Dijkland SA, Foks KA, Polinder S, Dippel DWJ, Maas AIR, Lingsma HF, Steyerberg EW. Prognosis in Moderate and Severe Traumatic Brain Injury: A Systematic Review of Contemporary Models and Validation Studies.
J Neurotrauma 2019;
37:1-13. [PMID:
31099301 DOI:
10.1089/neu.2019.6401]
[Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Outcome prognostication in traumatic brain injury (TBI) is important but challenging due to heterogeneity of the disease. The aim of this systematic review is to present the current state-of-the-art on prognostic models for outcome after moderate and severe TBI and evidence on their validity. We searched for studies reporting on the development, validation or extension of prognostic models for functional outcome after TBI with Glasgow Coma Scale (GCS) ≤12 published between 2006-2018. Studies with patients age ≥14 years and evaluating a multi-variable prognostic model based on admission characteristics were included. Model discrimination was expressed with the area under the receiver operating characteristic curve (AUC), and model calibration with calibration slope and intercept. We included 58 studies describing 67 different prognostic models, comprising the development of 42 models, 149 external validations of 31 models, and 12 model extensions. The most common predictors were GCS (motor) score (n = 55), age (n = 54), and pupillary reactivity (n = 48). Model discrimination varied substantially between studies. The International Mission for Prognosis and Analysis of Clinical Trials (IMPACT) and Corticoid Randomisation After Significant Head injury (CRASH) models were developed on the largest cohorts (8509 and 10,008 patients, respectively) and were most often externally validated (n = 91), yielding AUCs ranging between 0.65-0.90 and 0.66-1.00, respectively. Model calibration was reported with a calibration intercept and slope for seven models in 53 validations, and was highly variable. In conclusion, the discriminatory validity of the IMPACT and CRASH prognostic models is supported across a range of settings. The variation in calibration, reflecting heterogeneity in reliability of predictions, motivates continuous validation and updating if clinical implementation is pursued.
Collapse