underlying molecular mechanisms. Moreover, we have tried to associate the genome-wide methylation status with that of the heterogeneity at a single-cell level that may explain the role of epigenetic mechanisms in the development of persistence.
Collapse
Affiliation(s)
- Srimayee Pani
- Molecular Microbiology Lab, Department of Biotechnology, Berhampur University, Bhanja Bihar, Berhampur, Odisha, 760007, India
| | - Saswat S Mohapatra
- Molecular Microbiology Lab, Department of Biotechnology, Berhampur University, Bhanja Bihar, Berhampur, Odisha, 760007, India.
| |
Collapse
|
4
|
Finn JP, Luzinski C, Burton BM. Differential expression of the yfj operon in a Bacillus subtilis biofilm. Appl Environ Microbiol 2024:e0136224. [PMID: 39436054 DOI: 10.1128/aem.01362-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/29/2024] [Indexed: 10/23/2024] Open
Abstract
Type VII protein secretion systems play an important role in the survival and virulence of pathogens and in the competition among some microbes. Potential polymorphic toxin substrates of the type VII secretion system (T7SS) in Bacillus subtilis are important for competition in the context of biofilm communities. Within a biofilm, there is significant physiological heterogeneity as cells within the population take on differential cell fates. Which cells express and deploy the various T7SS substrates is still unknown. To identify which cells express at least one of the T7SS substrates, we investigated the yfj operon. The yfjABCDEF operon encodes at least one predicted T7SS substrate. Starting with an in silico analysis of the yfj operon promoter region, we identified potential regulatory sequences. Using a yfj promoter-reporter fusion, we then identified several regulators that impact expression of the operon, including a regulator of biofilm formation, DegU. In a degU deletion mutant, yfj expression is completely abolished. Mutation of predicted DegU binding sites also results in a significant reduction in yfj reporter levels. Further analysis of yfj regulation reveals that deletion of spo0A has the opposite effect of the degU deletion. Following the yfj reporter by microscopy of cells harvested from biofilms, we find that the yfj operon is expressed specifically in the subset of cells undergoing sporulation. Together, our results define cells entering sporulation as the subpopulation most likely to express products of the yfj operon in B. subtilis.IMPORTANCEDifferential expression of genes in a bacterial community allows for the division of labor among cells in the community. The toxin substrates of the type VII secretions system (T7SS) are known to be active in Bacillus subtilis biofilm communities. This work describes the expression of one of the T7SS-associated operons, the yfj operon, which encodes the YFJ toxin, in the sporulating subpopulation within a biofilm. The evidence that the YFJ toxin may be deployed specifically in cells at the early stages of sporulation provides a potential role for deployment of T7SS in community-associated activities, such as cannibalism.
Collapse
Affiliation(s)
- James P Finn
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Cora Luzinski
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Briana M Burton
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Cheraghi N, Khoshnood S, Sadeghifard N, Khodaei N, Asadollahi P, Bastaminejad S, Kouhsari E, Omidi N, Kalani BS. Unveiling the impact of antibiotic stress on biofilm formation and expression of toxin-antitoxin system genes in Clostridium difficile clinical isolates. Mol Biol Rep 2024; 51:1060. [PMID: 39419903 DOI: 10.1007/s11033-024-09993-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVES The study investigates how antibiotics affect biofilm formation and toxin gene expression in Clostridium difficile, which is essential for its survival and persistence. METHODS The study confirmed 25 strains of C. difficile and assessed biofilm formation. The MIC of metronidazole and vancomycin was determined through agar dilution, and the impact of sub-MIC levels on biofilm formation and eradication was investigated. Additionally, Real-time PCR was used to analyze the expression levels of target genes related to antibiotic treatment. RESULTS We found that certain genes, such as the ImmA/IrrE system, were associated with increased biofilm formation in isolates. Sub-MIC antibiotic levels influenced gene expression related to biofilm activities, particularly emphasizing the importance of toxin-antitoxin systems. The results suggest that antibiotics at sub-MIC levels may play a signaling role in promoting biofilm formation and gene expression in C. difficile. CONCLUSION Our study suggests that toxin and antitoxin genes may impact C. difficile biofilm formation, while antibiotics could signal biofilm strengthening and gene expression increase.
Collapse
Affiliation(s)
- Nasim Cheraghi
- Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Saeed Khoshnood
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
- Students Research Committee, Ilam University of Medical Sciences, Ilam, Iran
| | - Nourkhoda Sadeghifard
- Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Niloufar Khodaei
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parisa Asadollahi
- Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Saiyad Bastaminejad
- Department of Genetics, Faculty of ParaMedicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Ebrahim Kouhsari
- Laboratory Sciences Research Center, Faculty of Paramedical Sciences, Golestan University of Medical Sciences, Gorgan, Iran
| | - Nazanin Omidi
- Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Behrooz Sadeghi Kalani
- Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran.
- Students Research Committee, Ilam University of Medical Sciences, Ilam, Iran.
| |
Collapse
|
6
|
Cui S, Kim E. Quorum sensing and antibiotic resistance in polymicrobial infections. Commun Integr Biol 2024; 17:2415598. [PMID: 39430726 PMCID: PMC11487952 DOI: 10.1080/19420889.2024.2415598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/20/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024] Open
Abstract
Quorum sensing (QS) is a critical bacterial communication system regulating behaviors like biofilm formation, virulence, and antibiotic resistance. This review highlights QS's role in polymicrobial infections, where bacterial species interactions enhance antibiotic resistance. We examine QS mechanisms, such as acyl-homoserine lactones (AHLs) in Gram-negative bacteria and autoinducing peptides (AIPs) in Gram-positive bacteria, and their impact on biofilm-associated antibiotic resistance. The challenges uniquely associated with polymicrobial infections, such as those found in cystic fibrosis lung infections, chronic wound infections, and medical device infections, are also summarized. Furthermore, we explore various laboratory models, including flow cells and dual-species culture models, used to study QS interactions in polymicrobial environments. The review also discusses promising quorum sensing inhibitors (QSIs), such as furanones and AHL analogs, which have demonstrated efficacy in reducing biofilm formation and virulence in laboratory and clinical studies. By addressing the interplay between QS and antibiotic resistance, this paper aims to advance therapeutic strategies that disrupt bacterial communication and improve antibiotic efficacy, ultimately mitigating the global challenge of antibiotic resistance in polymicrobial infections.
Collapse
Affiliation(s)
- Sunny Cui
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Esther Kim
- Arts and Science, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Xu S, Zhu J, Li Y, Sun B. Co-transcribed genes SA1833-SA1832 promote persister formation by regulating the transcription of holin-like gene lrgA in methicillin-resistant Staphylococcus aureus strain N315. Int J Med Microbiol 2024; 317:151636. [PMID: 39426162 DOI: 10.1016/j.ijmm.2024.151636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/20/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024] Open
Abstract
Staphylococcus aureus, a facultative anaerobic gram-positive bacterial pathogen, has posed major threat to public health worldwide. Upon S. aureus infection, the host immune system is activated for clearance. However, intracellular S. aureus, which remains viable for an extended time, has evolved the ability to escape from immune response and extracellular antibiotics. One of possible strategies is the formation of persisters. Persistence is one of the major causes of S. aureus relapse infection but the underlying mechanisms remain obscure. Here, we identified two co-transcribed genes SA1833-SA1832 that are involved in persister formation in S. aureus. Dysfunction of SA1833 and/or SA1832 significantly reduces persister formation in the presence of ceftizoxime. Additionally, we found that the expression of SA1833 and SA1832 under the induction of oxidative stress and SOS response is strictly regulated by the LexA-RecA pathway. Interestingly, SA1833-SA1832 contributes to persister formation in an lrgA-dependent manner. Moreover, the mouse RAW264.7 macrophage infection model indicated that disrupting SA1833-SA1832 inhibits S. aureus from infecting macrophages and impairs its ability to survive in the intracellular environment.
Collapse
Affiliation(s)
- Shiwen Xu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Jiade Zhu
- Department of Critical Care Medicine, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Yujie Li
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Baolin Sun
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China.
| |
Collapse
|
8
|
Liu HY, Prentice EL, Webber MA. Mechanisms of antimicrobial resistance in biofilms. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:27. [PMID: 39364333 PMCID: PMC11445061 DOI: 10.1038/s44259-024-00046-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 09/02/2024] [Indexed: 10/05/2024]
Abstract
Most bacteria in nature exist in aggregated communities known as biofilms, and cells within a biofilm demonstrate major physiological changes compared to their planktonic counterparts. Biofilms are associated with many different types of infections which can have severe impacts on patients. Infections involving a biofilm component are often chronic and highly recalcitrant to antibiotic therapy as a result of intrinsic physical factors including extracellular matrix production, low growth rates, altered antibiotic target production and efficient exchange of resistance genes. This review describes the biofilm lifecycle, phenotypic characteristics of a biofilm, and contribution of matrix and persister cells to biofilms intrinsic tolerance to antimicrobials. We also describe how biofilms can evolve antibiotic resistance and transfer resistance genes within biofilms. Multispecies biofilms and the impacts of various interactions, including cooperation and competition, between species on tolerance to antimicrobials in polymicrobial biofilm communities are also discussed.
Collapse
Affiliation(s)
- Ho Yu Liu
- Quadram Institute Biosciences, Norwich Research Park, Norwich, Norfolk NR4 7UQ UK
- Norwich Medical School, University of East Anglia, Norwich, Norfolk NR4 7TJ UK
- Centre for Microbial Interactions, Norwich Research Park, Norwich, Norfolk NR4 7UG UK
| | - Emma L Prentice
- Quadram Institute Biosciences, Norwich Research Park, Norwich, Norfolk NR4 7UQ UK
| | - Mark A Webber
- Quadram Institute Biosciences, Norwich Research Park, Norwich, Norfolk NR4 7UQ UK
- Norwich Medical School, University of East Anglia, Norwich, Norfolk NR4 7TJ UK
- Centre for Microbial Interactions, Norwich Research Park, Norwich, Norfolk NR4 7UG UK
| |
Collapse
|
9
|
Mishra AK, Thakare RP, Santani BG, Yabaji SM, Dixit SK, Srivastava KK. Unlocking the enigma of phenotypic drug tolerance: Mechanisms and emerging therapeutic strategies. Biochimie 2024; 220:67-83. [PMID: 38168626 DOI: 10.1016/j.biochi.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/09/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024]
Abstract
In the ongoing battle against antimicrobial resistance, phenotypic drug tolerance poses a formidable challenge. This adaptive ability of microorganisms to withstand drug pressure without genetic alterations further complicating global healthcare challenges. Microbial populations employ an array of persistence mechanisms, including dormancy, biofilm formation, adaptation to intracellular environments, and the adoption of L-forms, to develop drug tolerance. Moreover, molecular mechanisms like toxin-antitoxin modules, oxidative stress responses, energy metabolism, and (p)ppGpp signaling contribute to this phenomenon. Understanding these persistence mechanisms is crucial for predicting drug efficacy, developing strategies for chronic bacterial infections, and exploring innovative therapies for refractory infections. In this comprehensive review, we dissect the intricacies of drug tolerance and persister formation, explore their role in acquired drug resistance, and highlight emerging therapeutic approaches to combat phenotypic drug tolerance. Furthermore, we outline the future landscape of interventions for persistent bacterial infections.
Collapse
Affiliation(s)
- Alok K Mishra
- Division of Microbiology, CSIR-Central Drug Research Institute (CDRI), Jankipuram Extension, Lucknow, Uttar Pradesh, 226031, India; Department of Molecular Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA, 01605, USA.
| | - Ritesh P Thakare
- Division of Microbiology, CSIR-Central Drug Research Institute (CDRI), Jankipuram Extension, Lucknow, Uttar Pradesh, 226031, India; Department of Molecular Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Bela G Santani
- Department of Microbiology, Sant Gadge Baba Amravati University (SGBAU), Amravati, Maharashtra, India
| | - Shivraj M Yabaji
- Division of Microbiology, CSIR-Central Drug Research Institute (CDRI), Jankipuram Extension, Lucknow, Uttar Pradesh, 226031, India; National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA, USA
| | - Shivendra K Dixit
- Division of Medicine ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar Bareilly, Uttar Pradesh, 243122, India.
| | - Kishore K Srivastava
- Division of Microbiology, CSIR-Central Drug Research Institute (CDRI), Jankipuram Extension, Lucknow, Uttar Pradesh, 226031, India.
| |
Collapse
|
10
|
Kamruzzaman M. Editorial for Special Issue "Bacterial Toxin-Antitoxin Systems". Microorganisms 2024; 12:128. [PMID: 38257955 PMCID: PMC10818950 DOI: 10.3390/microorganisms12010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Toxin antitoxin systems (TAS) are widely distributed in bacterial chromosomes as well as on mobile genetic elements [...].
Collapse
Affiliation(s)
- Muhammad Kamruzzaman
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW 2145, Australia
| |
Collapse
|
11
|
Vuotto C, Donelli G, Buckley A, Chilton C. Clostridioides difficile Biofilm. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:249-272. [PMID: 38175479 DOI: 10.1007/978-3-031-42108-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Clostridioides difficile infection (CDI), previously Clostridium difficile infection, is a symptomatic infection of the large intestine caused by the spore-forming anaerobic, gram-positive bacterium Clostridioides difficile. CDI is an important healthcare-associated disease worldwide, characterized by high levels of recurrence, morbidity, and mortality. CDI is observed at a higher rate in immunocompromised patients after antimicrobial therapy, with antibiotics disrupting the commensal microbiota and promoting C. difficile colonization of the gastrointestinal tract.A rise in clinical isolates resistant to multiple antibiotics and the reduced susceptibility to the most commonly used antibiotic molecules have made the treatment of CDI more complicated, allowing the persistence of C. difficile in the intestinal environment.Gut colonization and biofilm formation have been suggested to contribute to the pathogenesis and persistence of C. difficile. In fact, biofilm growth is considered as a serious threat because of the related antimicrobial tolerance that makes antibiotic therapy often ineffective. This is the reason why the involvement of C. difficile biofilm in the pathogenesis and recurrence of CDI is attracting more and more interest, and the mechanisms underlying biofilm formation of C. difficile as well as the role of biofilm in CDI are increasingly being studied by researchers in the field.Findings on C. difficile biofilm, possible implications in CDI pathogenesis and treatment, efficacy of currently available antibiotics in treating biofilm-forming C. difficile strains, and some antimicrobial alternatives under investigation will be discussed here.
Collapse
Affiliation(s)
- Claudia Vuotto
- Microbial Biofilm Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy.
| | | | - Anthony Buckley
- Microbiome and Nutritional Sciences Group, School of Food Science & Nutrition, University of Leeds, Leeds, UK
| | - Caroline Chilton
- Healthcare Associated Infection Research Group, Section of Molecular Gastroenterology, Leeds Institute for Medical Research at St James, University of Leeds, Leeds, UK
| |
Collapse
|
12
|
Kheirjou S, Hosseini F, Masjedian Jazi F, Siasi Torbati E. Employment of Spore-Forming Probiotics to Combat Persister Cells of Staphylococcus Epidermidis. Rep Biochem Mol Biol 2024; 12:643-651. [PMID: 39086592 PMCID: PMC11288240 DOI: 10.61186/rbmb.12.4.643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/30/2024] [Indexed: 08/02/2024]
Abstract
Background In this study, spore-forming probiotics were employed to eradicate Staphylococcus epidermidis biofilms and the presence and expression of genes involved in stress response was examined. Methods Polymerase chain reaction (PCR) assay was used to detect rpoS, relA and mazF genes in S. epidermidis ATCC 12228. Biofilm production was investigated by microtiter plate (MTP) assay. 100X minimum inhibitory concentration (MIC) of gentamycin was used to induce persister cells in planktonic and biofilm bacterial cells. The expression of rpoS, relA, and mazF genes was assessed at different time intervals of 2, 8, and 24 h using real-time PCR assay. Then, dilutions of 1, 0.5, and 0.25 µg/ml of the supernatant of Bacillus coagulans culture was used to eradicate the persister cells and the number of colonies was determined. Results Persister cells of S. epidermidis were formed after 7 h in planktonic and 5 h in the biofilm structure after exposure to 50 µg/ml of gentamycin. The expression of mazF and rpoS in biofilm structure and the expression of rpoS and relA in persister cells were significantly higher compared to the control (p< 0.05). The number of persister cells showed a reduction of log 2.4 and log 0.8 after exposure to 1 and 0.5 µg/ml B. coagulans supernatant, respectively, but no reduction was observed at the concentration of 0.25 µg/ml. Conclusion The results showed that the supernatant of probiotics containing their secretive metabolites can be used as a novel approach to combat persister cells.
Collapse
Affiliation(s)
- Saeid Kheirjou
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Farzaneh Hosseini
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Framarz Masjedian Jazi
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran.
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Elham Siasi Torbati
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
13
|
Etemad A, Kalani BS, Ghafourian S, Khodaei N, Davari M, Sadeghifard N. GNAT toxin may have a potential role in Pseudomonas aeruginosa persistence: an in vitro and in silico study. Future Microbiol 2024; 19:21-31. [PMID: 38294294 DOI: 10.2217/fmb-2023-0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/22/2023] [Indexed: 02/01/2024] Open
Abstract
Aims: Persistent cells are primarily responsible for developing antibiotic resistance and the recurrence of Pseudomonas aeruginosa. This study investigated the possible role of GNAT toxin in persistence. Materials & methods: P. aeruginosa was exposed to five MIC concentrations of ciprofloxacin. The expression levels of target genes were assessed. The GNAT/HTH system was bioinformatically studied, and an inhibitory peptide was designed to disrupt this system. Results: Ciprofloxacin can induce bacterial persistence. There was a significant increase in the expression of the GNAT toxin during the persistence state. A structural study of the GNAT/HTH system determined that an inhibitory peptide could be designed to block this system effectively. Conclusion: The GNAT/HTH system shows promise as a novel therapeutic target for combating P. aeruginosa infections.
Collapse
Affiliation(s)
- Anahita Etemad
- Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Behrooz Sadeghi Kalani
- Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Sobhan Ghafourian
- Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Niloofar Khodaei
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Davari
- IT Unit of Medical School, Ilam University of Medical Sciences, Ilam, Iran
| | - Nourkhoda Sadeghifard
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
14
|
Obolski U, Swarthout TD, Kalizang'oma A, Mwalukomo TS, Chan JM, Weight CM, Brown C, Cave R, Cornick J, Kamng'ona AW, Msefula J, Ercoli G, Brown JS, Lourenço J, Maiden MC, French N, Gupta S, Heyderman RS. The metabolic, virulence and antimicrobial resistance profiles of colonising Streptococcus pneumoniae shift after PCV13 introduction in urban Malawi. Nat Commun 2023; 14:7477. [PMID: 37978177 PMCID: PMC10656543 DOI: 10.1038/s41467-023-43160-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/02/2023] [Indexed: 11/19/2023] Open
Abstract
Streptococcus pneumoniae causes substantial mortality among children under 5-years-old worldwide. Polysaccharide conjugate vaccines (PCVs) are highly effective at reducing vaccine serotype disease, but emergence of non-vaccine serotypes and persistent nasopharyngeal carriage threaten this success. We investigated the hypothesis that following vaccine, adapted pneumococcal genotypes emerge with the potential for vaccine escape. We genome sequenced 2804 penumococcal isolates, collected 4-8 years after introduction of PCV13 in Blantyre, Malawi. We developed a pipeline to cluster the pneumococcal population based on metabolic core genes into "Metabolic genotypes" (MTs). We show that S. pneumoniae population genetics are characterised by emergence of MTs with distinct virulence and antimicrobial resistance (AMR) profiles. Preliminary in vitro and murine experiments revealed that representative isolates from emerging MTs differed in growth, haemolytic, epithelial infection, and murine colonisation characteristics. Our results suggest that in the context of PCV13 introduction, pneumococcal population dynamics had shifted, a phenomenon that could further undermine vaccine control and promote spread of AMR.
Collapse
Affiliation(s)
- Uri Obolski
- Department of Epidemiology and Preventive Medicine, School of Public Health, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Porter School of the Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel.
| | - Todd D Swarthout
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi
- Mucosal Pathogens Research Group, Research Department of Infection, Division of Infection & Immunity, University College London, London, United Kingdom
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands
| | - Akuzike Kalizang'oma
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi
- Mucosal Pathogens Research Group, Research Department of Infection, Division of Infection & Immunity, University College London, London, United Kingdom
| | | | - Jia Mun Chan
- Mucosal Pathogens Research Group, Research Department of Infection, Division of Infection & Immunity, University College London, London, United Kingdom
| | - Caroline M Weight
- Mucosal Pathogens Research Group, Research Department of Infection, Division of Infection & Immunity, University College London, London, United Kingdom
- Faculty of Health and Medicine, Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Comfort Brown
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi
| | - Rory Cave
- Mucosal Pathogens Research Group, Research Department of Infection, Division of Infection & Immunity, University College London, London, United Kingdom
| | - Jen Cornick
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi
- Clinical Infection, Microbiology and Immunology, Institute of Infection Veterinary & Ecological Science, University of Liverpool, Liverpool, United Kingdom
| | | | | | - Giuseppe Ercoli
- UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Jeremy S Brown
- UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - José Lourenço
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- Universidade Católica Portuguesa, Faculty of Medicine, Biomedical Research Centre, Lisbon, Portugal
| | - Martin C Maiden
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Neil French
- Clinical Infection, Microbiology and Immunology, Institute of Infection Veterinary & Ecological Science, University of Liverpool, Liverpool, United Kingdom
| | - Sunetra Gupta
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Robert S Heyderman
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi.
- Mucosal Pathogens Research Group, Research Department of Infection, Division of Infection & Immunity, University College London, London, United Kingdom.
| |
Collapse
|
15
|
Bhowmick A, Bhakta K, Roy M, Gupta S, Das J, Samanta S, Patranabis S, Ghosh A. Heat shock response in Sulfolobus acidocaldarius and first implications for cross-stress adaptation. Res Microbiol 2023; 174:104106. [PMID: 37516156 DOI: 10.1016/j.resmic.2023.104106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/15/2023] [Accepted: 07/21/2023] [Indexed: 07/31/2023]
Abstract
Sulfolobus acidocaldarius, a thermoacidophilic crenarchaeon, frequently encounters temperature fluctuations, oxidative stress, and nutrient limitations in its environment. Here, we employed a high-throughput transcriptomic analysis to examine how the gene expression of S. acidocaldarius changes when exposed to high temperatures (92 °C). The data obtained was subsequently validated using quantitative reverse transcription-PCR (qRT-PCR) analysis. Our particular focus was on genes that are involved in the heat shock response, type-II Toxin-Antitoxin systems, and putative transcription factors. To investigate how S. acidocaldarius adapts to multiple stressors, we assessed the expression of these selected genes under oxidative and nutrient stresses using qRT-PCR analysis. The results demonstrated that the gene thβ encoding the β subunit of the thermosome, as well as hsp14 and hsp20, play crucial roles in the majority of stress conditions. Furthermore, we observed overexpression of at least eight different TA pairs belonging to the type II TA systems under all stress conditions. Additionally, four common transcription factors: FadR, TFEβ, CRISPR loci binding protein, and HTH family protein were consistently overexpressed across all stress conditions, indicating their significant role in managing stress. Overall, this work provides the first insight into molecular players involved in the cross-stress adaptation of S. acidocaldarius.
Collapse
Affiliation(s)
- Arghya Bhowmick
- Department of Biological Sciences, Bose Institute, EN Block, Sector-V, Kolkata-700091, India
| | - Koustav Bhakta
- Department of Biological Sciences, Bose Institute, EN Block, Sector-V, Kolkata-700091, India
| | - Mousam Roy
- Department of Biological Sciences, Bose Institute, EN Block, Sector-V, Kolkata-700091, India
| | - Sayandeep Gupta
- Department of Biological Sciences, Bose Institute, EN Block, Sector-V, Kolkata-700091, India
| | - Jagriti Das
- Department of Biological Sciences, Bose Institute, EN Block, Sector-V, Kolkata-700091, India
| | - Shirsha Samanta
- Department of Biological Sciences, Bose Institute, EN Block, Sector-V, Kolkata-700091, India
| | | | - Abhrajyoti Ghosh
- Department of Biological Sciences, Bose Institute, EN Block, Sector-V, Kolkata-700091, India.
| |
Collapse
|
16
|
Bai S, Song J, Pu H, Yu Y, Song W, Chen Z, Wang M, Campbell-Valois FX, Wong WL, Cai Q, Wan M, Zhang C, Bai Y, Feng X. Chemical Biology Approach to Reveal the Importance of Precise Subcellular Targeting for Intracellular Staphylococcus aureus Eradication. J Am Chem Soc 2023; 145:23372-23384. [PMID: 37838963 DOI: 10.1021/jacs.3c09587] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Intracellular bacterial pathogens, such as Staphylococcus aureus, that may hide in intracellular vacuoles represent the most significant manifestation of bacterial persistence. They are critically associated with chronic infections and antibiotic resistance, as conventional antibiotics are ineffective against such intracellular persisters due to permeability issues and mechanistic reasons. Direct subcellular targeting of S. aureus vacuoles suggests an explicit opportunity for the eradication of these persisters, but a comprehensive understanding of the chemical biology nature and significance of precise S. aureus vacuole targeting remains limited. Here, we report an oligoguanidine-based peptidomimetic that effectively targets and eradicates intracellular S. aureus persisters in the phagolysosome lumen, and this oligomer was utilized to reveal the mechanistic insights linking precise targeting to intracellular antimicrobial efficacy. The oligomer has high cellular uptake via a receptor-mediated endocytosis pathway and colocalizes with S. aureus persisters in phagolysosomes as a result of endosome-lysosome interconversion and lysosome-phagosome fusion. Moreover, the observation of a bacterium's altered susceptibility to the oligomer following a modification in its intracellular localization offers direct evidence of the critical importance of precise intracellular targeting. In addition, eradication of intracellular S. aureus persisters was achieved by the oligomer's membrane/DNA dual-targeting mechanism of action; therefore, its effectiveness is not hampered by the hibernation state of the persisters. Such precise subcellular targeting of S. aureus vacuoles also increases the agent's biocompatibility by minimizing its interaction with other organelles, endowing excellent in vivo bacterial targeting and therapeutic efficacy in animal models.
Collapse
Affiliation(s)
- Silei Bai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Junfeng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Huangsheng Pu
- College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel NanoOptoelectronic Information Materials and Devices, National University of Defense Technology, Changsha, Hunan 410073, China
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, China
| | - Yue Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Wenwen Song
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Zhiyong Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Min Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | | | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong SAR, China
| | - Qingyun Cai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Muyang Wan
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Chunhui Zhang
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Yugang Bai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Xinxin Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
17
|
Valadbeigi H, Sadeghifard N, Kaviar VH, Haddadi MH, Ghafourian S, Maleki A. Effect of ZnO nanoparticles on biofilm formation and gene expression of the toxin-antitoxin system in clinical isolates of Pseudomonas aeruginosa. Ann Clin Microbiol Antimicrob 2023; 22:89. [PMID: 37798613 PMCID: PMC10557154 DOI: 10.1186/s12941-023-00639-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/25/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Biofilm formation by Pseudomonas aeruginosa (P. aeruginosa) is known to be characteristic of this organism. This bacterium is considered one of the most life-threatening bacteria and has been identified as a priority pathogen for research by WHO. Biofilm-producing P. aeruginosa is a concern in many parts of the world due to antibiotic resistance. Alginate also plays an important role in the biofilm formation of P. aeruginosa as well as the emergence of antibiotic resistance in biofilms. In addition, the systems of toxin-antitoxin( TA) play an important role in biofilm formation. Metal nanoparticle(NP) such as zinc oxide (ZnO) also have extensive biological properties, especially anti-biofilm properties. Therefore, this study was conducted in relation to the importance of zinc oxide nanoparticles (ZnO NPs) in biofilm formation and also the correlation of gene expression of TA systems in clinical isolates of P. aeruginosa. METHODS A total of 52 P. aeruginosa isolates were collected from burns (n = 15), UTI (n = 31), and trachea (n = 6) in hospitals in Ilam between May 2020 and October 2020. Biofilm formation was assessed using a microtiter plate assay. MIC and sub-MIC concentrations of ZnO NPs (10-30 nm with purity greater than 99.8%) in P. aeruginosa were determined. Subsequently, biofilm formation was investigated using sub-MIC concentrations of ZnO NPs. Finally, total RNA was extracted and RT- qPCR was used to determine the expression levels of genes of mazEF, mqsRA, and higBA of TA systems. RESULTS Six isolates of P. aeruginosa were found to form strong biofilms. The results showed that ZnO NPs were able to inhibit biofilm formation. In our experiments, we found that the sub-MIC concentration of ZnO NPs increased the gene expression of antitoxins mazE and mqsA and toxin higB of TA systems treated with ZnO NPs. CONCLUSIONS In the present study, ZnO NPs were shown to effectively inhibit biofilm formation in P. aeruginosa. Our results support the relationship between TA systems and ZnO NPs in biofilm formation in P. aeruginosa. Importantly, the expression of antitoxins mazE and mqsA was high after treatment with ZnO NPs, but not that of antitoxin higA.
Collapse
Affiliation(s)
- Hassan Valadbeigi
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran.
| | - Nourkhoda Sadeghifard
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Vahab Hassan Kaviar
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | | | - Sobhan Ghafourian
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
- Department of Microbiology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Abbas Maleki
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
18
|
Chan WT, Garcillán-Barcia MP, Yeo CC, Espinosa M. Type II bacterial toxin-antitoxins: hypotheses, facts, and the newfound plethora of the PezAT system. FEMS Microbiol Rev 2023; 47:fuad052. [PMID: 37715317 PMCID: PMC10532202 DOI: 10.1093/femsre/fuad052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/24/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023] Open
Abstract
Toxin-antitoxin (TA) systems are entities found in the prokaryotic genomes, with eight reported types. Type II, the best characterized, is comprised of two genes organized as an operon. Whereas toxins impair growth, the cognate antitoxin neutralizes its activity. TAs appeared to be involved in plasmid maintenance, persistence, virulence, and defence against bacteriophages. Most Type II toxins target the bacterial translational machinery. They seem to be antecessors of Higher Eukaryotes and Prokaryotes Nucleotide-binding (HEPN) RNases, minimal nucleotidyltransferase domains, or CRISPR-Cas systems. A total of four TAs encoded by Streptococcus pneumoniae, RelBE, YefMYoeB, Phd-Doc, and HicAB, belong to HEPN-RNases. The fifth is represented by PezAT/Epsilon-Zeta. PezT/Zeta toxins phosphorylate the peptidoglycan precursors, thereby blocking cell wall synthesis. We explore the body of knowledge (facts) and hypotheses procured for Type II TAs and analyse the data accumulated on the PezAT family. Bioinformatics analyses showed that homologues of PezT/Zeta toxin are abundantly distributed among 14 bacterial phyla mostly in Proteobacteria (48%), Firmicutes (27%), and Actinobacteria (18%), showing the widespread distribution of this TA. The pezAT locus was found to be mainly chromosomally encoded whereas its homologue, the tripartite omega-epsilon-zeta locus, was found mostly on plasmids. We found several orphan pezT/zeta toxins, unaccompanied by a cognate antitoxin.
Collapse
Affiliation(s)
- Wai Ting Chan
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Maria Pilar Garcillán-Barcia
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-Consejo Superior de Investigaciones Científicas, C/Albert Einstein 22, PCTCAN, 39011 Santander, Spain
| | - Chew Chieng Yeo
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine
, Universiti Sultan Zainal Abidin, Jalan Sultan Mahumd, 20400 Kuala Terengganu, Malaysia
| | - Manuel Espinosa
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| |
Collapse
|
19
|
Chaudhary S, Yadav M, Mathpal S, Chandra S, Rathore JS. Genomic assortment and interactive insights of the chromosomal encoded control of cell death ( ccd) toxin-antitoxin (TA) module in Xenorhabdus nematophila. J Biomol Struct Dyn 2023; 41:7032-7044. [PMID: 36002267 DOI: 10.1080/07391102.2022.2114940] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/14/2022] [Indexed: 10/15/2022]
Abstract
In the present circumstances, toxin-antitoxin (TA) modules have a great consideration due to their elusive role in bacterial physiology. TA modules consist of a toxic part and a counteracting antitoxin part and these are abundant genetic loci harbored on bacterial plasmids and chromosomes. The control of cell death (ccd) TA locus was the first identified TA module and its unitary function (such as plasmid maintenance) has been described, however, the function of its chromosomal counterparts is still ambiguous. Here, we are exploring the genomic assortment, structural and functional association of chromosomally encoded ccdAB TA homolog (ccdABXn1) in the genome of an entomopathogenic bacterium Xenorhabdus nematophila. This bacterium is a symbiotic model with the nematode Steinernema carpocapsae that infects and kills the host insect. By genomic assortment analysis, our observations suggested that CcdA antitoxin homologs are not more closely related than CcdB toxin homologs. Further results suggest that the ccdABXn1 TA homolog has sulphonamide (such as 4C6, for CcdA homolog) and peptide (such as gyrase, for CcdB homolog) ligand partners with a typical TA interaction network that may affect essential cellular metabolism of the X. nematophila. Collectively, our results improve the knowledge and conception of the metabolic interactive role of ccdAB TA homologs in X. nematophila physiology.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shobhi Chaudhary
- Gautam Buddha University, School of Biotechnology, Greater Noida, Uttar Pradesh, India
| | - Mohit Yadav
- Gautam Buddha University, School of Biotechnology, Greater Noida, Uttar Pradesh, India
| | - Shalini Mathpal
- Department of Biotechnology, Kumaun University Uttarakhand, Bhimtal, India
| | - Subhash Chandra
- Department of Botany, Computational Biology & Biotechnology Laboratory, Soban Singh Jeena University, Almora, Uttarakhand, India
| | | |
Collapse
|
20
|
Zeng X, Cao Y, Wang L, Wang M, Wang Q, Yang Q. Viability and transcriptional responses of multidrug resistant E. coli to chromium stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121346. [PMID: 36868548 DOI: 10.1016/j.envpol.2023.121346] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/03/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
The viability of multidrug resistant (MDR) bacteria in environment is critical for the spread of antimicrobial resistance. In this study, two Escherichia coli strains, MDR LM13 and susceptible ATCC25922, were used to elucidate differences in their viability and transcriptional responses to hexavalent chromium (Cr(VI)) stress. The results show that the viability of LM13 was notably higher than that of ATCC25922 under 2-20 mg/L Cr(VI) exposure with bacteriostatic rates of 3.1%-57%, respectively, for LM13 and 0.9%-93.1%, respectively, for ATCC25922. The levels of reactive oxygen species and superoxide dismutase in ATCC25922 were much higher than those in LM13 under Cr(VI) exposure. Additionally, 514 and 765 differentially expressed genes were identified from the transcriptomes of the two strains (log2|FC| > 1, p < 0.05). Among them, 134 up-regulated genes were enriched in LM13 in response to external pressure, but only 48 genes were annotated in ATCC25922. Furthermore, the expression levels of antibiotic resistance genes, insertion sequences, DNA and RNA methyltransferases, and toxin-antitoxin systems were generally higher in LM13 than in ATCC25922. This work shows that MDR LM13 has a stronger viability under Cr(VI) stress, and therefore may promote the dissemination of MDR bacteria in environment.
Collapse
Affiliation(s)
- Xiangpeng Zeng
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Yu Cao
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Lanning Wang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Min Wang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Qiang Wang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China; Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang, 453007, China
| | - Qingxiang Yang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China; Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
21
|
Unveil the Secret of the Bacteria and Phage Arms Race. Int J Mol Sci 2023; 24:ijms24054363. [PMID: 36901793 PMCID: PMC10002423 DOI: 10.3390/ijms24054363] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
Bacteria have developed different mechanisms to defend against phages, such as preventing phages from being adsorbed on the surface of host bacteria; through the superinfection exclusion (Sie) block of phage's nucleic acid injection; by restricting modification (R-M) systems, CRISPR-Cas, aborting infection (Abi) and other defense systems to interfere with the replication of phage genes in the host; through the quorum sensing (QS) enhancement of phage's resistant effect. At the same time, phages have also evolved a variety of counter-defense strategies, such as degrading extracellular polymeric substances (EPS) that mask receptors or recognize new receptors, thereby regaining the ability to adsorb host cells; modifying its own genes to prevent the R-M systems from recognizing phage genes or evolving proteins that can inhibit the R-M complex; through the gene mutation itself, building nucleus-like compartments or evolving anti-CRISPR (Acr) proteins to resist CRISPR-Cas systems; and by producing antirepressors or blocking the combination of autoinducers (AIs) and its receptors to suppress the QS. The arms race between bacteria and phages is conducive to the coevolution between bacteria and phages. This review details bacterial anti-phage strategies and anti-defense strategies of phages and will provide basic theoretical support for phage therapy while deeply understanding the interaction mechanism between bacteria and phages.
Collapse
|
22
|
The DarT/DarG Toxin-Antitoxin ADP-Ribosylation System as a Novel Target for a Rational Design of Innovative Antimicrobial Strategies. Pathogens 2023; 12:pathogens12020240. [PMID: 36839512 PMCID: PMC9967889 DOI: 10.3390/pathogens12020240] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The chemical modification of cellular macromolecules by the transfer of ADP-ribose unit(s), known as ADP-ribosylation, is an ancient homeostatic and stress response control system. Highly conserved across the evolution, ADP-ribosyltransferases and ADP-ribosylhydrolases control ADP-ribosylation signalling and cellular responses. In addition to proteins, both prokaryotic and eukaryotic transferases can covalently link ADP-ribosylation to different conformations of nucleic acids, thus highlighting the evolutionary conservation of archaic stress response mechanisms. Here, we report several structural and functional aspects of DNA ADP-ribosylation modification controlled by the prototype DarT and DarG pair, which show ADP-ribosyltransferase and hydrolase activity, respectively. DarT/DarG is a toxin-antitoxin system conserved in many bacterial pathogens, for example in Mycobacterium tuberculosis, which regulates two clinically important processes for human health, namely, growth control and the anti-phage response. The chemical modulation of the DarT/DarG system by selective inhibitors may thus represent an exciting strategy to tackle resistance to current antimicrobial therapies.
Collapse
|
23
|
Berne C, Zappa S, Brun YV. eDNA-stimulated cell dispersion from Caulobacter crescentus biofilms upon oxygen limitation is dependent on a toxin-antitoxin system. eLife 2023; 12:e80808. [PMID: 36475544 PMCID: PMC9851616 DOI: 10.7554/elife.80808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
In their natural environment, most bacteria preferentially live as complex surface-attached multicellular colonies called biofilms. Biofilms begin with a few cells adhering to a surface, where they multiply to form a mature colony. When conditions deteriorate, cells can leave the biofilm. This dispersion is thought to be an important process that modifies the overall biofilm architecture and that promotes colonization of new environments. In Caulobacter crescentus biofilms, extracellular DNA (eDNA) is released upon cell death and prevents newborn cells from joining the established biofilm. Thus, eDNA promotes the dispersal of newborn cells and the subsequent colonization of new environments. These observations suggest that eDNA is a cue for sensing detrimental environmental conditions in the biofilm. Here, we show that the toxin-antitoxin system (TAS) ParDE4 stimulates cell death in areas of a biofilm with decreased O2 availability. In conditions where O2 availability is low, eDNA concentration is correlated with cell death. Cell dispersal away from biofilms is decreased when parDE4 is deleted, probably due to the lower local eDNA concentration. Expression of parDE4 is positively regulated by O2 and the expression of this operon is decreased in biofilms where O2 availability is low. Thus, a programmed cell death mechanism using an O2-regulated TAS stimulates dispersal away from areas of a biofilm with decreased O2 availability and favors colonization of a new, more hospitable environment.
Collapse
Affiliation(s)
- Cecile Berne
- Département de microbiologie, infectiologie et immunologie, Université de MontréalMontréalCanada
| | - Sébastien Zappa
- Département de microbiologie, infectiologie et immunologie, Université de MontréalMontréalCanada
| | - Yves V Brun
- Département de microbiologie, infectiologie et immunologie, Université de MontréalMontréalCanada
| |
Collapse
|
24
|
Hou B, Wang CY, Li SW, Zhou LJ, Che YL, Chen QY. Effects of Toxin-Antitoxin System HicAB on Biofilm Formation by Extraintestinal Pathogenic E. coli. Curr Microbiol 2022; 80:50. [PMID: 36542185 DOI: 10.1007/s00284-022-03138-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022]
Abstract
The type II toxin-antitoxin (T-A) HicAB system is abundant in several bacteria and archaea, such as Escherichia coli, Burkholderia Pseudomallei, Yersinia pestis, Pseudomonas aeruginosa, and Streptococcus pneumoniae. This system engages in stress response, virulence, and bacterial persistence. This study showed that the biofilm-forming ability of the hicAB deletion mutant was significantly decreased to moderate ability compared to the extra-intestinal pathogenic Escherichia coli (ExPEC) parent strain and the complemented strain, which are strong biofilm producers. Congo red assay showed that the hicAB mutant maintained the ability to form curli fimbriae. Using RNA-seq and comparative real-time quantitative RT-PCR, we observed the difference in gene expression between the hicAB mutant and the parent strain, which was associated with biofilm formation. Our data indicate that the HicAB type II T-A system has a key role in biofilm formation by ExPEC, which may be associated with outer membrane protein (OMP) gene expression. Collectively, our results indicate that the hicAB type II T-A system is involved in ExPEC biofilm formation.
Collapse
Affiliation(s)
- Bo Hou
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Animal Disease Control Technology Development Center, Fujian Academy of Agricultural Sciences, No. 104 Xindian Town, Fuzhou, 350013, Fujian, China.
| | - Chen-Yan Wang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Animal Disease Control Technology Development Center, Fujian Academy of Agricultural Sciences, No. 104 Xindian Town, Fuzhou, 350013, Fujian, China
| | - Shao-Wen Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Lun-Jiang Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Animal Disease Control Technology Development Center, Fujian Academy of Agricultural Sciences, No. 104 Xindian Town, Fuzhou, 350013, Fujian, China.
| | - Yong-Liang Che
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Animal Disease Control Technology Development Center, Fujian Academy of Agricultural Sciences, No. 104 Xindian Town, Fuzhou, 350013, Fujian, China
| | - Qiu-Yong Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Animal Disease Control Technology Development Center, Fujian Academy of Agricultural Sciences, No. 104 Xindian Town, Fuzhou, 350013, Fujian, China
| |
Collapse
|
25
|
Evaluating the Contribution of the Predicted Toxin-Antitoxin System HigBA to Persistence, Biofilm Formation, and Virulence in Burkholderia pseudomallei. Infect Immun 2022; 90:e0003522. [PMID: 35695502 PMCID: PMC9302164 DOI: 10.1128/iai.00035-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Melioidosis is an underreported human disease caused by the Gram-negative intracellular pathogen Burkholderia pseudomallei (Bpm). Both the treatment and the clearance of the pathogen are challenging, with high relapse rates leading to latent infections. This has been linked to the bacterial persistence phenomenon, a growth arrest strategy that allows bacteria to survive under stressful conditions, as in the case of antibiotic treatment, within a susceptible clonal population. At a molecular level, this phenomenon has been associated with the presence of toxin-antitoxin (TA) systems. We annotated the Bpm K96243 genome and selected 11 pairs of genes encoding for these TA systems, and their expression was evaluated under different conditions (supralethal antibiotic conditions; intracellular survival bacteria). The predicted HigB toxin (BPSL3343) and its predicted antitoxin HigA (BPS_RS18025) were further studied using mutant construction. The phenotypes of two mutants (ΔhigB and ΔhigB ΔhigA) were evaluated under different conditions compared to the wild-type (WT) strain. The ΔhigB toxin mutant showed a defect in intracellular survival on macrophages, a phenotype that was eliminated after levofloxacin treatment. We found that the absence of the toxin provides an advantage over the WT strain, in both in vitro and in vivo models, during persister conditions induced by levofloxacin. The lack of the antitoxin also resulted in differential responses to the conditions evaluated, and under some conditions, it restored the WT phenotype, overall suggesting that both toxin and antitoxin components play a role in the persister-induced phenotype in Bpm.
Collapse
|
26
|
Ribeiro HG, Nilsson A, Melo LDR, Oliveira A. Analysis of intact prophages in genomes of Paenibacillus larvae: An important pathogen for bees. Front Microbiol 2022; 13:903861. [PMID: 35923395 PMCID: PMC9341999 DOI: 10.3389/fmicb.2022.903861] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Paenibacillus larvae is the etiological agent of American Foulbrood (AFB), a highly contagious and worldwide spread bacterial disease that affects honeybee brood. In this study, all complete P. larvae genomes available on the NCBI database were analyzed in order to detect presence of prophages using the PHASTER software. A total of 55 intact prophages were identified in 11 P. larvae genomes (5.0 ± 2.3 per genome) and were further investigated for the presence of genes encoding relevant traits related to P. larvae. A closer look at the prophage genomes revealed the presence of several putative genes such as metabolic and antimicrobial resistance genes, toxins or bacteriocins, potentially influencing host performance. Some of the coding DNA sequences (CDS) were present in all ERIC-genotypes, while others were only found in a specific genotype. While CDS encoding toxins and antitoxins such as HicB and MazE were found in prophages of all bacterial genotypes, others, from the same category, were provided by prophages particularly to ERIC I (enhancin-like toxin), ERIC II (antitoxin SocA) and ERIC V strains (subunit of Panton-Valentine leukocidin system (PVL) LukF-PV). This is the first in-depth analysis of P. larvae prophages. It provides better knowledge on their impact in the evolution of virulence and fitness of P. larvae, by discovering new features assigned by the viruses.
Collapse
Affiliation(s)
- Henrique G. Ribeiro
- LIBRO – Laboratório de Investigação em Biofilmes Rosário Oliveira, Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS – Associate Laboratory on Biotechnology and Bioengineering, and Electromechanical Systems, Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Anna Nilsson
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Luís D. R. Melo
- LIBRO – Laboratório de Investigação em Biofilmes Rosário Oliveira, Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS – Associate Laboratory on Biotechnology and Bioengineering, and Electromechanical Systems, Centre of Biological Engineering, University of Minho, Braga, Portugal
- *Correspondence: Luís D. R. Melo,
| | - Ana Oliveira
- LIBRO – Laboratório de Investigação em Biofilmes Rosário Oliveira, Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS – Associate Laboratory on Biotechnology and Bioengineering, and Electromechanical Systems, Centre of Biological Engineering, University of Minho, Braga, Portugal
- Ana Oliveira,
| |
Collapse
|
27
|
Song X, Lin Z, Yuan W. Toxin-antitoxin systems in pathogenic Vibrio species: a mini review from a structure perspective. 3 Biotech 2022; 12:125. [PMID: 35542053 DOI: 10.1007/s13205-022-03178-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/31/2022] [Indexed: 11/01/2022] Open
Abstract
Toxin-antitoxin (TA) genetic modules have been found to widely exist in bacterial chromosomes and mobile genetic elements. They are composed of stable toxins and less stable antitoxins that can counteract the toxicity of toxins. The interactions between toxins and antitoxins could play critical roles in the virulence and persistence of pathogenic bacteria. There are at least eight types of TA systems which have been identified in a variety of bacteria. Vibrio, a genus of Gram-negative bacteria, is widespread in aquatic environments and can cause various human diseases, such as epidemic cholera. In this review, we mainly explore the structures and functions of TA modules found in common Vibrio pathogens, mainly V. cholerae, for better understanding of TA action mechanisms in pathogenic bacteria.
Collapse
|
28
|
The Association of the mazEF Toxin-antitoxin System and Vancomycin Resistance in Clinical Isolates of Vancomycin Resistant Enterococcus faecalis. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.2.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vancomycin resistant enterococci are challenging bacteria as they are difficult to be eradicated. Toxin-antitoxin (TA) systems are genetic elements located in most prokaryotic genomes. The mazEF TA system is harbored by a plasmid among Enterococcus faecalis (E. faecalis). To explore the relation between the existence of mazEF TA system and vancomycin resistance among clinical isolates of E. faecalis. Samples were collected from patients showing clinical picture of infection. Isolates of E. faecalis were identified by standard microbiological methods and their antimicrobial susceptibility patterns were detected by disk diffusion method. In addition, the E-test was used to confirm vancomycin resistant isolates. All the E. faecalis isolates were screened for the mazEF TA system by PCR. A total of 180 E. faecalis strains were identified with a vancomycin resistance rate of 30.6%. Vancomycin resistance was significantly associated with prolonged hospital stay (P= 0.04) and ICU setting (P= 0.001). The mazEF TA system was detected among 100% of vancomycin resistant isolates, while only 33.6% of the vancomycin sensitive isolates carried the system with a significant difference (P= 0.002). In addition, there was a significant association between the mazEF TA system-positive strains and the ICU setting (P= 0.02). A significant association was found between vancomycin resistance and the presence of the mazEF TA system among E. faecalis isolates. This association supports the current efforts to utilize the mazEF TA system as a possible target for novel antibacterial agents; however, further studies on a wider scale are necessary.
Collapse
|
29
|
Jain S, Bhowmick A, Jeong B, Bae T, Ghosh A. Unravelling the physiological roles of mazEF toxin-antitoxin system on clinical MRSA strain by CRISPR RNA-guided cytidine deaminase. J Biomed Sci 2022; 29:28. [PMID: 35524246 PMCID: PMC9077811 DOI: 10.1186/s12929-022-00810-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/22/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Curiosity on toxin-antitoxin modules has increased intensely over recent years as it is ubiquitously present in many bacterial genomes, including pathogens like Methicillin-resistant Staphylococcus aureus (MRSA). Several cellular functions of TA systems have been proposed however, their exact role in cellular physiology remains unresolved. METHODS This study aims to find out the impact of the mazEF toxin-antitoxin module on biofilm formation, pathogenesis, and antibiotic resistance in an isolated clinical ST239 MRSA strain, by constructing mazE and mazF mutants using CRISPR-cas9 base-editing plasmid (pnCasSA-BEC). Transcriptome analysis (RNA-seq) was performed for the mazE antitoxin mutant in order to identify the differentially regulated genes. The biofilm formation was also assessed for the mutant strains. Antibiogram profiling was carried out for both the generated mutants followed by murine experiment to determine the pathogenicity of the constructed strains. RESULTS For the first time our work showed, that MazF promotes cidA mediated cell death and lysis for biofilm formation without playing any significant role in host virulence as suggested by the murine experiment. Interestingly, the susceptibility to oxacillin, daptomycin and vancomycin was reduced significantly by the activated MazF toxin in the mazE mutant strain. CONCLUSIONS Our study reveals that activated MazF toxin leads to resistance to antibiotics like oxacillin, daptomycin and vancomycin. Therefore, in the future, any potential antibacterial drug can be designed to target MazF toxin against the problematic multi-drug resistant bug.
Collapse
Affiliation(s)
- Sonia Jain
- Infectious Disease and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, 700032, India.
| | - Arghya Bhowmick
- Department of Biochemistry, Bose Institute, EN Block, Sector-V, Kolkata, 700091, India
| | - Bohyun Jeong
- Department of Microbiology, Kosin University College of Medicine, Busan, 49267, South Korea
| | - Taeok Bae
- Department of Microbiology and Immunology, Indiana University, School of Medicine-Northwest, Gary, IN, 46408-1197, USA
| | - Abhrajyoti Ghosh
- Department of Biochemistry, Bose Institute, EN Block, Sector-V, Kolkata, 700091, India.
| |
Collapse
|
30
|
Chattopadhyay G, Bhasin M, Ahmed S, Gosain TP, Ganesan S, Das S, Thakur C, Chandra N, Singh R, Varadarajan R. Functional and Biochemical Characterization of the MazEF6 Toxin-Antitoxin System of Mycobacterium tuberculosis. J Bacteriol 2022; 204:e0005822. [PMID: 35357163 PMCID: PMC9053165 DOI: 10.1128/jb.00058-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/07/2022] [Indexed: 12/15/2022] Open
Abstract
The Mycobacterium tuberculosis genome harbors nine toxin-antitoxin (TA) systems that are members of the mazEF family, unlike other prokaryotes, which have only one or two. Although the overall tertiary folds of MazF toxins are predicted to be similar, it is unclear how they recognize structurally different RNAs and antitoxins with divergent sequence specificity. Here, we have expressed and purified the individual components and complex of the MazEF6 TA system from M. tuberculosis. Size exclusion chromatography-multiangle light scattering (SEC-MALS) was performed to determine the oligomerization status of the toxin, antitoxin, and the complex in different stoichiometric ratios. The relative stabilities of the proteins were determined by nano-differential scanning fluorimetry (nano-DSF). Microscale thermophoresis (MST) and yeast surface display (YSD) were performed to measure the relative affinities between the cognate toxin-antitoxin partners. The interaction between MazEF6 complexes and cognate promoter DNA was also studied using MST. Analysis of paired-end RNA sequencing data revealed that the overexpression of MazF6 resulted in differential expression of 323 transcripts in M. tuberculosis. Network analysis was performed to identify the nodes from the top-response network. The analysis of mRNA protection ratios resulted in identification of putative MazF6 cleavage site in its native host, M. tuberculosis. IMPORTANCE M. tuberculosis harbors a large number of type II toxin-antitoxin (TA) systems, the exact roles for most of which are unclear. Prior studies have reported that overexpression of several of these type II toxins inhibits bacterial growth and contributes to the formation of drug-tolerant populations in vitro. To obtain insights into M. tuberculosis MazEF6 type II TA system function, we determined stability, oligomeric states, and binding affinities of cognate partners with each other and with their promoter operator DNA. Using RNA-seq data obtained from M. tuberculosis overexpression strains, we have identified putative MazF6 cleavage sites and targets in its native, cellular context.
Collapse
Affiliation(s)
| | - Munmun Bhasin
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Shahbaz Ahmed
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Tannu Priya Gosain
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Srivarshini Ganesan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Sayan Das
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Chandrani Thakur
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka, India
| | - Nagasuma Chandra
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka, India
| | - Ramandeep Singh
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Raghavan Varadarajan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
31
|
Sharma A, Sagar K, Chauhan NK, Venkataraman B, Gupta N, Gosain TP, Bhalla N, Singh R, Gupta A. HigB1 Toxin in Mycobacterium tuberculosis Is Upregulated During Stress and Required to Establish Infection in Guinea Pigs. Front Microbiol 2021; 12:748890. [PMID: 34917044 PMCID: PMC8669151 DOI: 10.3389/fmicb.2021.748890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/29/2021] [Indexed: 12/20/2022] Open
Abstract
The extraordinary expansion of Toxin Antitoxin (TA) modules in the genome of Mycobacterium tuberculosis has received significant attention over the last few decades. The cumulative evidence suggests that TA systems are activated in response to stress conditions and are essential for M. tuberculosis pathogenesis. In M. tuberculosis, Rv1955-Rv1956-Rv1957 constitutes the only tripartite TAC (Toxin Antitoxin Chaperone) module. In this locus, Rv1955 (HigB1) encodes for the toxin and Rv1956 (HigA1) encodes for antitoxin. Rv1957 encodes for a SecB-like chaperone that regulates HigBA1 toxin antitoxin system by preventing HigA1 degradation. Here, we have investigated the physiological role of HigB1 toxin in stress adaptation and pathogenesis of Mycobacterium tuberculosis. qPCR studies revealed that higBA1 is upregulated in nutrient limiting conditions and upon exposure to levofloxacin. We also show that the promoter activity of higBA1 locus in M. tuberculosis is (p)ppGpp dependent. We observed that HigB1 locus is non-essential for M. tuberculosis growth under different stress conditions in vitro. However, guinea pigs infected with higB1 deletion strain exhibited significantly reduced bacterial loads and pathological damage in comparison to the animals infected with the parental strain. Transcriptome analysis suggested that deletion of higB1 reduced the expression of genes involved in virulence, detoxification and adaptation. The present study describes the role of higB1 toxin in M. tuberculosis physiology and highlights the importance of higBA1 locus during infection in host tissues.
Collapse
Affiliation(s)
- Arun Sharma
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Kalpana Sagar
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India.,Centre for Innovation in Infectious Disease Research, Education and Training, New Delhi, India
| | - Neeraj Kumar Chauhan
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Balaji Venkataraman
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Nidhi Gupta
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Tannu Priya Gosain
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Nikhil Bhalla
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Ramandeep Singh
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Amita Gupta
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India.,Centre for Innovation in Infectious Disease Research, Education and Training, New Delhi, India
| |
Collapse
|
32
|
Ataeian M, Vadlamani A, Haines M, Mosier D, Dong X, Kleiner M, Strous M, Hawley AK. Proteome and strain analysis of cyanobacterium Candidatus "Phormidium alkaliphilum" reveals traits for success in biotechnology. iScience 2021; 24:103405. [PMID: 34877483 PMCID: PMC8633866 DOI: 10.1016/j.isci.2021.103405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/27/2021] [Accepted: 11/03/2021] [Indexed: 11/18/2022] Open
Abstract
Cyanobacteria encompass a diverse group of photoautotrophic bacteria with important roles in nature and biotechnology. Here we characterized Candidatus “Phormidium alkaliphilum,” an abundant member in alkaline soda lake microbial communities globally. The complete, circular whole-genome sequence of Ca. “P. alkaliphilum” was obtained using combined Nanopore and Illumina sequencing of a Ca. “P. alkaliphilum” consortium. Strain-level diversity of Ca. “P. alkaliphilum” was shown to contribute to photobioreactor robustness under different operational conditions. Comparative genomics of closely related species showed that adaptation to high pH was not attributed to specific genes. Proteomics at high and low pH showed only minimal changes in gene expression, but higher productivity in high pH. Diverse photosystem antennae proteins, and high-affinity terminal oxidase, compared with other soda lake cyanobacteria, appear to contribute to the success of Ca. “P. alkaliphilum” in photobioreactors and biotechnology applications. Closed genome of the cyanobacteria Ca. P. alkaliphilum from high-pH photobioreactor Genetic factors lead this Phormidium to outcompete other cyanobacteria in photobioreactor Adaptation to high pH and alkalinity is not linked to specific genes Strain-level diversity contributes Ca. P. alkaliphilum success in changing conditions
Collapse
Affiliation(s)
- Maryam Ataeian
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | | | - Marianne Haines
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Damon Mosier
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Xiaoli Dong
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Marc Strous
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Alyse K. Hawley
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
- School of Engineering, University of British Columbia Okanagan, Kelowna, BC, Canada
- Corresponding author
| |
Collapse
|
33
|
Singh G, Yadav M, Ghosh C, Rathore JS. Bacterial toxin-antitoxin modules: classification, functions, and association with persistence. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100047. [PMID: 34841338 PMCID: PMC8610362 DOI: 10.1016/j.crmicr.2021.100047] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 11/24/2022] Open
Abstract
Ubiquitously present bacterial Toxin-Antitoxin (TA) modules consist of stable toxin associated with labile antitoxin. Classification of TAs modules based on inhibition of toxin through antitoxin in 8 different classes. Variety of specific toxin targets and the abundance of TA modules in various deadly pathogens. Specific role of TAs modules in conservation of the resistant genes, emergence of persistence & biofilm formation. Proposed antibacterial strategies involving TA modules for elimination of multi-drug resistance.
Toxin-antitoxin (TA) modules are ubiquitous gene loci among bacteria and are comprised of a toxin part and its cognate antitoxin part. Under normal physiological conditions, antitoxin counteracts the toxicity of the toxin whereas, during stress conditions, TA modules play a crucial role in bacterial physiology through involvement in the post-segregational killing, abortive infection, biofilms, and persister cell formation. Most of the toxins are proteinaceous that affect translation or DNA replication, although some other intracellular molecular targets have also been described. While antitoxins may be a protein or RNA, that generally neutralizes its cognate toxin by direct interaction or with the help of other signaling elements and thus helps in the TA module regulation. In this review, we have discussed the current state of the multifaceted TA (type I–VIII) modules by highlighting their classification and specific targets. We have also discussed the presence of TA modules in the various pathogens and their role in antibiotic persistence development as well as biofilm formation, by influencing the different cellular processes. In the end, assembling knowledge about ubiquitous TA systems from pathogenic bacteria facilitated us to propose multiple novel antibacterial strategies involving artificial activation of TA modules.
Collapse
Affiliation(s)
- Garima Singh
- School of Biotechnology, Gautam Buddha University, Greater Noida, Yamuna Expressway, Uttar Pradesh, India
| | - Mohit Yadav
- School of Biotechnology, Gautam Buddha University, Greater Noida, Yamuna Expressway, Uttar Pradesh, India
| | - Chaitali Ghosh
- Department of Zoology Gargi College, University of Delhi, New Delhi, India
| | - Jitendra Singh Rathore
- School of Biotechnology, Gautam Buddha University, Greater Noida, Yamuna Expressway, Uttar Pradesh, India
| |
Collapse
|
34
|
Chandra S, Chattopadhyay G, Varadarajan R. Rapid Identification of Secondary Structure and Binding Site Residues in an Intrinsically Disordered Protein Segment. Front Genet 2021; 12:755292. [PMID: 34795695 PMCID: PMC8593223 DOI: 10.3389/fgene.2021.755292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022] Open
Abstract
Mycobacterium tuberculosis harbours nine toxin-antitoxin (TA) systems of the MazEF family. MazEF TA modules are of immense importance due to the perceived role of the MazF toxin in M. tuberculosis persistence and disease. The MazE antitoxin has a disordered C-terminal domain that binds the toxin, MazF and neutralizes its endoribonuclease activity. However, the structure of most MazEF TA complexes remains unsolved till date, obscuring structural and functional information about the antitoxins. We present a facile method to identify toxin binding residues on the disordered antitoxin. Charged residue scanning mutagenesis was used to screen a yeast surface displayed MazE6 antitoxin library against its purified cognate partner, the MazF6 toxin. Binding residues were deciphered by probing the relative reduction in binding to the ligand by flow cytometry. We have used this to identify putative antitoxin interface residues and local structure attained by the antitoxin upon interaction in the MazEF6 TA system and the same methodology is readily applicable to other intrinsically disordered protein regions.
Collapse
|
35
|
Carvalho IGB, Merfa MV, Teixeira-Silva NS, Martins PMM, Takita MA, de Souza AA. Overexpression of mqsR in Xylella fastidiosa Leads to a Priming Effect of Cells to Copper Stress Tolerance. Front Microbiol 2021; 12:712564. [PMID: 34616378 PMCID: PMC8488296 DOI: 10.3389/fmicb.2021.712564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022] Open
Abstract
Copper-based compounds are widely used in agriculture as a chemical strategy to limit the spread of multiple plant diseases; however, the continuous use of this heavy metal has caused environmental damage as well as the development of copper-resistant strains. Thus, it is important to understand how the bacterial phytopathogens evolve to manage with this metal in the field. The MqsRA Toxin-Antitoxin system has been recently described for its function in biofilm formation and copper tolerance in Xylella fastidiosa, a plant-pathogen bacterium responsible for economic damage in several crops worldwide. Here we identified differentially regulated genes by X. fastidiosa MqsRA by assessing changes in global gene expression with and without copper. Results show that mqsR overexpression led to changes in the pattern of cell aggregation, culminating in a global phenotypic heterogeneity, indicative of persister cell formation. This phenotype was also observed in wild-type cells but only in the presence of copper. This suggests that MqsR regulates genes that alter cell behavior in order to prime them to respond to copper stress, which is supported by RNA-Seq analysis. To increase cellular tolerance, proteolysis and efflux pumps and regulator related to multidrug resistance are induced in the presence of copper, in an MqsR-independent response. In this study we show a network of genes modulated by MqsR that is associated with induction of persistence in X. fastidiosa. Persistence in plant-pathogenic bacteria is an important genetic tolerance mechanism still neglected for management of phytopathogens in agriculture, for which this work expands the current knowledge and opens new perspectives for studies aiming for a more efficient control in the field.
Collapse
Affiliation(s)
| | - Marcus Vinicius Merfa
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| | | | | | - Marco Aurélio Takita
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico, Cordeirópolis, Brazil
| | | |
Collapse
|
36
|
Easy Access to Antibiotics; Spread of Antimicrobial Resistance and Implementation of One Health Approach in India. J Epidemiol Glob Health 2021; 11:444-452. [PMID: 34734384 PMCID: PMC8477994 DOI: 10.1007/s44197-021-00008-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 09/14/2021] [Indexed: 11/01/2022] Open
Abstract
Antimicrobial resistance (AMR) is a global public health concern because of its fast spread. India, one of the world's top consumer of antibiotics and second most populated country has its unique constraints of social, cultural and economic strata. The continual self-medication, use of antibiotics for the growth promotion in animals, and accumulation of residual antibiotics in the environment challenge the implementation of AMR containment policy. Hence, the present review attempts to delineate the influence of antibiotics abuse on the human, animal and environmental health under the realm of one health. It was based on the literature search using public databases to highlight the rapid surge in the burden of AMR in India affecting various sectors and/or ecosystems in India. It was found that the irrational and overuse of antibiotics in different sectors have led to the emergence of extended antimicrobial resistance wherein the environment acts as a reservoir of antibiotic resistance genes (ARGs); completing the cycle of contamination and recontamination. There are efforts by government policy makers to reduce the burden of AMR in the country to reduce the health risks, through the One Health approach. Parallel efforts in educating healthcare professionals, strict legislation for pharmacies and pharmaceutical companies should be prioritize. At the same time surveillance of newly emerged AMR pathogens, prioritising research focusing on AMR, and awareness camps or programs among the local population is critical while addressing the consequences of spared of AMR in India.
Collapse
|
37
|
Gu Q, He P, Wang D, Ma J, Zhong X, Zhu Y, Zhang Y, Bai Q, Pan Z, Yao H. An Auto-Regulating Type II Toxin-Antitoxin System Modulates Drug Resistance and Virulence in Streptococcus suis. Front Microbiol 2021; 12:671706. [PMID: 34475853 PMCID: PMC8406773 DOI: 10.3389/fmicb.2021.671706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/26/2021] [Indexed: 11/13/2022] Open
Abstract
Toxin-antitoxin (TA) systems are ubiquitous genetic elements that play an essential role in multidrug tolerance and virulence of bacteria. So far, little is known about the TA systems in Streptococcus suis. In this study, the Xress-MNTss TA system, composed of the MNTss toxin in the periplasmic space and its interacting Xress antitoxin, was identified in S. suis. β-galactosidase activity and electrophoretic mobility shift assay (EMSA) revealed that Xress and the Xress-MNTss complex could bind directly to the Xress-MNTss promoter as well as downregulate streptomycin adenylyltransferase ZY05719_RS04610. Interestingly, the Xress deletion mutant was less pathogenic in vivo following a challenge in mice. Transmission electron microscopy and adhesion assays pointed to a significantly thinner capsule but greater biofilm-formation capacity in ΔXress than in the wild-type strain. These results indicate that Xress-MNTss, a new type II TA system, plays an important role in antibiotic resistance and pathogenicity in S. suis.
Collapse
Affiliation(s)
- Qibing Gu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China
| | - Peijuan He
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China
| | - Dan Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China
| | - Jiale Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China
| | - Xiaojun Zhong
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China.,College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Yinchu Zhu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China.,Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yue Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China.,College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Qiankun Bai
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China
| | - Zihao Pan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China
| | - Huochun Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China
| |
Collapse
|
38
|
Redfern J, Wallace J, van Belkum A, Jaillard M, Whittard E, Ragupathy R, Verran J, Kelly P, Enright MC. Biofilm associated genotypes of multiple antibiotic resistant Pseudomonas aeruginosa. BMC Genomics 2021; 22:572. [PMID: 34311706 PMCID: PMC8314537 DOI: 10.1186/s12864-021-07818-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 06/14/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Pseudomonas aeruginosa is a ubiquitous environmental microorganism and also a common cause of infection. Its ability to survive in many different environments and persistently colonize humans is linked to its presence in biofilms formed on indwelling device surfaces. Biofilm promotes adhesion to, and survival on surfaces, protects from desiccation and the actions of antibiotics and disinfectants. RESULTS We examined the genetic basis for biofilm production on polystyrene at room (22 °C) and body temperature (37 °C) within 280 P. aeruginosa. 193 isolates (69 %) produced more biofilm at 22 °C than at 37 °C. Using GWAS and pan-GWAS, we found a number of accessory genes significantly associated with greater biofilm production at 22 °C. Many of these are present on a 165 kb region containing genes for heavy metal resistance (arsenic, copper, mercury and cadmium), transcriptional regulators and methytransferases. We also discovered multiple core genome SNPs in the A-type flagellin gene and Type II secretion system gene xpsD. Analysis of biofilm production of isolates of the MDR ST111 and ST235 lineages on stainless-steel revealed several accessory genes associated with enhanced biofilm production. These include a putative translocase with homology to a Helicobacter pylori type IV secretion system protein, a TA system II toxin gene and the alginate biosynthesis gene algA, several transcriptional regulators and methytransferases as well as core SNPs in genes involved in quorum sensing and protein translocation. CONCLUSIONS Using genetic association approaches we discovered a number of accessory genes and core-genome SNPs that were associated with enhanced early biofilm formation at 22 °C compared to 37 °C. These included a 165 kb genomic island containing multiple heavy metal resistance genes, transcriptional regulators and methyltransferases. We hypothesize that this genomic island may be associated with overall genotypes that are environmentally adapted to survive at lower temperatures. Further work to examine their importance in, for example gene-knockout studies, are required to confirm their relevance. GWAS and pan-GWAS approaches have great potential as a first step in examining the genetic basis of novel bacterial phenotypes.
Collapse
Affiliation(s)
- James Redfern
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, United Kingdom
| | - Janine Wallace
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, United Kingdom
| | | | | | - Elliot Whittard
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, United Kingdom
| | - Roobinidevi Ragupathy
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, United Kingdom
| | - Joanna Verran
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, United Kingdom
| | - Peter Kelly
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, United Kingdom
| | - Mark Charles Enright
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, United Kingdom.
| |
Collapse
|
39
|
Roussin M, Salcedo SP. NAD+-targeting by bacteria: an emerging weapon in pathogenesis. FEMS Microbiol Rev 2021; 45:6315328. [PMID: 34223888 DOI: 10.1093/femsre/fuab037] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 07/01/2021] [Indexed: 11/14/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a major cofactor in redox reactions in all lifeforms. A stable level of NAD+ is vital to ensure cellular homeostasis. Some pathogens can modulate NAD+ metabolism to their advantage and even utilize or cleave NAD+ from the host using specialized effectors known as ADP-ribosyltransferase toxins and NADases, leading to energy store depletion, immune evasion, or even cell death. This review explores recent advances in the field of bacterial NAD+-targeting toxins, highlighting the relevance of NAD+ modulation as an emerging pathogenesis strategy. In addition, we discuss the role of specific NAD+-targeting toxins in niche colonization and bacterial lifestyle as components of Toxin/Antitoxin systems and key players in inter-bacterial competition. Understanding the mechanisms of toxicity, regulation, and secretion of these toxins will provide interesting leads in the search for new antimicrobial treatments in the fight against infectious diseases.
Collapse
Affiliation(s)
- Morgane Roussin
- Laboratory of Molecular Microbiology and Structural Biochemistry, Centre National de la Recherche Scientifique UMR5086, Université de Lyon, Lyon, France
| | - Suzana P Salcedo
- Laboratory of Molecular Microbiology and Structural Biochemistry, Centre National de la Recherche Scientifique UMR5086, Université de Lyon, Lyon, France
| |
Collapse
|
40
|
Qi X, Brothers KM, Ma D, Mandell JB, Donegan NP, Cheung AL, Richardson AR, Urish KL. The Staphylococcus aureus toxin-antitoxin system YefM-YoeB is associated with antibiotic tolerance and extracellular dependent biofilm formation. J Bone Jt Infect 2021; 6:241-253. [PMID: 34262845 PMCID: PMC8273624 DOI: 10.5194/jbji-6-241-2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 05/26/2021] [Indexed: 11/20/2022] Open
Abstract
The high antibiotic tolerance of Staphylococcus aureus biofilms is associated with challenges
for treating periprosthetic joint infection. The toxin–antitoxin system,
YefM–YoeB, is thought to be a regulator for antibiotic tolerance, but its
physiological role is unknown. The objective of this study was to determine
the biofilm and antibiotic susceptibility phenotypes associated with S. aureus yoeB
homologs. We hypothesized the toxin–antitoxin yoeB homologs contribute to
biofilm formation and antibiotic susceptibility. Disruption of yoeB1 and
yoeB2 resulted in decreased biofilm formation in comparison to Newman and JE2
wild-type (WT) S. aureus strains. In comparison to yoeB mutants, both Newman and JE2 WT
strains had higher polysaccharide intercellular adhesin (PIA) production.
Treatment with sodium metaperiodate increased biofilm formation in Newman
WT, indicating biofilm formation may be increased under conditions of
oxidative stress. DNase I treatment decreased biofilm formation in Newman
WT but not in the absence of yoeB1 or yoeB2. Additionally, WT strains had a higher
extracellular DNA (eDNA) content in comparison to yoeB mutants but no
differences in biofilm protein content. Moreover, loss of yoeB1 and yoeB2 decreased
biofilm survival in both Newman and JE2 strains. Finally, in a neutropenic
mouse abscess model, deletion of yoeB1 and yoeB2 resulted in reduced bacterial
burden. In conclusion, our data suggest that yoeB1 and yoeB2 are associated with
S. aureus planktonic growth, extracellular dependent biofilm formation, antibiotic
tolerance, and virulence.
Collapse
Affiliation(s)
- Xinyu Qi
- Arthritis and Arthroplasty Design Group (AAD Lab), Department of Orthopaedic Surgery, College of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Orthopedic Surgery, the First Affiliated Hospital of Traditional Chinese Medicine of Guangzhou University, Guangzhou, Guangdong, China
| | - Kimberly M Brothers
- Arthritis and Arthroplasty Design Group (AAD Lab), Department of Orthopaedic Surgery, College of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Dongzhu Ma
- Arthritis and Arthroplasty Design Group (AAD Lab), Department of Orthopaedic Surgery, College of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jonathan B Mandell
- Arthritis and Arthroplasty Design Group (AAD Lab), Department of Orthopaedic Surgery, College of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Niles P Donegan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, New Hampshire, USA
| | - Ambrose L Cheung
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, New Hampshire, USA
| | - Anthony R Richardson
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kenneth L Urish
- Arthritis and Arthroplasty Design Group (AAD Lab), Department of Orthopaedic Surgery, College of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
41
|
Wang D, Flint SH, Gagic D, Palmer JS, Fletcher GC, On SLW. In silico analysis revealing CsrA roles in motility-sessility switching and tuning VBNC cells in Vibrio parahaemolyticus. BIOFOULING 2021; 37:680-688. [PMID: 34369215 DOI: 10.1080/08927014.2021.1955357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/05/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
The formation of biofilms is a survival strategy employed by bacteria to help protect them from changing or unfavourable environments. In this research, 319 genes which govern biofilm formation in V. parahaemolyticus, as reported in 1,625 publications, were analysed using protein-protein-interaction (PPI) network analysis. CsrA was identified as a motility-sessility switch and biofilm formation regulator. Through robust rank aggregation (RRA) analysis of GSE65340, the generation of viable but non-culturable (VBNC) cells that may enhance cell tolerance to stress, was found to be associated with the TCA cycle and carbon metabolism biological pathways. The finding that CsrA is likely to play a role in the development of VBNC cells improves understanding of the molecular mechanisms of VBNC formation in V. parahaemolyticus and contributes to on-going efforts to reduce the hazard posed by this foodborne pathogen.
Collapse
Affiliation(s)
- Dan Wang
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - Steve H Flint
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - Dragana Gagic
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Jon S Palmer
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - Graham C Fletcher
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Stephen L W On
- Faculty of Agriculture and Life Sciences, Lincoln University, Canterbury, New Zealand
| |
Collapse
|
42
|
Kamruzzaman M, Wu AY, Iredell JR. Biological Functions of Type II Toxin-Antitoxin Systems in Bacteria. Microorganisms 2021; 9:microorganisms9061276. [PMID: 34208120 PMCID: PMC8230891 DOI: 10.3390/microorganisms9061276] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
After the first discovery in the 1980s in F-plasmids as a plasmid maintenance system, a myriad of toxin-antitoxin (TA) systems has been identified in bacterial chromosomes and mobile genetic elements (MGEs), including plasmids and bacteriophages. TA systems are small genetic modules that encode a toxin and its antidote and can be divided into seven types based on the nature of the antitoxin molecules and their mechanism of action to neutralise toxins. Among them, type II TA systems are widely distributed in chromosomes and plasmids and the best studied so far. Maintaining genetic material may be the major function of type II TA systems associated with MGEs, but the chromosomal TA systems contribute largely to functions associated with bacterial physiology, including the management of different stresses, virulence and pathogenesis. Due to growing interest in TA research, extensive work has been conducted in recent decades to better understand the physiological roles of these chromosomally encoded modules. However, there are still controversies about some of the functions associated with different TA systems. This review will discuss the most current findings and the bona fide functions of bacterial type II TA systems.
Collapse
Affiliation(s)
- Muhammad Kamruzzaman
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia;
- Correspondence: (M.K.); (J.R.I.)
| | - Alma Y. Wu
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia;
| | - Jonathan R. Iredell
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia;
- Westmead Hospital, Westmead, NSW 2145, Australia
- Correspondence: (M.K.); (J.R.I.)
| |
Collapse
|
43
|
Yadav SK, Magotra A, Ghosh S, Krishnan A, Pradhan A, Kumar R, Das J, Sharma M, Jha G. Immunity proteins of dual nuclease T6SS effectors function as transcriptional repressors. EMBO Rep 2021; 22:e51857. [PMID: 33786997 PMCID: PMC8183406 DOI: 10.15252/embr.202051857] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/26/2021] [Accepted: 03/08/2021] [Indexed: 12/31/2022] Open
Abstract
Bacteria utilize type VI secretion system (T6SS) to deliver antibacterial toxins to target co-habiting bacteria. Here, we report that Burkholderia gladioli strain NGJ1 deploys certain T6SS effectors (TseTBg), having both DNase and RNase activities to kill target bacteria. RNase activity is prominent on NGJ1 as well as other bacterial RNA while DNase activity is pertinent to only other bacteria. The associated immunity (TsiTBg) proteins harbor non-canonical helix-turn-helix motifs and demonstrate transcriptional repression activity, similar to the antitoxins of type II toxin-antitoxin (TA) systems. Genome analysis reveals that homologs of TseTBg are either encoded as TA or T6SS effectors in diverse bacteria. Our results indicate that a new ORF (encoding a hypothetical protein) has evolved as a result of operonic fusion of TA type TseTBg homolog with certain T6SS-related genes by the action of IS3 transposable elements. This has potentially led to the conversion of a TA into T6SS effector in Burkholderia. Our study exemplifies that bacteria can recruit toxins of TA systems as T6SS weapons to diversify its arsenal to dominate during inter-bacterial competitions.
Collapse
Affiliation(s)
- Sunil Kumar Yadav
- Plant Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchAruna Asaf Ali MargIndia
| | - Ankita Magotra
- Plant Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchAruna Asaf Ali MargIndia
| | - Srayan Ghosh
- Plant Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchAruna Asaf Ali MargIndia
| | - Aiswarya Krishnan
- Plant Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchAruna Asaf Ali MargIndia
| | - Amrita Pradhan
- Plant Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchAruna Asaf Ali MargIndia
| | - Rahul Kumar
- Plant Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchAruna Asaf Ali MargIndia
| | - Joyati Das
- Plant Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchAruna Asaf Ali MargIndia
| | - Mamta Sharma
- Plant Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchAruna Asaf Ali MargIndia
| | - Gopaljee Jha
- Plant Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchAruna Asaf Ali MargIndia
| |
Collapse
|
44
|
Mao P, Wang Y, Gan L, Sun H, Wang Y, Li L, Ji S, Song Z, Jiang H, Ye C. Function and distribution of the conjugative plasmid pLM1686 in foodborne Listeria monocytogenes in China. Int J Food Microbiol 2021; 352:109261. [PMID: 34116256 DOI: 10.1016/j.ijfoodmicro.2021.109261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 01/22/2023]
Abstract
Listeria monocytogenes, a fatal foodborne pathogen has the extraordinary capacity to survive in harsh conditions and is a potential threat to public health. A novel 91 kb plasmid pLM1686 was found in the prevalent L. monocytogenes sequence type (ST) 87 strain in China. In this study, the function and distribution of pLM1686 were firstly investigated in L. monocytogenes. The results showed plasmid pLM1686 had self-transmissible ability and existed in various types of L. monocytogenes isolates belonging to two lineages (lineage I and II), four serotypes (1/2b, 3b, 1/2c and 1/2a) and four STs (ST87, ST59, ST9 and ST120). The wild strain LM1686 and transconjugant strain 10403SP1686 exhibited significantly higher growth rate and biofilm formation in Modification of Welshimer's medium (MWB), greater salinity tolerance, stronger cell invasion and higher cytotoxicity than plasmid-cured strain and reference strain 10403S. Moreover, plasmid curing caused the loss of cadmium resistance of strain, and the recipient strain acquired cadmium resistance after conjugation. Thus, pLM1686 would provide L. monocytogenes advantages of surviving in adverse environments.
Collapse
Affiliation(s)
- Pan Mao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing 102206, China; Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Yan Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Lin Gan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Hui Sun
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yiqian Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Lingling Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Shunshi Ji
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Zexuan Song
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Huaying Jiang
- People's Hospital of Xindu District, Chengdu 610500, China
| | - Changyun Ye
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing 102206, China; Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China.
| |
Collapse
|
45
|
12/111phiA Prophage Domestication Is Associated with Autoaggregation and Increased Ability to Produce Biofilm in Streptococcus agalactiae. Microorganisms 2021; 9:microorganisms9061112. [PMID: 34063935 PMCID: PMC8223999 DOI: 10.3390/microorganisms9061112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 01/11/2023] Open
Abstract
CC17 Streptococcus agalactiae carrying group-A prophages is increasingly responsible for neonatal infections. To investigate the impact of the genetic features of a group-A prophage, we first conducted an in silico analysis of the genome of 12/111phiA, a group-A prophage carried by a strain responsible for a bloodstream infection in a parturient. This revealed a Restriction Modification system, suggesting a prophage maintenance strategy and five ORFs of interest for the host and encoding a type II toxin antitoxin system RelB/YafQ, an endonuclease, an S-adenosylmethionine synthetase MetK, and an StrP-like adhesin. Using the WT strain cured from 12/111phiA and constructing deleted mutants for the ORFs of interest, and their complemented mutants, we demonstrated an impact of prophage features on growth characteristics, cell morphology and biofilm formation. Our findings argue in favor of 12/111phiA domestication by the host and a role of prophage features in cell autoaggregation, glycocalyx and biofilm formation. We suggest that lysogeny may promote GBS adaptation to the acid environment of the vagina, consequently colonizing and infecting neonates.
Collapse
|
46
|
De Simeis D, Serra S. Actinomycetes: A Never-Ending Source of Bioactive Compounds-An Overview on Antibiotics Production. Antibiotics (Basel) 2021; 10:antibiotics10050483. [PMID: 33922100 PMCID: PMC8143475 DOI: 10.3390/antibiotics10050483] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022] Open
Abstract
The discovery of penicillin by Sir Alexander Fleming in 1928 provided us with access to a new class of compounds useful at fighting bacterial infections: antibiotics. Ever since, a number of studies were carried out to find new molecules with the same activity. Microorganisms belonging to Actinobacteria phylum, the Actinomycetes, were the most important sources of antibiotics. Bioactive compounds isolated from this order were also an important inspiration reservoir for pharmaceutical chemists who realized the synthesis of new molecules with antibiotic activity. According to the World Health Organization (WHO), antibiotic resistance is currently one of the biggest threats to global health, food security, and development. The world urgently needs to adopt measures to reduce this risk by finding new antibiotics and changing the way they are used. In this review, we describe the primary role of Actinomycetes in the history of antibiotics. Antibiotics produced by these microorganisms, their bioactivities, and how their chemical structures have inspired generations of scientists working in the synthesis of new drugs are described thoroughly.
Collapse
|
47
|
Interactions of the Streptococcus pneumoniae Toxin-Antitoxin RelBE Proteins with Their Target DNA. Microorganisms 2021; 9:microorganisms9040851. [PMID: 33921033 PMCID: PMC8071376 DOI: 10.3390/microorganisms9040851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/17/2022] Open
Abstract
Type II bacterial toxin-antitoxin (TA) systems are found in most bacteria, archaea, and mobile genetic elements. TAs are usually found as a bi-cistronic operon composed of an unstable antitoxin and a stable toxin that targets crucial cellular functions like DNA supercoiling, cell-wall synthesis or mRNA translation. The type II RelBE system encoded by the pathogen Streptococcus pneumoniae is highly conserved among different strains and participates in biofilm formation and response to oxidative stress. Here, we have analyzed the participation of the RelB antitoxin and the RelB:RelE protein complex in the self-regulation of the pneumococcal relBE operon. RelB acted as a weak repressor, whereas RelE performed the role of a co-repressor. By DNA footprinting experiments, we show that the proteins bind to a region that encompasses two palindromic sequences that are located around the -10 sequences of the single promoter that directs the synthesis of the relBE mRNA. High-resolution footprinting assays showed the distribution of bases whose deoxyriboses are protected by the bound proteins, demonstrating that RelB and RelB:RelE contacted the DNA backbone on one face of the DNA helix and that these interactions extended beyond the palindromic sequences. Our findings suggest that the binding of the RelBE proteins to its DNA target would lead to direct inhibition of the binding of the host RNA polymerase to the relBE promoter.
Collapse
|
48
|
Challenges of automation and scale: Bioinformatics and the evaluation of proteins to support genetically modified product safety assessments. J Invertebr Pathol 2021; 186:107587. [PMID: 33838205 DOI: 10.1016/j.jip.2021.107587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 11/24/2022]
Abstract
Bioinformatic analyses of protein sequences play an important role in the discovery and subsequent safety assessment of insect control proteins in Genetically Modified (GM) crops. Due to the rapid adoption of high-throughput sequencing methods over the last decade, the number of protein sequences in GenBank and other public databases has increased dramatically. Many of these protein sequences are the product of whole genome sequencing efforts, coupled with automated protein sequence prediction and annotation pipelines. Published genome sequencing studies provide a rich and expanding foundation of new source organisms and proteins for insect control or other desirable traits in GM products. However, data generated by automated pipelines can also confound regulatory safety assessments that employ bioinformatics. Largely this issue does not arise due to underlying sequence, but rather its annotation or associated metadata, and the downstream integration of that data into existing repositories. Observations made during bioinformatic safety assessments are described.
Collapse
|
49
|
Identification of a Toxin-Antitoxin System That Contributes to Persister Formation by Reducing NAD in Pseudomonas aeruginosa. Microorganisms 2021; 9:microorganisms9040753. [PMID: 33918483 PMCID: PMC8065639 DOI: 10.3390/microorganisms9040753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 12/14/2022] Open
Abstract
Bacterial persisters are slow-growing or dormant cells that are highly tolerant to bactericidal antibiotics and contribute to recalcitrant and chronic infections. Toxin/antitoxin (TA) systems play important roles in controlling persister formation. Here, we examined the roles of seven predicted type II TA systems in the persister formation of a Pseudomonas aeruginosa wild-type strain PA14. Overexpression of a toxin gene PA14_51010 or deletion of the cognate antitoxin gene PA14_51020 increased the bacterial tolerance to antibiotics. Co-overexpression of PA14_51010 and PA14_51020 or simultaneous deletion of the two genes resulted in a wild-type level survival rate following antibiotic treatment. The two genes were located in the same operon that was repressed by PA14_51020. We further demonstrated the interaction between PA14_51010 and PA14_51020. Sequence analysis revealed that PA14_51010 contained a conserved RES domain. Overexpression of PA14_51010 reduced the intracellular level of nicotinamide adenine dinucleotide (NAD+). Mutation of the RES domain abolished the abilities of PA14_51010 in reducing NAD+ level and promoting persister formation. In addition, overproduction of NAD+ by mutation in an nrtR gene counteracted the effect of PA14_51010 overexpression in promoting persister formation. In combination, our results reveal a novel TA system that contributes to persister formation through reducing the intracellular NAD+ level in P. aeruginosa.
Collapse
|
50
|
Kahan R, Worm DJ, de Castro GV, Ng S, Barnard A. Modulators of protein-protein interactions as antimicrobial agents. RSC Chem Biol 2021; 2:387-409. [PMID: 34458791 PMCID: PMC8341153 DOI: 10.1039/d0cb00205d] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
Protein-Protein interactions (PPIs) are involved in a myriad of cellular processes in all living organisms and the modulation of PPIs is already under investigation for the development of new drugs targeting cancers, autoimmune diseases and viruses. PPIs are also involved in the regulation of vital functions in bacteria and, therefore, targeting bacterial PPIs offers an attractive strategy for the development of antibiotics with novel modes of action. The latter are urgently needed to tackle multidrug-resistant and multidrug-tolerant bacteria. In this review, we describe recent developments in the modulation of PPIs in pathogenic bacteria for antibiotic development, including advanced small molecule and peptide inhibitors acting on bacterial PPIs involved in division, replication and transcription, outer membrane protein biogenesis, with an additional focus on toxin-antitoxin systems as upcoming drug targets.
Collapse
Affiliation(s)
- Rashi Kahan
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 82 Wood Lane London W12 0BZ UK
| | - Dennis J Worm
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 82 Wood Lane London W12 0BZ UK
| | - Guilherme V de Castro
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 82 Wood Lane London W12 0BZ UK
| | - Simon Ng
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 82 Wood Lane London W12 0BZ UK
| | - Anna Barnard
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 82 Wood Lane London W12 0BZ UK
| |
Collapse
|