1
|
Lian Y, Zhang M, Yang S, Peng S, Wang A, Jia J, Feng X, Wu Q, Yang X, Zhou S. Knockdown of the ZcVgR Gene Alters the Expression of Genes Related to Reproduction and Lifespan in Zeugodacus cucurbitae (Coquillett) Under Extreme Heat Conditions. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 117:e70015. [PMID: 39689075 DOI: 10.1002/arch.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/07/2024] [Accepted: 11/28/2024] [Indexed: 12/19/2024]
Abstract
Zeugodacus cucurbitae (Coquillett) is an important migratory vegetable pest. Previous research has demonstrated that short-term high temperatures induce differential expression of the vitellogenin receptor (ZcVgR) gene, reducing the number of eggs laid and the lifespan of female Z. cucurbitae. In this paper, we used Tandem Mass Tags (TMT) quantitative proteomics and Illumina high-throughput sequencing to determine the proteomic and transcriptomic information of female Z. cucurbitae after siRNA-mediated silencing of the target gene (ZcVgR) to gain a comprehensive understanding of the molecular mechanism of this gene in the regulation of reproduction and lifespan. The findings demonstrated that following the target gene's silencing, the ZcVgR gene's transcriptional expression was significantly downregulated, and there was no significant difference in protein level. The transcriptome and proteome had a low correlation; when the ZcVgR gene was silenced, vitellogenin-1 (ZcVg1), juvenile hormone epoxide hydrolase (JHEH), troponin C (TnC), heat shock protein 70 (HSP70), and other related genes were downregulated at the transcriptional level. By silencing the ZcVgR gene, transcriptionally level immune-related pathways were activated and energy metabolism-related pathways were inhibited; protein-level glycometabolism and phagosome pathways were activated, while phototransduction-fly and autophagy-animal pathways were inhibited. The findings of this study might offer a theoretical foundation for integrated management of Z. cucurbitae in the summertime.
Collapse
Affiliation(s)
- Yuyang Lian
- Sanya Nanfan Research Institute of Hainan University, Sanya, China
| | - Mengjie Zhang
- School of Medicine, Chongqing University, Chongqing, China
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuyan Yang
- Sanya Nanfan Research Institute of Hainan University, Sanya, China
| | - Sihua Peng
- Sanya Nanfan Research Institute of Hainan University, Sanya, China
| | - Aqiang Wang
- Sanya Nanfan Research Institute of Hainan University, Sanya, China
| | - Jingjing Jia
- Key Laboratory of Plant Disease and Pest Control of Hainan Province/Institute of Plant Protection, Hainan Academy of Agricultural Sciences (Research Center of Quality Safety and Standards for Agricultural Products of Hainan Academy of Agricultural Sciences), Haikou, China
| | - Xuejie Feng
- Key Laboratory of Tropical Fruit Tree Biology of Hainan Province, Haikou, China
| | - Qianxing Wu
- Sanya Nanfan Research Institute of Hainan University, Sanya, China
| | - Xiaofeng Yang
- Sanya Nanfan Research Institute of Hainan University, Sanya, China
| | - Shihao Zhou
- Sanya Nanfan Research Institute of Hainan University, Sanya, China
| |
Collapse
|
2
|
Chen L, Liang J, Zhang Q, Yang C, Lu H, Zhang R, Chen K, Wang S, Li M, Zhang S, He N. Mulberry-derived miR168a downregulates BmMthl1 to promote physical development and fecundity in silkworms. Int J Biol Macromol 2024; 259:129077. [PMID: 38199542 DOI: 10.1016/j.ijbiomac.2023.129077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024]
Abstract
Plant-derived miRNAs and their interactions with host organisms are considered important factors in regulating host physiological processes. In this study, we investigated the interaction between the silkworm, an oligophagous insect, and its primary food source, mulberry, to determine whether mulberry-derived miRNAs can penetrate silkworm cells and regulate their functions. Our results demonstrated that miR168a from mulberry leaves enters the silkworm hemolymph and binds to the silkworm Argonaute1 BmAGO1, which is transported via vesicles secreted by silkworm cells to exert its regulatory functions. In vivo and in vitro functional studies revealed that miR168a targets the mRNA of silkworm G protein-coupled receptor, BmMthl1, thereby inhibiting its expression and activating the JNK-FoxO pathway. This activation reduces oxidative stress responses, prolongs the lifespan of silkworms, and improves their reproductive capacity. These findings highlight the challenges of replacing mulberry leaves with alternative protein sources and provide a foundation for developing silkworm germplasms suitable for factory rearing.
Collapse
Affiliation(s)
- Lin Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Jiubo Liang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Qi Zhang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Chao Yang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Hulin Lu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Renze Zhang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Kaiying Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Sheng Wang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Mingbo Li
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Shaoyu Zhang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Ningjia He
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China.
| |
Collapse
|
3
|
Kosakamoto H, Obata F, Kuraishi J, Aikawa H, Okada R, Johnstone JN, Onuma T, Piper MDW, Miura M. Early-adult methionine restriction reduces methionine sulfoxide and extends lifespan in Drosophila. Nat Commun 2023; 14:7832. [PMID: 38052797 DOI: 10.1038/s41467-023-43550-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 11/10/2023] [Indexed: 12/07/2023] Open
Abstract
Methionine restriction (MetR) extends lifespan in various organisms, but its mechanistic understanding remains incomplete. Whether MetR during a specific period of adulthood increases lifespan is not known. In Drosophila, MetR is reported to extend lifespan only when amino acid levels are low. Here, by using an exome-matched holidic medium, we show that decreasing Met levels to 10% extends Drosophila lifespan with or without decreasing total amino acid levels. MetR during the first four weeks of adult life only robustly extends lifespan. MetR in young flies induces the expression of many longevity-related genes, including Methionine sulfoxide reductase A (MsrA), which reduces oxidatively-damaged Met. MsrA induction is foxo-dependent and persists for two weeks after cessation of the MetR diet. Loss of MsrA attenuates lifespan extension by early-adulthood MetR. Our study highlights the age-dependency of the organismal response to specific nutrients and suggests that nutrient restriction during a particular period of life is sufficient for healthspan extension.
Collapse
Affiliation(s)
- Hina Kosakamoto
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Laboratory for Nutritional Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, 650-0047, Japan
| | - Fumiaki Obata
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- Laboratory for Nutritional Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, 650-0047, Japan.
- Laboratory of Molecular Cell Biology and Development, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan.
| | - Junpei Kuraishi
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hide Aikawa
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Rina Okada
- Laboratory for Nutritional Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, 650-0047, Japan
| | - Joshua N Johnstone
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Taro Onuma
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Laboratory for Nutritional Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, 650-0047, Japan
| | - Matthew D W Piper
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
4
|
Deng Z, Zhang X, Wolinska J, Blair D, Hu W, Yin M. Climate has contributed to population diversification of Daphnia galeata across Eurasia. Mol Ecol 2023; 32:5110-5124. [PMID: 37548328 DOI: 10.1111/mec.17094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023]
Abstract
Climate is a fundamental abiotic factor that plays a key role in driving the evolution, distribution and population diversification of species. However, there have been few investigations of genomic signatures of adaptation to local climatic conditions in cladocerans. Here, we have provided the first high-quality chromosome-level genome assembly (~143 Mb, scaffold N50 12.6 Mb) of the waterflea, Daphnia galeata, and investigated genomic variation in 22 populations from Central Europe and Eastern China. Our ecological-niche models suggested that the historic distribution of D. galeata in Eurasia was significantly affected by Quaternary climate fluctuations. We detected pronounced genomic and morphometric divergences between European and Chinese D. galeata populations. Such divergences could be partly explained by genomic signatures of thermal adaptation to distinct climate regimes: a set of candidate single-nucleotide polymorphisms (SNPs) potentially associated with climate were detected. These SNPs were in genes significantly enriched in the Gene ontology terms "determination of adult lifespan" and "translation repressor activity", and especially, mthl5 and SOD1 involved in the IIS pathway, and EIF4EBP2 involved in the target of the rapamycin signalling pathway. Our study indicates that certain alleles might be associated with particular temperature regimes, playing a functional role in shaping the population structure of D. galeata at a large geographical scale. These results highlight the potential role of molecular variation in the response to climate variation, in the context of global climate change.
Collapse
Affiliation(s)
- Zhixiong Deng
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Xiuping Zhang
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Justyna Wolinska
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
- Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - David Blair
- College of Marine and Environmental Sciences, James Cook University, Townsville, Queensland, Australia
| | - Wei Hu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Mingbo Yin
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Science, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Varela-López A, Romero-Márquez JM, Navarro-Hortal MD, Ramirez-Tortosa CL, Battino M, Forbes-Hernández TY, Quiles JL. Dietary antioxidants and lifespan: Relevance of environmental conditions, diet, and genotype of experimental models. Exp Gerontol 2023; 178:112221. [PMID: 37230336 DOI: 10.1016/j.exger.2023.112221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023]
Abstract
The rise of life expectancy in current societies is not accompanied, to date, by a similar increase in healthspan, which represents a great socio-economic problem. It has been suggested that aging can be manipulated and then, the onset of all age-associated chronic disorders can be delayed because these pathologies share age as primary underlying risk factor. One of the most extended ideas is that aging is consequence of the accumulation of molecular damage. According to the oxidative damage theory, antioxidants should slow down aging, extending lifespan and healthspan. The present review analyzes studies evaluating the effect of dietary antioxidants on lifespan of different aging models and discusses the evidence on favor of their antioxidant activity as anti-aging mechanisms. Moreover, possible causes for differences between the reported results are evaluated.
Collapse
Affiliation(s)
- Alfonso Varela-López
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, University of Granada, Avda del Conocimiento s/n, Parque Tecnologico de la Salud, Armilla, Granada 18016, Spain
| | - José M Romero-Márquez
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, University of Granada, Avda del Conocimiento s/n, Parque Tecnologico de la Salud, Armilla, Granada 18016, Spain
| | - María D Navarro-Hortal
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, University of Granada, Avda del Conocimiento s/n, Parque Tecnologico de la Salud, Armilla, Granada 18016, Spain
| | | | - Maurizio Battino
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, China
| | - Tamara Y Forbes-Hernández
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, University of Granada, Avda del Conocimiento s/n, Parque Tecnologico de la Salud, Armilla, Granada 18016, Spain
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, University of Granada, Avda del Conocimiento s/n, Parque Tecnologico de la Salud, Armilla, Granada 18016, Spain; Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres, 21, 39011 Santander, Spain; Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Avenida del Conocimiento 37, 18016 Granada, Spain.
| |
Collapse
|
6
|
Zhao L, Zhou J, Chen J, Zhang X, Zhang H, Guo L, Li D, Ning J, Wang X, Jin W, Mai K, Abraham E, Butcher R, Sun J. A chemical signal that promotes insect survival via thermogenesis. RESEARCH SQUARE 2023:rs.3.rs-2756320. [PMID: 37214941 PMCID: PMC10197781 DOI: 10.21203/rs.3.rs-2756320/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cold-activated thermogenesis of brown adipose tissues (BAT) is vital for the survival of animals under cold stress and also inhibits the development of tumours. The development of small-molecule tools that target thermogenesis pathways could lead to novel therapies against cold, obesity, and even cancer. Here, we identify a chemical signal that is produced in beetles in the winter to activate fat thermogenesis. This hormone elevates the basal body temperature by increasing cellular mitochondrial density and uncoupling in order to promote beetle survival. We demonstrate that this hormone activates UCP4- mediated uncoupled respiration through adipokinetic hormone receptor (AKHR). This signal serves as a novel fat-burning activator that utilizes a conserved mechanism to promote thermogenesis not only in beetles, nematode and flies, but also in mice, protecting the mice against cold and tumor growth. This hormone represents a new strategy to manipulate fat thermogenesis.
Collapse
Affiliation(s)
- Lilin Zhao
- Institute of Zoology, Chinese Academy of Sciences
| | - Jiao Zhou
- Institute of Zoology, Chinese Academy of Sciences
| | - Junxian Chen
- Institute of Zoology, Chinese Academy of Sciences
| | | | | | | | - Defeng Li
- Institute of Microbiology, Chinese Academy of Sciences
| | - Jing Ning
- Institute of Zoology, Chinese Academy of Sciences
| | - Xinchen Wang
- Institute of Zoology, Chinese Academy of Sciences
| | - Wanzhu Jin
- Institute of Zoology, Chinese Academy of Sciences
| | - Kevin Mai
- Department of Chemistry, University of Florida
| | | | | | | |
Collapse
|
7
|
Brooks D, Bawa S, Bontrager A, Stetsiv M, Guo Y, Geisbrecht ER. Independent pathways control muscle tissue size and sarcomere remodeling. Dev Biol 2022; 490:1-12. [PMID: 35760368 PMCID: PMC9648737 DOI: 10.1016/j.ydbio.2022.06.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/03/2022] [Accepted: 06/21/2022] [Indexed: 01/09/2023]
Abstract
Cell growth and proliferation must be balanced during development to attain a final adult size with the appropriate proportions of internal organs to maximize fitness and reproduction. While multiple signaling pathways coordinate Drosophila development, it is unclear how multi-organ communication within and between tissues converge to regulate systemic growth. One such growth pathway, mediated by insulin-like peptides that bind to and activate the insulin receptor in multiple target tissues, is a primary mediator of organismal size. Here we uncover a signaling role for the NUAK serine/threonine kinase in muscle tissue that impinges upon insulin pathway activity to limit overall body size, including a reduction in the growth of individual organs. In skeletal muscle tissue, manipulation of NUAK or insulin pathway components influences sarcomere number concomitant with modulation of thin and thick filament lengths, possibly by modulating the localization of Lasp, a nebulin repeat protein known to set thin filament length. This mode of sarcomere remodeling does not occur in other mutants that also exhibit smaller muscles, suggesting that a sensing mechanism exists in muscle tissue to regulate sarcomere growth that is independent of tissue size control.
Collapse
Affiliation(s)
- David Brooks
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Simranjot Bawa
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Alexandria Bontrager
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Marta Stetsiv
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Yungui Guo
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Erika R Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
8
|
Fu N, Li J, Ren L, Li X, Wang M, Li F, Zong S, Luo Y. Chromosome-level genome assembly of Monochamus saltuarius reveals its adaptation and interaction mechanism with pine wood nematode. Int J Biol Macromol 2022; 222:325-336. [PMID: 36115455 DOI: 10.1016/j.ijbiomac.2022.09.108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/22/2022] [Accepted: 09/10/2022] [Indexed: 11/05/2022]
Abstract
Monochamus saltuarius (Coleoptera: Cerambycidae) was reported as the vector beetle of the pine wood nematode (PWN, Bursaphelenchus xylophilus) in Japan and Europe. It was first reported to transmitted the PWN to native Pinus species in 2018 in Liaoning Province, China. However, the lack of genomic resources has limited the in-depth understanding of its interspecific relationship with PWN. Here, we obtained a chromosome-level reference genome of M. saltuarius combining Illumina, Nanopore and Hi-C sequencing technologies. We assembled the scaffolds into ten chromosomes (including an X chromosome) and obtained a 682.23 Mb chromosome-level genome with a N50 of 73.69 Mb. In total, 427.67 Mb (62.69 %) repeat sequences were identified and 14, 492 protein-coding genes were predicted, of which 93.06 % were annotated. We described the mth/mthl, P450, OBP and OR gene families associated with the vector beetle's development and resistance, as well as the host selection and adaptation, which serve as a valuable resource for understanding the host adaptation in insects during evolution. This high quality reference genome of M. saltuarius also provide new avenues for researching the mechanism of this synergistic damage between vector beetles and PWN.
Collapse
Affiliation(s)
- Ningning Fu
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Jiaxing Li
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Lili Ren
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China.
| | | | - Ming Wang
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Fengqi Li
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| | - Shixiang Zong
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Youqing Luo
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
9
|
Lagunas-Rangel FA. G protein-coupled receptors that influence lifespan of human and animal models. Biogerontology 2021; 23:1-19. [PMID: 34860303 PMCID: PMC8888397 DOI: 10.1007/s10522-021-09945-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/22/2021] [Indexed: 12/16/2022]
Abstract
Humanity has always sought to live longer and for this, multiple strategies have been tried with varying results. In this sense, G protein-coupled receptors (GPCRs) may be a good option to try to prolong our life while maintaining good health since they have a substantial participation in a wide variety of processes of human pathophysiology and are one of the main therapeutic targets. In this way, we present the analysis of a series of GPCRs whose activity has been shown to affect the lifespan of animal and human models, and in which we put a special interest in describing the molecular mechanisms involved. Our compilation of data revealed that the mechanisms most involved in the role of GPCRs in lifespan are those that mimic dietary restriction, those related to insulin signaling and the AMPK and TOR pathways, and those that alter oxidative homeostasis and severe and/or chronic inflammation. We also discuss the possibility of using agonist or antagonist drugs, depending on the beneficial or harmful effects of each GPCR, in order to prolong people's lifespan and healthspan.
Collapse
|
10
|
Cao C, Sun L, Du H, Moural TW, Bai H, Liu P, Zhu F. Physiological functions of a methuselah-like G protein coupled receptor in Lymantria dispar Linnaeus. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 160:1-10. [PMID: 31519242 DOI: 10.1016/j.pestbp.2019.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 06/13/2019] [Accepted: 07/03/2019] [Indexed: 06/10/2023]
Abstract
Insect G protein coupled receptors (GPCRs) have been identified as a highly attractive target for new generation insecticides discovery due to their critical physiological functions. However, few insect GPCRs have been functionally characterized. Here, we cloned the full length of a methuselah-like GPCR gene (Ldmthl1) from the Asian gypsy moth, Lymantria dispar. We then characterized the secondary and tertiary structures of Ldmthl1. We also predicted the global structure of this insect GPCR protein which is composed of three major domains. RNA interference of Ldmthl1 resulted in a reduction of gypsy moths' resistance to deltamethrin and suppressed expression of downstream stress-associated genes, such as P450s, glutathione S transferases, and heat shock proteins. The function of Ldmthl1 was further investigated using transgenic lines of Drosophila melanogaster. Drosophila with overexpression of Ldmthl1 showed significantly longer lifespan than control flies. Taken together, our studies revealed that the physiological functions of Ldmthl1 in L. dispar are associated with longevity and resistance to insecticide stresses. Potentially, Ldmthl1 can be used as a target for new insecticide discovery in order to manage this notorious forest pest.
Collapse
Affiliation(s)
- Chuanwang Cao
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Lili Sun
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Hui Du
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Timothy W Moural
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Hua Bai
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Peng Liu
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Fang Zhu
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
11
|
Evangelakou Z, Manola M, Gumeni S, Trougakos IP. Nutrigenomics as a tool to study the impact of diet on aging and age-related diseases: the Drosophila approach. GENES & NUTRITION 2019; 14:12. [PMID: 31073342 PMCID: PMC6498619 DOI: 10.1186/s12263-019-0638-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 04/10/2019] [Indexed: 02/06/2023]
Abstract
Aging is a complex phenomenon caused by the time-dependent loss of cellular homeodynamics and consequently of physiological organismal functions. This process is affected by both genetic and environmental (e.g., diet) factors, as well as by their constant interaction. Consistently, deregulation of nutrient sensing and signaling pathways is considered a hallmark of aging. Nutrigenomics is an emerging scientific discipline that studies changes induced by diet on the genome and thus it considers the intersection of three topics, namely health, diet, and genomics. Model organisms, such as the fruit fly Drosophila melanogaster, have been successfully used for in vivo modeling of higher metazoans aging and for nutrigenomic studies. Drosophila is a well-studied organism with sophisticated genetics and a fully annotated sequenced genome, in which ~ 75% of human disease-related genes have functional orthologs. Also, flies have organs/tissues that perform the equivalent functions of most mammalian organs, while discrete clusters of cells maintain insect carbohydrate homeostasis in a way similar to pancreatic cells. Herein, we discuss the mechanistic connections between nutrition and aging in Drosophila, and how this model organism can be used to study the effect of different diets (including natural products and/or their derivatives) on higher metazoans longevity.
Collapse
Affiliation(s)
- Zoi Evangelakou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Maria Manola
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Sentiljana Gumeni
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| |
Collapse
|
12
|
Friedrich M, Chahine H, Al-Jageta C, Badreddine H. Massive parallel expansions of Methuselah/Methuselah-like receptors in schizophoran Diptera. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2018; 330:384-389. [PMID: 30058118 DOI: 10.1002/jez.b.22813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/14/2018] [Accepted: 06/11/2018] [Indexed: 01/16/2023]
Abstract
The Methuselah/Methuselah-like (Mth/Mthl) family of G-protein coupled receptors (GPCRs) is represented by 16 homologs in the fruit fly Drosophila melanogaster. Three of them have thus far been functionally characterized and found to play critical roles in cell adhesion, immunity, lifespan, and oxidative stress regulation. Evolutionary studies have shown that the large number of D. melanogaster Mth/Mthl GPCRs arose by at least two rounds of gene duplications. The first produced the "mth superclade" subfamily and was followed by the expansion of the "melanogaster subgroup" cluster within the "mth superclade" of Mth/Mthl GPCRs. The adaptive significance of the Mth/Mthl receptor repertoire expansion in Drosophila remains elusive. Studying the Mth/Mthl gene family content in newly available dipteran genomes, we find that the first expansion of the mthl superclade predates the diversification of schizophoran Diptera approximately 65 million years ago. Unexpectedly, we further find that the subsequent expansion of the melanogaster subgroup cluster was paralleled by independent mth superclade Mth/Mthl GPCR expansions in other schizophoran clades (Muscidae and Tephritidae). Our study thus reveals an even more dynamic diversification of mth superclade GPCRs than previously appreciated and linked to the emergence of schizophoran flies, the most dramatic radiation in the dipteran tree of life.
Collapse
Affiliation(s)
- Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, Michigan.,Department of Anatomy and Cell Biology, School of Medicine, Wayne State University, Detroit, Michigan
| | - Hanady Chahine
- Department of Biological Sciences, Wayne State University, Detroit, Michigan
| | - Cristina Al-Jageta
- Department of Biological Sciences, Wayne State University, Detroit, Michigan
| | - Hamzah Badreddine
- Department of Biological Sciences, Wayne State University, Detroit, Michigan
| |
Collapse
|
13
|
Staats S, Lüersen K, Wagner AE, Rimbach G. Drosophila melanogaster as a Versatile Model Organism in Food and Nutrition Research. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3737-3753. [PMID: 29619822 DOI: 10.1021/acs.jafc.7b05900] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Drosophila melanogaster has been widely used in the biological sciences as a model organism. Drosophila has a relatively short life span of 60-80 days, which makes it attractive for life span studies. Moreover, approximately 60% of the fruit fly genes are orthologs to mammals. Thus, metabolic and signal transduction pathways are highly conserved. Maintenance and reproduction of Drosophila do not require sophisticated equipment and are rather cheap. Furthermore, there are fewer ethical issues involved in experimental Drosophila research compared with studies in laboratory rodents, such as rats and mice. Drosophila is increasingly recognized as a model organism in food and nutrition research. Drosophila is often fed complex solid diets based on yeast, corn, and agar. There are also so-called holidic diets available that are defined in terms of their amino acid, fatty acid, carbohydrate, vitamin, mineral, and trace element compositions. Feed intake, body composition, locomotor activity, intestinal barrier function, microbiota, cognition, fertility, aging, and life span can be systematically determined in Drosophila in response to dietary factors. Furthermore, diet-induced pathophysiological mechanisms including inflammation and stress responses may be evaluated in the fly under defined experimental conditions. Here, we critically evaluate Drosophila melanogaster as a versatile model organism in experimental food and nutrition research, review the corresponding data in the literature, and make suggestions for future directions of research.
Collapse
Affiliation(s)
- Stefanie Staats
- Institute of Human Nutrition and Food Science , University of Kiel , Hermann-Rodewald-Strasse 6 , D-24118 Kiel , Germany
| | - Kai Lüersen
- Institute of Human Nutrition and Food Science , University of Kiel , Hermann-Rodewald-Strasse 6 , D-24118 Kiel , Germany
| | - Anika E Wagner
- Institute of Nutritional Medicine , University of Lübeck , Ratzeburger Allee 160 , D-23538 Lübeck , Germany
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science , University of Kiel , Hermann-Rodewald-Strasse 6 , D-24118 Kiel , Germany
| |
Collapse
|
14
|
Guo XX, An S, Yang Y, Liu Y, Hao Q, Tang T, Xu TR. Emerging role of the Jun N-terminal kinase interactome in human health. Cell Biol Int 2018; 42:756-768. [DOI: 10.1002/cbin.10948] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/03/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Xiao-Xi Guo
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Su An
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Yang Yang
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Ying Liu
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Qian Hao
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Tao Tang
- Faculty of Medicine; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Tian-Rui Xu
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| |
Collapse
|
15
|
Moskalev A, Shaposhnikov M, Zemskaya N, Belyi A, Dobrovolskaya E, Patova A, Guvatova Z, Lukyanova E, Snezhkina A, Kudryavtseva A. Transcriptome analysis reveals mechanisms of geroprotective effects of fucoxanthin in Drosophila. BMC Genomics 2018; 19:77. [PMID: 29504896 PMCID: PMC5836829 DOI: 10.1186/s12864-018-4471-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background We have previously showed that the carotenoid fucoxanthin can increase the lifespan in Drosophila melanogaster and Caenorhabditis elegans. However, the molecular mechanisms of the geroprotective effect of fucoxanthin have not been studied so far. Results Here, we studied the effects of fucoxanthin on the Drosophila aging process at the molecular and the whole organism levels. At the organismal level, fucoxanthin increased the median lifespan and had a positive effect on fecundity, fertility, intestinal barrier function, and nighttime sleep. Transcriptome analysis revealed 57 differentially expressed genes involved in 17 KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways. Among the most represented molecular pathways induced by fucoxanthin, a significant portion is related to longevity, including MAPK, mTOR, Wnt, Notch, and Hippo signaling pathways, autophagy, translation, glycolysis, oxidative phosphorylation, apoptosis, immune response, neurogenesis, sleep, and response to DNA damage. Conclusions Life-extending effects of fucoxanthin are associated with differential expression of longevity-associated genes. Electronic supplementary material The online version of this article (10.1186/s12864-018-4471-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexey Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia. .,Institute of Biology of Komi Science Center of Ural Branch of Russian Academy of Sciences, Syktyvkar, Russia.
| | - Mikhail Shaposhnikov
- Institute of Biology of Komi Science Center of Ural Branch of Russian Academy of Sciences, Syktyvkar, Russia
| | - Nadezhda Zemskaya
- Institute of Biology of Komi Science Center of Ural Branch of Russian Academy of Sciences, Syktyvkar, Russia
| | - Alexey Belyi
- Institute of Biology of Komi Science Center of Ural Branch of Russian Academy of Sciences, Syktyvkar, Russia
| | - Eugenia Dobrovolskaya
- Institute of Biology of Komi Science Center of Ural Branch of Russian Academy of Sciences, Syktyvkar, Russia
| | - Anna Patova
- Institute of Biology of Komi Science Center of Ural Branch of Russian Academy of Sciences, Syktyvkar, Russia
| | - Zulfiya Guvatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Elena Lukyanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anastasiya Snezhkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anna Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
16
|
Delanoue R, Meschi E, Agrawal N, Mauri A, Tsatskis Y, McNeill H, Léopold P. Drosophila insulin release is triggered by adipose Stunted ligand to brain Methuselah receptor. Science 2017; 353:1553-1556. [PMID: 27708106 DOI: 10.1126/science.aaf8430] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 08/24/2016] [Indexed: 12/31/2022]
Abstract
Animals adapt their growth rate and body size to available nutrients by a general modulation of insulin-insulin-like growth factor signaling. In Drosophila, dietary amino acids promote the release in the hemolymph of brain insulin-like peptides (Dilps), which in turn activate systemic organ growth. Dilp secretion by insulin-producing cells involves a relay through unknown cytokines produced by fat cells. Here, we identify Methuselah (Mth) as a secretin-incretin receptor subfamily member required in the insulin-producing cells for proper nutrient coupling. We further show, using genetic and ex vivo organ culture experiments, that the Mth ligand Stunted (Sun) is a circulating insulinotropic peptide produced by fat cells. Therefore, Sun and Mth define a new cross-organ circuitry that modulates physiological insulin levels in response to nutrients.
Collapse
Affiliation(s)
- Renald Delanoue
- Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), 06100 Nice, France.
| | - Eleonora Meschi
- Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), 06100 Nice, France
| | - Neha Agrawal
- Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), 06100 Nice, France
| | - Alessandra Mauri
- Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), 06100 Nice, France
| | - Yonit Tsatskis
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Helen McNeill
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Pierre Léopold
- Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), 06100 Nice, France.
| |
Collapse
|
17
|
Friedrich M, Jones JW. Gene Ages, Nomenclatures, and Functional Diversification of the Methuselah/Methuselah-Like GPCR Family in Drosophila and Tribolium. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 326:453-463. [PMID: 28074535 DOI: 10.1002/jez.b.22721] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/14/2016] [Accepted: 12/02/2016] [Indexed: 12/31/2022]
Abstract
Affecting lifespan regulation and oxidative stress resistance, the G-protein coupled receptor (GPCR) gene methuselah (mth) plays important roles in the life history of Drosophila melanogaster. Substantial progress has been made in elucidating the molecular pathways by which mth affects these traits, yet conflicting ideas exist as to how old these genetic interactions are as well as how old the mth gene itself is. Root to these issues is the complex gene family history of the Mth/Mthl GPCR family, which experienced independent expansions in a variety of animal clades, leading to at least six subfamilies in insects. Within insects, drosophilid flies stand out by possessing up to three times more Mth/Mthl receptors due to the expansion of a single subfamily, the mth superclade subfamily, which contains an even younger subfamily introduced here as the melanogaster subgroup subfamily. As a result, most of the 16 Mth/Mthl receptors of D. melanogaster are characterized by n:1 orthology relationships to singleton mth superclade homologs in nondrosophilid species. This challenge is exacerbated by the inconsistent naming of Mth/Mthl orthologs across species. To consolidate this situation, we review established ortholog relationships among insect Mth/Mthl receptors, clarify the gene nomenclatures in two important satellite model species, the fruit fly relative D. virilis and the red flour beetle Tribolium castaneum, and discuss the genetic and functional evolution of the D. melanogaster Mth GPCR.
Collapse
Affiliation(s)
- Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, Michigan.,Department of Anatomy and Cell Biology, School of Medicine, Wayne State University, Detroit, Michigan
| | | |
Collapse
|
18
|
Kasumovic MM, Chen Z, Wilkins MR. Australian black field crickets show changes in neural gene expression associated with socially-induced morphological, life-history, and behavioral plasticity. BMC Genomics 2016; 17:827. [PMID: 27776492 PMCID: PMC5078956 DOI: 10.1186/s12864-016-3119-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/23/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ecological and evolutionary model organisms have provided extensive insight into the ecological triggers, adaptive benefits, and evolution of life-history driven developmental plasticity. Despite this, we still have a poor understanding of the underlying genetic changes that occur during shifts towards different developmental trajectories. The goal of this study is to determine whether we can identify underlying gene expression patterns that can describe the different life-history trajectories individuals follow in response to social cues of competition. To do this, we use the Australian black field cricket (Teleogryllus commodus), a species with sex-specific developmental trajectories moderated by the density and quality of calls heard during immaturity. In this study, we manipulated the social information males and females could hear by rearing individuals in either calling or silent treatments. We next used RNA-Seq to develop a reference transcriptome to study changes in brain gene expression at two points prior to sexual maturation. RESULTS We show accelerated development in both sexes when exposed to calling; changes were also seen in growth, lifespan, and reproductive effort. Functional relationships between genes and phenotypes were apparent from ontological enrichment analysis. We demonstrate that increased investment towards traits such as growth and reproductive effort were often associated with the expression of a greater number of genes with similar effect, thus providing a suite of candidate genes for future research in this and other invertebrate organisms. CONCLUSIONS Our results provide interesting insight into the genomic underpinnings of developmental plasticity and highlight the potential of a genomic exploration of other evolutionary theories such as condition dependence and sex-specific developmental strategies.
Collapse
Affiliation(s)
- Michael M Kasumovic
- Ecology & Evolution Research Centre, School of Biological, Earth and Environmental Sciences, UNSW, Sydney, Australia.
| | - Zhiliang Chen
- Systems Biology Initiative, UNSW, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, Australia
| | - Marc R Wilkins
- Systems Biology Initiative, UNSW, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, Australia
| |
Collapse
|
19
|
Identification, Characterization and Expression of Methuselah-Like Genes in Dastarcus helophoroides (Coleoptera: Bothrideridae). Genes (Basel) 2016; 7:genes7100091. [PMID: 27775676 PMCID: PMC5083930 DOI: 10.3390/genes7100091] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 10/15/2016] [Accepted: 10/17/2016] [Indexed: 11/24/2022] Open
Abstract
Dastarcus helophoroides, which has a relatively longer lifespan compared to other insects, is one of the most effective natural enemies of many large-body long-horned beetles. Methuselah (Mth) is associated with the lifespan, stress resistance, and reproduction in Drosophila melanogaster, but Mth is not present in non-drosophiline insects. A number of methuselah-like genes (mth-likes, mthls) have been identified in non-drosophiline insects, but it is still unknown whether they are present in Dastarcus helophoroides. We identified three novel mth-like genes in D. helophoroides: mth-like1, mth-like2, and mth-like5, and carried out bioinformatic analysis based on the full-length nucleic acid sequences and deduced amino acid sequences. Real-time quantitative polymerase chain reaction (RT-qPCR) showed variations in expression patterns of mth-like genes in different tissues (highly expressed in reproductive systems) and at different developmental stages, indicating that mth-likes were likely be involved in reproduction and development. The altered mRNA expression in aging adults and under oxidation, high temperature, and starvation stress, indicated that mth-like genes were likely to be involved in aging and the resistance of oxidation, high temperature, and starvation. These results characterize, for the first time, the basic properties of three mth-like genes from D. helophoroides that probably play important roles in development, aging, reproduction, and stress resistance.
Collapse
|
20
|
Murillo-Maldonado JM, Riesgo-Escovar JR. Development and diabetes on the fly. Mech Dev 2016; 144:150-155. [PMID: 27702607 DOI: 10.1016/j.mod.2016.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 09/30/2016] [Accepted: 09/30/2016] [Indexed: 10/20/2022]
Abstract
We review the use of a model organism to study the effects of a slow course, degenerative disease: namely, diabetes mellitus. Development and aging are biological phenomena entailing reproduction, growth, and differentiation, and then decline and progressive loss of functionality leading ultimately to failure and death. It occurs at all biological levels of organization, from molecular interactions to organismal well being and homeostasis. Yet very few models capable of addressing the different levels of complexity in these chronic, developmental phenomena are available to study, and model organisms are an exception and a welcome opportunity for these approaches. Genetic model organisms, like the common fruit fly, Drosophila melanogaster, offer the possibility of studying the panoply of life processes in normal and diseased states like diabetes mellitus, from a plethora of different perspectives. These long-term aspects are now beginning to be characterized.
Collapse
Affiliation(s)
- Juan Manuel Murillo-Maldonado
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Boulevard Juriquilla #3001, Querétaro 76230, Mexico
| | - Juan Rafael Riesgo-Escovar
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Boulevard Juriquilla #3001, Querétaro 76230, Mexico.
| |
Collapse
|
21
|
Sujkowski A, Bazzell B, Carpenter K, Arking R, Wessells RJ. Endurance exercise and selective breeding for longevity extend Drosophila healthspan by overlapping mechanisms. Aging (Albany NY) 2016; 7:535-52. [PMID: 26298685 PMCID: PMC4586100 DOI: 10.18632/aging.100789] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Endurance exercise has emerged as a powerful intervention that promotes healthy aging by maintaining the functional capacity of critical organ systems. In addition, long-term exercise reduces the incidence of age-related diseases in humans and in model organisms. Despite these evident benefits, the genetic pathways required for exercise interventions to achieve these effects are still relatively poorly understood. Here, we compare gene expression changes during endurance training in Drosophila melanogaster to gene expression changes during selective breeding for longevity. Microarrays indicate that 65% of gene expression changes found in flies selectively bred for longevity are also found in flies subjected to three weeks of exercise training. We find that both selective breeding and endurance training increase endurance, cardiac performance, running speed, flying height, and levels of autophagy in adipose tissue. Both interventions generally upregulate stress defense, folate metabolism, and lipase activity, while downregulating carbohydrate metabolism and odorant receptor expression. Several members of the methuselah-like (mthl) gene family are downregulated by both interventions. Knockdown of mthl-3 was sufficient to provide extension of negative geotaxis behavior, endurance and cardiac stress resistance. These results provide support for endurance exercise as a broadly acting anti-aging intervention and confirm that exercise training acts in part by targeting longevity assurance pathways.
Collapse
Affiliation(s)
- Alyson Sujkowski
- Department of Physiology, Wayne State School of Medicine, Detroit, MI 48201, USA
| | - Brian Bazzell
- Department of Physiology, Wayne State School of Medicine, Detroit, MI 48201, USA
| | - Kylie Carpenter
- Department of Physiology, Wayne State School of Medicine, Detroit, MI 48201, USA
| | - Robert Arking
- Department of Biological Science, Wayne State University, Detroit, MI 48201, USA
| | - Robert J Wessells
- Department of Physiology, Wayne State School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
22
|
Lees H, Walters H, Cox LS. Animal and human models to understand ageing. Maturitas 2016; 93:18-27. [PMID: 27372369 DOI: 10.1016/j.maturitas.2016.06.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 12/12/2022]
Abstract
Human ageing is the gradual decline in organ and tissue function with increasing chronological time, leading eventually to loss of function and death. To study the processes involved over research-relevant timescales requires the use of accessible model systems that share significant similarities with humans. In this review, we assess the usefulness of various models, including unicellular yeasts, invertebrate worms and flies, mice and primates including humans, and highlight the benefits and possible drawbacks of each model system in its ability to illuminate human ageing mechanisms. We describe the strong evolutionary conservation of molecular pathways that govern cell responses to extracellular and intracellular signals and which are strongly implicated in ageing. Such pathways centre around insulin-like growth factor signalling and integration of stress and nutritional signals through mTOR kinase. The process of cellular senescence is evaluated as a possible underlying cause for many of the frailties and diseases of human ageing. Also considered is ageing arising from systemic changes that cannot be modelled in lower organisms and instead require studies either in small mammals or in primates. We also touch briefly on novel therapeutic options arising from a better understanding of the biology of ageing.
Collapse
Affiliation(s)
- Hayley Lees
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Hannah Walters
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Lynne S Cox
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
23
|
Miller PB, Obrik-Uloho OT, Phan MH, Medrano CL, Renier JS, Thayer JL, Wiessner G, Bloch Qazi MC. The song of the old mother: reproductive senescence in female drosophila. Fly (Austin) 2015; 8:127-39. [PMID: 25523082 DOI: 10.4161/19336934.2014.969144] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Among animals with multiple reproductive episodes, changes in adult condition over time can have profound effects on lifetime reproductive fitness and offspring performance. The changes in condition associated with senescence can be particularly acute for females who support reproductive processes from oogenesis through fertilization. The pomace fly Drosophila melanogaster is a well-established model system for exploring the physiology of reproduction and senescence. In this review, we describe how increasing maternal age in Drosophila affects reproductive fitness and offspring performance as well as the genetic foundation of these effects. Describing the processes underlying female reproductive senescence helps us understand diverse phenomena including population demographics, condition-dependent selection, sexual conflict, and transgenerational effects of maternal condition on offspring fitness. Understanding the genetic basis of reproductive senescence clarifies the nature of life-history trade-offs as well as potential ways to augment and/or limit female fertility in a variety of organisms.
Collapse
Affiliation(s)
- Paige B Miller
- a Department of Biology ; Gustavus Adolphus College ; St Peter , MN USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Pandey A, Khatoon R, Saini S, Vimal D, Patel DK, Narayan G, Chowdhuri DK. Efficacy of methuselah gene mutation toward tolerance of dichlorvos exposure in Drosophila melanogaster. Free Radic Biol Med 2015; 83:54-65. [PMID: 25746179 DOI: 10.1016/j.freeradbiomed.2015.02.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 02/11/2015] [Accepted: 02/12/2015] [Indexed: 11/19/2022]
Abstract
Adverse reports on the exposure of organisms to dichlorvos (DDVP; an organophosphate insecticide) necessitate studies of organismal resistance/tolerance by way of pharmacological or genetic means. In the context of genetic modulation, a mutation in methuselah (mth; encodes a class II G-protein-coupled receptor (GPCR)) is reported to extend (~35%) the life span of Drosophila melanogaster and enhance their resistance to oxidative stress induced by paraquat exposure (short term, high level). A lack of studies on organismal tolerance of DDVP by genetic modulation prompted us to examine the protective efficacy of mth mutation in exposed Drosophila. Flies were exposed to 1.5 and 15.0 ng/ml DDVP for 12-48 h to examine oxidative stress endpoints and chemical resistance. After prolonged exposure of flies to DDVP, antioxidant enzyme activities, oxidative stress, glutathione content, and locomotor performance were assayed at various days (0, 10, 20, 30, 40, 50) of age. Flies with the mth mutation (mth(1)) showed improved chemical resistance and rescued redox impairment after acute DDVP exposure. Exposed mth(1) flies exhibited improved life span along with enhanced antioxidant enzyme activities and rescued oxidative perturbations and locomotor insufficiency up to middle age (~20 days) over similarly exposed w(1118) flies. However, at late (≥30 days) age, these benefits were undermined. Further, similarly exposed mth-knockdown flies showed effects similar to those observed in mth(1) flies. This study provides evidence of tolerance in organisms carrying a mth mutation against prolonged DDVP exposure and further warrants examination of similar class II GPCR signaling facets toward better organismal health.
Collapse
Affiliation(s)
- Ashutosh Pandey
- Embryotoxicology Section, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India; Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Rehana Khatoon
- Embryotoxicology Section, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India
| | - Sanjay Saini
- Embryotoxicology Section, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India
| | - Divya Vimal
- Embryotoxicology Section, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, India
| | - Devendra Kumar Patel
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, India; Analytical Chemistry Section, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India
| | - Gopeshwar Narayan
- Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Debapratim Kar Chowdhuri
- Embryotoxicology Section, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, India.
| |
Collapse
|
25
|
A mutation in Drosophila methuselah resists paraquat induced Parkinson-like phenotypes. Neurobiol Aging 2014; 35:2419.e1-2419.e16. [DOI: 10.1016/j.neurobiolaging.2014.04.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 03/14/2014] [Accepted: 04/13/2014] [Indexed: 11/23/2022]
|
26
|
Li C, Zhang Y, Yun X, Wang Y, Sang M, Liu X, Hu X, Li B. Methuselah-like genes affect development, stress resistance, lifespan and reproduction in Tribolium castaneum. INSECT MOLECULAR BIOLOGY 2014; 23:587-597. [PMID: 24924269 DOI: 10.1111/imb.12107] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Methuselah (Mth) is associated with lifespan, stress resistance and reproduction in Drosophila melanogaster, but Mth is not present in nondrosophiline insects. A number of methuselah-likes (mthls) have been identified in nondrosophiline insects, but it is unknown whether the functions of mth are shared by mthls or are divergent from them. Five mthls have been identified in Tribolium castaneum. Although they have different developmental expression patterns, they all enhance resistance to starvation. Only mthl1 and mthl2 enhance resistance to high temperature, whereas mthl4 and mthl5 negatively regulate oxidative stress in T. castaneum. Unlike in the fly with mth mutation, knockdown of mthls, except mthl3, shortens the lifespan of T. castaneum. Moreover, mthl1 and mthl2 are critical for Tribolium development. mthl1 plays important roles in larval and pupal development and adult eclosion, while mthl2 is required for eclosion. Moreover, mthl1 and mthl2 silencing reduces the fertility of T. castaneum, and mthl1 and mthl4 are also essential for embryo development. In conclusion, mthls have a significant effect on insect development, lifespan, stress resistance and reproduction. These results provide experimental evidence for functional divergence among mthls/mth and clues for the signal transduction of Mthls.
Collapse
Affiliation(s)
- Chengjun Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Li C, Wu W, Sang M, Liu X, Hu X, Yun X, Li B. Comparative RNA-sequencing analysis of mthl1 functions and signal transductions in Tribolium castaneum. Gene 2014; 547:310-8. [DOI: 10.1016/j.gene.2014.06.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 06/17/2014] [Accepted: 06/27/2014] [Indexed: 01/20/2023]
|
28
|
|
29
|
Gimenez LE, Vishnivetskiy SA, Gurevich VV. Targeting individual GPCRs with redesigned nonvisual arrestins. Handb Exp Pharmacol 2014; 219:153-70. [PMID: 24292829 DOI: 10.1007/978-3-642-41199-1_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Numerous human diseases are caused by excessive signaling of mutant G protein-coupled receptors (GPCRs) or receptors that are overstimulated due to upstream signaling imbalances. The feasibility of functional compensation by arrestins with enhanced ability to quench receptor signaling was recently tested in the visual system. The results showed that even in this extremely demanding situation of rods that have no ability to phosphorylate rhodopsin, enhanced arrestin improved rod morphology, light sensitivity, survival, and accelerated photoresponse recovery. Structurally distinct enhanced mutants of arrestins that bind phosphorylated and non-phosphorylated active GPCRs with much higher affinity than parental wild-type (WT) proteins have been constructed. These "super-arrestins" are likely to have the power to dampen the signaling by hyperactive GPCRs. However, most cells express 5-20 GPCR subtypes, only one of which would be overactive, while nonvisual arrestins are remarkably promiscuous, binding hundreds of different GPCRs. Thus, to be therapeutically useful, enhanced versions of nonvisual arrestins must be made fairly specific for particular receptors. Recent identification of very few arrestin residues as key receptor discriminators paves the way to the construction of receptor subtype-specific nonvisual arrestins.
Collapse
Affiliation(s)
- Luis E Gimenez
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Avenue, Nashville, TN, 37232, USA,
| | | | | |
Collapse
|
30
|
Araújo AR, Reis M, Rocha H, Aguiar B, Morales-Hojas R, Macedo-Ribeiro S, Fonseca NA, Reboiro-Jato D, Reboiro-Jato M, Fdez-Riverola F, Vieira CP, Vieira J. The Drosophila melanogaster methuselah gene: a novel gene with ancient functions. PLoS One 2013; 8:e63747. [PMID: 23696853 PMCID: PMC3655951 DOI: 10.1371/journal.pone.0063747] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 04/05/2013] [Indexed: 01/10/2023] Open
Abstract
The Drosophila melanogaster G protein-coupled receptor gene, methuselah (mth), has been described as a novel gene that is less than 10 million years old. Nevertheless, it shows a highly specific expression pattern in embryos, larvae, and adults, and has been implicated in larval development, stress resistance, and in the setting of adult lifespan, among others. Although mth belongs to a gene subfamily with 16 members in D. melanogaster, there is no evidence for functional redundancy in this subfamily. Therefore, it is surprising that a novel gene influences so many traits. Here, we explore the alternative hypothesis that mth is an old gene. Under this hypothesis, in species distantly related to D. melanogaster, there should be a gene with features similar to those of mth. By performing detailed phylogenetic, synteny, protein structure, and gene expression analyses we show that the D. virilis GJ12490 gene is the orthologous of mth in species distantly related to D. melanogaster. We also show that, in D. americana (a species of the virilis group of Drosophila), a common amino acid polymorphism at the GJ12490 orthologous gene is significantly associated with developmental time, size, and lifespan differences. Our results imply that GJ12490 orthologous genes are candidates for developmental time and lifespan differences in Drosophila in general.
Collapse
Affiliation(s)
- Ana Rita Araújo
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Micael Reis
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Helder Rocha
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Bruno Aguiar
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Ramiro Morales-Hojas
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Sandra Macedo-Ribeiro
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Nuno A. Fonseca
- Center of Research in Advanced Computing Systems (CRACS-INESC Porto), Universidade do Porto, Porto, Portugal
- EMBL-European Bioinformatics Institute, Hinxton, Cambridge, United Kingdom
| | | | | | | | - Cristina P. Vieira
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Jorge Vieira
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- * E-mail:
| |
Collapse
|