1
|
Jové M, Mota-Martorell N, Fernàndez-Bernal A, Portero-Otin M, Barja G, Pamplona R. Phenotypic molecular features of long-lived animal species. Free Radic Biol Med 2023; 208:728-747. [PMID: 37748717 DOI: 10.1016/j.freeradbiomed.2023.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 09/27/2023]
Abstract
One of the challenges facing science/biology today is uncovering the molecular bases that support and determine animal and human longevity. Nature, in offering a diversity of animal species that differ in longevity by more than 5 orders of magnitude, is the best 'experimental laboratory' to achieve this aim. Mammals, in particular, can differ by more than 200-fold in longevity. For this reason, most of the available evidence on this topic derives from comparative physiology studies. But why can human beings, for instance, reach 120 years whereas rats only last at best 4 years? How does nature change the longevity of species? Longevity is a species-specific feature resulting from an evolutionary process. Long-lived animal species, including humans, show adaptations at all levels of biological organization, from metabolites to genome, supported by signaling and regulatory networks. The structural and functional features that define a long-lived species may suggest that longevity is a programmed biological property.
Collapse
Affiliation(s)
- Mariona Jové
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), University of Lleida (UdL), E25198, Lleida, Spain
| | - Natàlia Mota-Martorell
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), University of Lleida (UdL), E25198, Lleida, Spain
| | - Anna Fernàndez-Bernal
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), University of Lleida (UdL), E25198, Lleida, Spain
| | - Manuel Portero-Otin
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), University of Lleida (UdL), E25198, Lleida, Spain
| | - Gustavo Barja
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid (UCM), E28040, Madrid, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), University of Lleida (UdL), E25198, Lleida, Spain.
| |
Collapse
|
2
|
Istomina AA, Zhukovskaya AF, Mazeika AN, Barsova EA, Chelomin VP, Mazur MA, Elovskaya OA, Mazur AA, Dovzhenko NV, Fedorets YV, Karpenko AA. The Relationship between Lifespan of Marine Bivalves and Their Fatty Acids of Mitochondria Lipids. BIOLOGY 2023; 12:837. [PMID: 37372122 DOI: 10.3390/biology12060837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
Marine bivalves belonging to the Mytilidae and Pectinidae Families were used in this research. The specific objectives of this study were: to determine the Fatty Acids (FAs) of mitochondrial gill membranes in bivalves with different lifespans, belonging to the same family, and to calculate their peroxidation index; to compare the levels of ROS generation, malondialdehyde (MDA), and protein carbonyls in the mitochondria of gills, in vitro, during the initiation of free-radical oxation; to investigate whether the FAs of mitochondria gill membranes affect the degree of their oxidative damage and the maximum lifespan of species (MLS). The qualitative membrane lipid composition was uniform in the studied marine bivalves, regardless of their MLS. In terms of the quantitative content of individual FAs, the mitochondrial lipids differed significantly. It is shown that lipid matrix membranes of the mitochondria of long-lived species are less sensitive to in vitro-initiated peroxidation compared with the medium and short-lived species. The differences in MLS are related to the peculiarities of FAs of mitochondrial membrane lipids.
Collapse
Affiliation(s)
| | - Avianna Fayazovna Zhukovskaya
- Il'ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | | | | | - Victor Pavlovich Chelomin
- Il'ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | - Marina Alexandrovna Mazur
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | - Olesya Alexandrovna Elovskaya
- Il'ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | - Andrey Alexandrovich Mazur
- Il'ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | | | - Yuliya Vladimirovna Fedorets
- Il'ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | - Alexander Alexandrovich Karpenko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| |
Collapse
|
3
|
André C, Turgeon S, Peyrot C, Wilkinson KJ, Auclair J, Ménard N, Gagné F. Comparative toxicity of micro and nanopolystyrene particles in Mya arenaria clams. MARINE POLLUTION BULLETIN 2023; 192:115052. [PMID: 37257412 DOI: 10.1016/j.marpolbul.2023.115052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/03/2023] [Accepted: 05/07/2023] [Indexed: 06/02/2023]
Abstract
The contamination of coastal marine environments by plastics of sizes ranging from mm down to the nanoscale (nm) could pose a threat to aquatic organisms. The purpose of this study was to examine the toxicity of polystyrene nanoparticles (PsNP) of various sizes (50, 100 and 1000 nm) to the marine clams Mya arenaria. Clams were exposed to concentrations of PsPP for 7 days at 15 °C and analyzed for uptake/transformation, changes in energy metabolism, oxidative stress, genotoxicity and circadian neural activity. The results revealed that PsNP accumulated in the digestive gland was 50 nm > 100 nm > 1000 nm. All sized increased oxidative stress as follows: 50 nm (peroxidase, antioxidant potential and LPO), 100 nm (LPO and antioxidant potential) and 1000 nm (LPO). Tissue damage was also size dependent by increasing genotoxicity. The 100 nm PsPP altered the levels of the circadian metabolite melatonin. We conclude that the toxicity of plastics is size dependent in clams.
Collapse
Affiliation(s)
- Chantale André
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 105 McGill, Montréal, QC H2Y 2E7, Canada
| | - Samuel Turgeon
- Parks Canada, Saguenay-St. Lawrence Marine Park, 182, Rue de l'Église, Tadoussac, QC G0T 2A0, Canada
| | - Caroline Peyrot
- Chemistry Department, Montreal University, Montréal, Québec H2V 2B8, Canada
| | | | - Joëlle Auclair
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 105 McGill, Montréal, QC H2Y 2E7, Canada
| | - Nadia Ménard
- Parks Canada, Saguenay-St. Lawrence Marine Park, 182, Rue de l'Église, Tadoussac, QC G0T 2A0, Canada
| | - François Gagné
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 105 McGill, Montréal, QC H2Y 2E7, Canada.
| |
Collapse
|
4
|
Gómez J, Mota-Martorell N, Jové M, Pamplona R, Barja G. Mitochondrial ROS production, oxidative stress and aging within and between species: Evidences and recent advances on this aging effector. Exp Gerontol 2023; 174:112134. [PMID: 36849000 DOI: 10.1016/j.exger.2023.112134] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/01/2023]
Abstract
Mitochondria play a wide diversity of roles in cell physiology and have a key functional implication in cell bioenergetics and biology of free radicals. As the main cellular source of oxygen radicals, mitochondria have been postulated as the mediators of the cellular decline associated with the biological aging. Recent evidences have shown that mitochondrial free radical production is a highly regulated mechanism contributing to the biological determination of longevity which is species-specific. This mitochondrial free radical generation rate induces a diversity of adaptive responses and derived molecular damage to cell components, highlighting mitochondrial DNA damage, with biological consequences that influence the rate of aging of a given animal species. In this review, we explore the idea that mitochondria play a fundamental role in the determination of animal longevity. Once the basic mechanisms are discerned, molecular approaches to counter aging may be designed and developed to prevent or reverse functional decline, and to modify longevity.
Collapse
Affiliation(s)
- José Gómez
- Department of Biology and Geology, Physics and Inorganic Chemistry, ESCET, Rey Juan Carlos University, E28933 Móstoles, Madrid, Spain
| | - Natàlia Mota-Martorell
- Department of Experimental Medicine, University of Lleida (UdL), Lleida Biomedical Research Institute (IRBLleida), E25198 Lleida, Spain
| | - Mariona Jové
- Department of Experimental Medicine, University of Lleida (UdL), Lleida Biomedical Research Institute (IRBLleida), E25198 Lleida, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, University of Lleida (UdL), Lleida Biomedical Research Institute (IRBLleida), E25198 Lleida, Spain.
| | - Gustavo Barja
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid (UCM), E28040 Madrid, Spain.
| |
Collapse
|
5
|
Munro D, Rodríguez E, Blier PU. The longest-lived metazoan, Arctica islandica, exhibits high mitochondrial H 2O 2 removal capacities. Mitochondrion 2023; 68:81-86. [PMID: 36427759 DOI: 10.1016/j.mito.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 10/27/2022] [Accepted: 11/10/2022] [Indexed: 11/23/2022]
Abstract
A greater capacity of endogenous matrix antioxidants has recently been hypothesized to characterize mitochondria of long-lived species, curbing bursts of reactive oxygen species (ROS) generated in this organelle. Evidence for this has been obtained from studies comparing the long-lived naked mole rat to laboratory mice. We tested this hypothesis by comparing the longest-lived metazoan, the marine bivalve Arctica islandica (MLSP = 507 y), with shorter-lived and evolutionarily related species. We used a recently developed fluorescent technique to assess mantle and gill tissue mitochondria's capacity to consume hydrogen peroxide (H2O2) in multiple physiological states ex vivo. Depending on the type of respiratory substrate provided, mitochondria of Arctica islandica could consume between 3 and 14 times more H2O2 than shorter-lived species. These findings support the contention that a greater capacity for the elimination of ROS characterizes long-lived species, a novel property of mitochondria thus far demonstrated in two key biogerontological models from distant evolutionary lineages.
Collapse
Affiliation(s)
- Daniel Munro
- Département de Biologie, Université du Québec, Rimouski, Québec, Canada
| | - Enrique Rodríguez
- Département de Biologie, Université du Québec, Rimouski, Québec, Canada; Research Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Pierre U Blier
- Département de Biologie, Université du Québec, Rimouski, Québec, Canada.
| |
Collapse
|
6
|
Salmón P, Millet C, Selman C, Monaghan P, Dawson NJ. Tissue-specific reductions in mitochondrial efficiency and increased ROS release rates during ageing in zebra finches, Taeniopygia guttata. GeroScience 2022; 45:265-276. [PMID: 35986126 PMCID: PMC9886749 DOI: 10.1007/s11357-022-00624-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/11/2022] [Indexed: 02/03/2023] Open
Abstract
Mitochondrial dysfunction and oxidative damage have long been suggested as critically important mechanisms underlying the ageing process in animals. However, conflicting data exist on whether this involves increased production of mitochondrial reactive oxygen species (ROS) during ageing. We employed high-resolution respirometry and fluorometry on flight muscle (pectoralis major) and liver mitochondria to simultaneously examine mitochondrial function and ROS (H2O2) release rates in young (3 months) and old (4 years) zebra finches (Taeniopygia guttata). Respiratory capacities for oxidative phosphorylation did not differ between the two age groups in either tissue. Respiratory control ratios (RCR) of liver mitochondria also did not differ between the age classes. However, RCR in muscle mitochondria was 55% lower in old relative to young birds, suggesting that muscle mitochondria in older individuals are less efficient. Interestingly, this observed reduction in muscle RCR was driven almost entirely by higher mitochondrial LEAK-state respiration. Maximum mitochondrial ROS release rates were found to be greater in both flight muscle (1.3-fold) and the liver (1.9-fold) of old birds. However, while maximum ROS (H2O2) release rates from mitochondria increased with age across both liver and muscle tissues, the liver demonstrated a proportionally greater age-related increase in ROS release than muscle. This difference in age-related increases in ROS release rates between muscle and liver tissues may be due to increased mitochondrial leakiness in the muscle, but not the liver, of older birds. This suggests that age-related changes in cellular function seem to occur in a tissue-specific manner in zebra finches, with flight muscle exhibiting signs of minimising age-related increase in ROS release, potentially to reduce damage to this crucial tissue in older individuals.
Collapse
Affiliation(s)
- Pablo Salmón
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK.
| | - Caroline Millet
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ UK
| | - Colin Selman
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ UK
| | - Pat Monaghan
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ UK
| | - Neal J. Dawson
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ UK
| |
Collapse
|
7
|
Milbergue MS, Vézina F, Desrosiers V, Blier PU. How does mitochondrial function relate to thermogenic capacity and basal metabolic rate in small birds? J Exp Biol 2022; 225:275832. [PMID: 35762381 DOI: 10.1242/jeb.242612] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 01/24/2022] [Indexed: 11/20/2022]
Abstract
We investigated the role of mitochondrial function in the avian thermoregulatory response to a cold environment. Using black-capped chickadees (Poecile atricapillus) acclimated to cold (-10°C) and thermoneutral (27°C) temperatures, we expected to observe an upregulation of pectoralis muscle and liver respiratory capacity that would be visible in mitochondrial adjustments in cold-acclimated birds. We also predicted that these adjustments would correlate with thermogenic capacity (Msum) and basal metabolic rate (BMR). Using tissue high-resolution respirometry, mitochondrial performance was measured as respiration rate triggered by proton leak and the activity of complex I (OXPHOSCI) and complex I+II (OXPHOSCI+CII) in the liver and pectoralis muscle. The activity of citrate synthase (CS) and cytochrome c oxidase (CCO) was also used as a marker of mitochondrial density. We found 20% higher total CS activity in the whole pectoralis muscle and 39% higher total CCO activity in the whole liver of cold-acclimated chickadees relative to that of birds kept at thermoneutrality. This indicates that cold acclimation increased overall aerobic capacity of these tissues. Msum correlated positively with mitochondrial proton leak in the muscle of cold-acclimated birds while BMR correlated with OXPHOSCI in the liver with a pattern that differed between treatments. Consequently, this study revealed a divergence in mitochondrial metabolism between thermal acclimation states in birds. Some functions of the mitochondria covary with thermogenic capacity and basal maintenance costs in patterns that are dependent on temperature and body mass.
Collapse
Affiliation(s)
- Myriam S Milbergue
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, QC, Canada, G5L 3A1.,Groupe de Recherche sur les Environnements Nordique BORÉAS
| | - François Vézina
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, QC, Canada, G5L 3A1.,Groupe de Recherche sur les Environnements Nordique BORÉAS.,Centre d'Études Nordiques
| | | | - Pierre U Blier
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, QC, Canada, G5L 3A1.,Groupe de Recherche sur les Environnements Nordique BORÉAS.,Centre de la Science de la Biodiversité du Québec, Canada
| |
Collapse
|
8
|
Lemieux H, Blier PU. Exploring Thermal Sensitivities and Adaptations of Oxidative Phosphorylation Pathways. Metabolites 2022; 12:metabo12040360. [PMID: 35448547 PMCID: PMC9025460 DOI: 10.3390/metabo12040360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/20/2022] Open
Abstract
Temperature shifts are a major challenge to animals; they drive adaptations in organisms and species, and affect all physiological functions in ectothermic organisms. Understanding the origin and mechanisms of these adaptations is critical for determining whether ectothermic organisms will be able to survive when faced with global climate change. Mitochondrial oxidative phosphorylation is thought to be an important metabolic player in this regard, since the capacity of the mitochondria to produce energy greatly varies according to temperature. However, organism survival and fitness depend not only on how much energy is produced, but, more precisely, on how oxidative phosphorylation is affected and which step of the process dictates thermal sensitivity. These questions need to be addressed from a new perspective involving a complex view of mitochondrial oxidative phosphorylation and its related pathways. In this review, we examine the effect of temperature on the commonly measured pathways, but mainly focus on the potential impact of lesser-studied pathways and related steps, including the electron-transferring flavoprotein pathway, glycerophosphate dehydrogenase, dihydroorotate dehydrogenase, choline dehydrogenase, proline dehydrogenase, and sulfide:quinone oxidoreductase. Our objective is to reveal new avenues of research that can address the impact of temperature on oxidative phosphorylation in all its complexity to better portray the limitations and the potential adaptations of aerobic metabolism.
Collapse
Affiliation(s)
- Hélène Lemieux
- Faculty Saint-Jean, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6C 4G9, Canada
- Correspondence: (H.L.); (P.U.B.)
| | - Pierre U. Blier
- Department Biologie, Université du Québec à Rimouski, Rimouski, QC G5L 3A1, Canada
- Correspondence: (H.L.); (P.U.B.)
| |
Collapse
|
9
|
Rodríguez E, Radke A, Hagen TM, Blier PU. Supercomplex organization of the electron transfer system in marine bivalves, a model of extreme longevity. J Gerontol A Biol Sci Med Sci 2021; 77:283-290. [PMID: 34871395 DOI: 10.1093/gerona/glab363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Indexed: 11/14/2022] Open
Abstract
The mitochondrial oxidative stress theory of aging (MOSTA) suggests that the organelle's decay contributes to the aging phenotype via exacerbated oxidative stress, loss of organ coordination and energetics, cellular integrity and activity of the mitochondrial electron transfer system (ETS). Recent advances in understanding the structure of the ETS show that the enzymatic complexes responsible for oxidative phosphorylation are arranged in supramolecular structures called supercomplexes that lose organization during aging. Their exact role and universality among organisms are still under debate. Here, we take advantage of marine bivalves as an aging model to compare the structure of the ETS among species ranging from 28 to 507 years in maximal lifespan. Our results show that regardless of lifespan, the bivalve ETS is arrayed as a set of supercomplexes. However, bivalve species display varying degrees ETS supramolecular organization with the highest supercomplex structures found in A. islandica, the longest-lived of the bivalve species under study. We discuss this comparative model in light of differences in the nature and stoichiometry of these complexes, and highlight the potential link between the complexity of these superstructures and longer lifespans.
Collapse
Affiliation(s)
- Enrique Rodríguez
- Département de Biologie, Université du Québec, 300 des Ursulines, Rimouski, Québec, Canada
| | - Amanda Radke
- Department of Biochemistry and Biophysics and the Linus Pauling Institute, Oregon State University 335 Linus Pauling Science Center Corvallis, OR 97331, USA
| | - Tory M Hagen
- Department of Biochemistry and Biophysics and the Linus Pauling Institute, Oregon State University 335 Linus Pauling Science Center Corvallis, OR 97331, USA
| | - Pierre U Blier
- Département de Biologie, Université du Québec, 300 des Ursulines, Rimouski, Québec, Canada
| |
Collapse
|
10
|
André C, Bibeault JF, Gagné F. Identifying physiological traits of species resilience against environmental stress in freshwater mussels. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1862-1871. [PMID: 34379242 DOI: 10.1007/s10646-021-02457-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
The advent of global warming events on already stressed organisms by pollution and loss of habitats raised concerns on the sustainability of local mussel populations. The purpose of this study was to study the physiology 6 commonly found species of freshwater mussels in the attempt to identify species at risk from global warming and pollution. The following species were examined for mass/length, energy metabolism, air survival and lipid peroxidation (LPO): Elliptio complanata (EC), Eurynia dilatata (ED), Pyganodon cataracta (PC), Pyganodon species (Psp), Lasmigona costata (LC) and Dreissena bugenis (DB). The data revealed that the estimated longevity of each species was associated with mussel mass, mitochondria electron transport (MET), temperature-dependent MET but negatively related with mitochondria levels in LPO and the colonization potential. The colonization potential was derived from the scaling of MET activity and mass, which confirmed that DB mussels are more invasive than the other species followed by Psp. Resistance to air emersion was significantly associated with longevity, mass and length and mitochondria LPO. Hence, organisms with low lifetimes, mass or length with high LPO are less able to survive for longer periods in air. In conclusion, longevity and air survival was positively associated with mass and energy metabolism but negatively with oxidative damage. This study proposes key markers in identifying species more at risk to contaminant stress, decreased water levels and global warming.
Collapse
Affiliation(s)
- C André
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 105 McGill, Montréal, QC, Canada
| | - J F Bibeault
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 105 McGill, Montréal, QC, Canada
| | - F Gagné
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 105 McGill, Montréal, QC, Canada.
| |
Collapse
|
11
|
Steffen JBM, Haider F, Sokolov EP, Bock C, Sokolova IM. Mitochondrial capacity and reactive oxygen species production during hypoxia and reoxygenation in the ocean quahog, Arctica islandica. J Exp Biol 2021; 224:272605. [PMID: 34697625 DOI: 10.1242/jeb.243082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/06/2021] [Indexed: 11/20/2022]
Abstract
Oxygen fluctuations are common in marine waters, and hypoxia-reoxygenation (H-R) stress can negatively affect mitochondrial metabolism. The long-lived ocean quahog, Arctica islandica, is known for its hypoxia tolerance associated with metabolic rate depression, yet the mechanisms that sustain mitochondrial function during oxygen fluctuations are not well understood. We used top-down metabolic control analysis (MCA) to determine aerobic capacity and control over oxygen flux in the mitochondria of quahogs exposed to short-term hypoxia (24 h <0.01% O2) and subsequent reoxygenation (1.5 h 21% O2) compared with normoxic control animals (21% O2). We demonstrated that flux capacity of the substrate oxidation and proton leak subsystems were not affected by hypoxia, while the capacity of the phosphorylation subsystem was enhanced during hypoxia associated with a depolarization of the mitochondrial membrane. Reoxygenation decreased the oxygen flux capacity of all three mitochondrial subsystems. Control over oxidative phosphorylation (OXPHOS) respiration was mostly exerted by substrate oxidation regardless of H-R stress, whereas control by the proton leak subsystem of LEAK respiration increased during hypoxia and returned to normoxic levels during reoxygenation. During hypoxia, reactive oxygen species (ROS) efflux was elevated in the LEAK state, whereas it was suppressed in the OXPHOS state. Mitochondrial ROS efflux returned to normoxic control levels during reoxygenation. Thus, mitochondria of A. islandica appear robust to hypoxia by maintaining stable substrate oxidation and upregulating phosphorylation capacity, but remain sensitive to reoxygenation. This mitochondrial phenotype might reflect adaptation of A. islandica to environments with unpredictable oxygen fluctuations and its behavioural preference for low oxygen levels.
Collapse
Affiliation(s)
- Jennifer B M Steffen
- Department of Marine Biology, Institute of Biological Sciences, University of Rostock, 18059 Rostock, Germany
| | - Fouzia Haider
- Department of Marine Biology, Institute of Biological Sciences, University of Rostock, 18059 Rostock, Germany
| | - Eugene P Sokolov
- Leibniz Institute for Baltic Research, Leibniz Science Campus Phosphorus Research Rostock, Warnemünde, 18119 Rostock, Germany
| | - Christian Bock
- Integrative Ecophysiology, Alfred-Wegener-Institute Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
| | - Inna M Sokolova
- Department of Marine Biology, Institute of Biological Sciences, University of Rostock, 18059 Rostock, Germany.,Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, 18059 Rostock, Germany
| |
Collapse
|
12
|
Fodor I, Svigruha R, Kemenes G, Kemenes I, Pirger Z. The Great Pond Snail (Lymnaea stagnalis) as a Model of Aging and Age-Related Memory Impairment: An Overview. J Gerontol A Biol Sci Med Sci 2021; 76:975-982. [PMID: 33453110 DOI: 10.1093/gerona/glab014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Indexed: 12/22/2022] Open
Abstract
With the increase of life span, normal aging and age-related memory decline are affecting an increasing number of people; however, many aspects of these processes are still not fully understood. Although vertebrate models have provided considerable insights into the molecular and electrophysiological changes associated with brain aging, invertebrates, including the widely recognized molluscan model organism, the great pond snail (Lymnaea stagnalis), have proven to be extremely useful for studying mechanisms of aging at the level of identified individual neurons and well-defined circuits. Its numerically simpler nervous system, well-characterized life cycle, and relatively long life span make it an ideal organism to study age-related changes in the nervous system. Here, we provide an overview of age-related studies on L. stagnalis and showcase this species as a contemporary choice for modeling the molecular, cellular, circuit, and behavioral mechanisms of aging and age-related memory impairment.
Collapse
Affiliation(s)
- István Fodor
- NAP Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, Centre for Ecological Research, Tihany, Hungary
| | - Réka Svigruha
- NAP Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, Centre for Ecological Research, Tihany, Hungary
| | - György Kemenes
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK
| | - Ildikó Kemenes
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK
| | - Zsolt Pirger
- NAP Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, Centre for Ecological Research, Tihany, Hungary
| |
Collapse
|
13
|
Hraoui G, Breton S, Miron G, Boudreau LH, Hunter-Manseau F, Pichaud N. Mitochondrial responses towards intermittent heat shocks in the eastern oyster, Crassostrea virginica. J Exp Biol 2021; 224:272029. [PMID: 34401903 DOI: 10.1242/jeb.242745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022]
Abstract
Frequent heat waves caused by climate change can give rise to physiological stress in many animals, particularly in sessile ectotherms such as bivalves. Most studies characterizing thermal stress in bivalves focus on evaluating the responses to a single stress event. This does not accurately reflect the reality faced by bivalves, which are often subject to intermittent heat waves. Here, we investigated the effect of intermittent heat stress on mitochondrial functions of the eastern oyster, Crassostrea virginica, which play a key role in setting the thermal tolerance of ectotherms. Specifically, we measured changes in mitochondrial oxygen consumption and H2O2 emission rates before, during and after intermittent 7.5°C heat shocks in oysters acclimated to 15 and 22.5°C. Our results showed that oxygen consumption was impaired following the first heat shock at both acclimation temperatures. After the second heat shock, results for oysters acclimated to 15°C indicated a return to normal. However, oysters acclimated to 22.5°C struggled more with the compounding effects of intermittent heat shocks as denoted by an increased contribution of FAD-linked substrates to mitochondrial respiration as well as high levels of H2O2 emission rates. However, both acclimated populations showed signs of potential recovery 10 days after the second heat shock, reflecting a surprising resilience to heat waves by C. virginica. Thus, this study highlights the important role of acclimation in the oyster's capacity to weather intermittent heat shock.
Collapse
Affiliation(s)
- Georges Hraoui
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC, Canada, H2X 1Y4.,Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada, H2V 0B3
| | - Sophie Breton
- Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada, H2V 0B3
| | - Gilles Miron
- Department of Biology, Université de Moncton, Moncton, NB, Canada, E1A 3E9
| | - Luc H Boudreau
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada, E1A 3E9.,New Brunswick Centre for Precision Medicine (NBCPM), Moncton, NB, Canada, E1C 8X3
| | - Florence Hunter-Manseau
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada, E1A 3E9.,New Brunswick Centre for Precision Medicine (NBCPM), Moncton, NB, Canada, E1C 8X3
| | - Nicolas Pichaud
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada, E1A 3E9.,New Brunswick Centre for Precision Medicine (NBCPM), Moncton, NB, Canada, E1C 8X3
| |
Collapse
|
14
|
Bettinazzi S, Milani L, Blier PU, Breton S. Bioenergetic consequences of sex-specific mitochondrial DNA evolution. Proc Biol Sci 2021; 288:20211585. [PMID: 34403637 PMCID: PMC8370797 DOI: 10.1098/rspb.2021.1585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 07/27/2021] [Indexed: 12/16/2022] Open
Abstract
Doubly uniparental inheritance (DUI) represents a notable exception to the general rule of strict maternal inheritance (SMI) of mitochondria in metazoans. This system entails the coexistence of two mitochondrial lineages (F- and M-type) transmitted separately through oocytes and sperm, thence providing an unprecedented opportunity for the mitochondrial genome to evolve adaptively for male functions. In this study, we explored the impact of a sex-specific mitochondrial evolution upon gamete bioenergetics of DUI and SMI bivalve species, comparing the activity of key enzymes of glycolysis, fermentation, fatty acid metabolism, tricarboxylic acid cycle, oxidative phosphorylation and antioxidant metabolism. Our findings suggest reorganized bioenergetic pathways in DUI gametes compared to SMI gametes. This generally results in a decreased enzymatic capacity in DUI sperm with respect to DUI oocytes, a limitation especially prominent at the terminus of the electron transport system. This bioenergetic remodelling fits a reproductive strategy that does not require high energy input and could potentially link with the preservation of the paternally transmitted mitochondrial genome in DUI species. Whether this phenotype may derive from positive or relaxed selection acting on DUI sperm is still uncertain.
Collapse
Affiliation(s)
- Stefano Bettinazzi
- Département de sciences biologiques, Université de Montréal, Montréal, Quebec, Canada H2V 2S9
| | - Liliana Milani
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna 40126, Italia
| | - Pierre U. Blier
- Département de biologie, Université du Québec à Rimouski, Rimouski, Quebec, Canada G5 L 3A1
| | - Sophie Breton
- Département de sciences biologiques, Université de Montréal, Montréal, Quebec, Canada H2V 2S9
| |
Collapse
|
15
|
Rodríguez E, Hakkou M, Hagen TM, Lemieux H, Blier PU. Divergences in the Control of Mitochondrial Respiration Are Associated With Life-Span Variation in Marine Bivalves. J Gerontol A Biol Sci Med Sci 2021; 76:796-804. [PMID: 33257932 DOI: 10.1093/gerona/glaa301] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Indexed: 12/31/2022] Open
Abstract
The role played by mitochondrial function in the aging process has been a subject of intense debate in the past few decades, as part of the efforts to understand the mechanistic basis of longevity. The mitochondrial oxidative stress theory of aging suggests that a progressive decay of this organelle's function leads to an exacerbation of oxidative stress, with a deleterious impact on mitochondrial structure and DNA, ultimately promoting aging. Among the traits suspected to be associated with longevity is the variation in the regulation of oxidative phosphorylation, potentially affecting the management of oxidative stress. Longitudinal studies using the framework of metabolic control analysis have shown age-related differences in the flux control of respiration, but this approach has seldom been taken on a comparative scale. Using 4 species of marine bivalves exhibiting a large range of maximum life span (from 28 years to 507 years), we report life-span-related differences in flux control at different steps of the electron transfer system. Increased longevity was characterized by a lower control by NADH (complex I-linked) and Succinate (complex II-linked) pathways, while respiration was strongly controlled by complex IV when compared to shorter-lived species. Complex III exerted strong control over respiration in all species. Furthermore, high longevity was associated with higher citrate synthase activity and lower ATP synthase activity. Relieving the control exerted by the electron entry pathways could be advantageous for reaching higher longevity, leading to increased control by complex IV, the final electron acceptor in the electron transfer system.
Collapse
Affiliation(s)
- Enrique Rodríguez
- Département de Biologie, Université du Québec, Rimouski, Québec, Canada
| | - Mohammed Hakkou
- Département de Biologie, Université du Québec, Rimouski, Québec, Canada
| | - Tory M Hagen
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA
| | - Hélène Lemieux
- Faculty Saint-Jean, Department of Medicine, Women and Children Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Pierre U Blier
- Département de Biologie, Université du Québec, Rimouski, Québec, Canada
| |
Collapse
|
16
|
Cormier RJ, Strang R, Menail H, Touaibia M, Pichaud N. Systemic and mitochondrial effects of metabolic inflexibility induced by high fat diet in Drosophila melanogaster. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 133:103556. [PMID: 33626368 DOI: 10.1016/j.ibmb.2021.103556] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Metabolic inflexibility is a condition that occurs following a nutritional stress which causes blunted fuel switching at the mitochondrial level in response to hormonal and cellular signalling. Linked to obesity and obesity related disorders, chronic exposure to a high-fat diet (HFD) in animal models has been extensively used to induce metabolic inflexibility and investigate the development of various metabolic diseases. However, many questions concerning the systemic and mitochondrial responses to metabolic inflexibility remain. In this study, we investigated the global and mitochondrial variations following a 10-day exposure to a HFD in adult Drosophila melanogaster. Our results show that following 10-day exposure to the HFD, mitochondrial respiration rates measured in isolated mitochondria at the level of complex I were decreased. This was associated with increased contributions of non-classical providers of electrons to the electron transport system (ETS) such as the proline dehydrogenase (ProDH) and the mitochondrial glycerol-3-phosphate dehydrogenase (mtG3PDH) alleviating complex I dysfunctions, as well as with increased ROS production per molecule of oxygen consumed. Our results also show an accumulation of metabolites from multiple different metabolic pathways in whole adult Drosophila and a drastic shift in the lipid profile which translated into decreased proportion of saturated and monounsaturated fatty acids combined with an increased proportion of polyunsaturated fatty acids. Thus, our results demonstrate the various responses to the HFD treatment in adult Drosophila melanogaster that are hallmarks of the development of metabolic inflexibility and reinforce this organism as a suitable model for the study of metabolic disorders.
Collapse
Affiliation(s)
- Robert J Cormier
- New Brunswick Centre for Precision Medicine, Moncton, NB, Canada, E1A 3E9; Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada, E1A 3E9
| | - Rebekah Strang
- New Brunswick Centre for Precision Medicine, Moncton, NB, Canada, E1A 3E9; Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada, E1A 3E9
| | - Hichem Menail
- New Brunswick Centre for Precision Medicine, Moncton, NB, Canada, E1A 3E9; Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada, E1A 3E9
| | - Mohamed Touaibia
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada, E1A 3E9
| | - Nicolas Pichaud
- New Brunswick Centre for Precision Medicine, Moncton, NB, Canada, E1A 3E9; Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada, E1A 3E9.
| |
Collapse
|
17
|
Ghiselli F, Iannello M, Piccinini G, Milani L. Bivalve molluscs as model systems for studying mitochondrial biology. Integr Comp Biol 2021; 61:1699-1714. [PMID: 33944910 DOI: 10.1093/icb/icab057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The class Bivalvia is a highly successful and ancient taxon including ∼25,000 living species. During their long evolutionary history bivalves adapted to a wide range of physicochemical conditions, habitats, biological interactions, and feeding habits. Bivalves can have strikingly different size, and despite their apparently simple body plan, they evolved very different shell shapes, and complex anatomic structures. One of the most striking features of this class of animals is their peculiar mitochondrial biology: some bivalves have facultatively anaerobic mitochondria that allow them to survive prolonged periods of anoxia/hypoxia. Moreover, more than 100 species have now been reported showing the only known evolutionarily stable exception to the strictly maternal inheritance of mitochondria in animals, named doubly uniparental inheritance. Mitochondrial activity is fundamental to eukaryotic life, and thanks to their diversity and uncommon features, bivalves represent a great model system to expand our knowledge about mitochondrial biology, so far limited to a few species. We highlight recent works studying mitochondrial biology in bivalves at either genomic or physiological level. A link between these two approaches is still missing, and we believe that an integrated approach and collaborative relationships are the only possible ways to be successful in such endeavour.
Collapse
Affiliation(s)
- Fabrizio Ghiselli
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| | - Mariangela Iannello
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| | - Giovanni Piccinini
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| | - Liliana Milani
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| |
Collapse
|
18
|
Mortz M, Levivier A, Lartillot N, Dufresne F, Blier PU. Long-Lived Species of Bivalves Exhibit Low MT-DNA Substitution Rates. Front Mol Biosci 2021; 8:626042. [PMID: 33791336 PMCID: PMC8005583 DOI: 10.3389/fmolb.2021.626042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/28/2021] [Indexed: 01/21/2023] Open
Abstract
Bivalves represent valuable taxonomic group for aging studies given their wide variation in longevity (from 1–2 to >500 years). It is well known that aging is associated to the maintenance of Reactive Oxygen Species homeostasis and that mitochondria phenotype and genotype dysfunctions accumulation is a hallmark of these processes. Previous studies have shown that mitochondrial DNA mutation rates are linked to lifespan in vertebrate species, but no study has explored this in invertebrates. To this end, we performed a Bayesian Phylogenetic Covariance model of evolution analysis using 12 mitochondrial protein-coding genes of 76 bivalve species. Three life history traits (maximum longevity, generation time and mean temperature tolerance) were tested against 1) synonymous substitution rates (dS), 2) conservative amino acid replacement rates (Kc) and 3) ratios of radical over conservative amino acid replacement rates (Kr/Kc). Our results confirm the already known correlation between longevity and generation time and show, for the first time in an invertebrate class, a significant negative correlation between dS and longevity. This correlation was not as strong when generation time and mean temperature tolerance variations were also considered in our model (marginal correlation), suggesting a confounding effect of these traits on the relationship between longevity and mtDNA substitution rate. By confirming the negative correlation between dS and longevity previously documented in birds and mammals, our results provide support for a general pattern in substitution rates.
Collapse
Affiliation(s)
- Mathieu Mortz
- Institut Des Sciences De La Mer De Rimouski, Université Du Québec à Rimouski, Rimouski, QC, Canada
| | - Aurore Levivier
- Institut Des Sciences De La Mer De Rimouski, Université Du Québec à Rimouski, Rimouski, QC, Canada
| | - Nicolas Lartillot
- Laboratoire De Biométrie et Biologie Evolutive, UMR CNRS, Université Lyon 1, Villeurbanne, France
| | - France Dufresne
- Laboratoire D'écologie Moléculaire, Département De Biologie, Université Du Québec à Rimouski, Rimouski, QC, Canada.,Laboratoire De Physiologie Intégrative Et Evolutive, Département De Biologie, Université Du Québec à Rimouski, Rimouski, QC, Canada
| | - Pierre U Blier
- Laboratoire De Physiologie Intégrative Et Evolutive, Département De Biologie, Université Du Québec à Rimouski, Rimouski, QC, Canada
| |
Collapse
|
19
|
Pamplona R, Jové M, Mota-Martorell N, Barja G. Is the NDUFV2 subunit of the hydrophilic complex I domain a key determinant of animal longevity? FEBS J 2021; 288:6652-6673. [PMID: 33455045 DOI: 10.1111/febs.15714] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/02/2020] [Accepted: 01/14/2021] [Indexed: 12/18/2022]
Abstract
Complex I, a component of the electron transport chain, plays a central functional role in cell bioenergetics and the biology of free radicals. The structural and functional N module of complex I is one of the main sites of the generation of free radicals. The NDUFV2 subunit/N1a cluster is a component of this module. Furthermore, the rate of free radical production is linked to animal longevity. In this review, we explore the hypothesis that NDUFV2 is the only conserved core subunit designed with a regulatory function to ensure correct electron transfer and free radical production, that low gene expression and protein abundance of the NDUFV2 subunit is an evolutionary adaptation needed to achieve a longevity phenotype, and that these features are determinants of the lower free radical generation at the mitochondrial level and a slower rate of aging of long-lived animals.
Collapse
Affiliation(s)
- Reinald Pamplona
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Mariona Jové
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Natalia Mota-Martorell
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Gustavo Barja
- Department of Genetics, Physiology and Microbiology, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
20
|
Mikuła-Pietrasik J, Pakuła M, Markowska M, Uruski P, Szczepaniak-Chicheł L, Tykarski A, Książek K. Nontraditional systems in aging research: an update. Cell Mol Life Sci 2020; 78:1275-1304. [PMID: 33034696 PMCID: PMC7904725 DOI: 10.1007/s00018-020-03658-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 09/15/2020] [Accepted: 09/28/2020] [Indexed: 12/19/2022]
Abstract
Research on the evolutionary and mechanistic aspects of aging and longevity has a reductionist nature, as the majority of knowledge originates from experiments on a relatively small number of systems and species. Good examples are the studies on the cellular, molecular, and genetic attributes of aging (senescence) that are primarily based on a narrow group of somatic cells, especially fibroblasts. Research on aging and/or longevity at the organismal level is dominated, in turn, by experiments on Drosophila melanogaster, worms (Caenorhabditis elegans), yeast (Saccharomyces cerevisiae), and higher organisms such as mice and humans. Other systems of aging, though numerous, constitute the minority. In this review, we collected and discussed a plethora of up-to-date findings about studies of aging, longevity, and sometimes even immortality in several valuable but less frequently used systems, including bacteria (Caulobacter crescentus, Escherichia coli), invertebrates (Turritopsis dohrnii, Hydra sp., Arctica islandica), fishes (Nothobranchius sp., Greenland shark), reptiles (giant tortoise), mammals (blind mole rats, naked mole rats, bats, elephants, killer whale), and even 3D organoids, to prove that they offer biogerontologists as much as the more conventional tools. At the same time, the diversified knowledge gained owing to research on those species may help to reconsider aging from a broader perspective, which should translate into a better understanding of this tremendously complex and clearly system-specific phenomenon.
Collapse
Affiliation(s)
- Justyna Mikuła-Pietrasik
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland
| | - Martyna Pakuła
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland
| | - Małgorzata Markowska
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland
| | - Paweł Uruski
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland
| | | | - Andrzej Tykarski
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland
| | - Krzysztof Książek
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland
| |
Collapse
|
21
|
Bettinazzi S, Rodríguez E, Milani L, Blier PU, Breton S. Metabolic remodelling associated with mtDNA: insights into the adaptive value of doubly uniparental inheritance of mitochondria. Proc Biol Sci 2020; 286:20182708. [PMID: 30963924 DOI: 10.1098/rspb.2018.2708] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mitochondria produce energy through oxidative phosphorylation (OXPHOS), which depends on the expression of both nuclear and mitochondrial DNA (mtDNA). In metazoans, a striking exception from strictly maternal inheritance of mitochondria is doubly uniparental inheritance (DUI). This unique system involves the maintenance of two highly divergent mtDNAs (F- and M-type, 8-40% of nucleotide divergence) associated with gametes, and occasionally coexisting in somatic tissues. To address whether metabolic differences underlie this condition, we characterized the OXPHOS activity of oocytes, spermatozoa, and gills of different species through respirometry. DUI species express different gender-linked mitochondrial phenotypes in gametes and partly in somatic tissues. The M-phenotype is specific to sperm and entails (i) low coupled/uncoupled respiration rates, (ii) a limitation by the phosphorylation system, and (iii) a null excess capacity of the final oxidases, supporting a strong control over the upstream complexes. To our knowledge, this is the first example of a phenotype resulting from direct selection on sperm mitochondria. This metabolic remodelling suggests an adaptive value of mtDNA variations and we propose that bearing sex-linked mitochondria could assure the energetic requirements of different gametes, potentially linking male-energetic adaptation, mitotype preservation and inheritance, as well as resistance to both heteroplasmy and ageing.
Collapse
Affiliation(s)
- Stefano Bettinazzi
- 1 Département de Sciences Biologiques, Université de Montréal , Montréal, QC, Canada H2V 2S9
| | - Enrique Rodríguez
- 2 Département de Biologie, Université du Québec , Rimouski, QC, Canada G5L 3A1
| | - Liliana Milani
- 3 Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna , Bologna 40126 , Italia
| | - Pierre U Blier
- 2 Département de Biologie, Université du Québec , Rimouski, QC, Canada G5L 3A1
| | - Sophie Breton
- 1 Département de Sciences Biologiques, Université de Montréal , Montréal, QC, Canada H2V 2S9
| |
Collapse
|
22
|
Weaver RJ. Hypothesized Evolutionary Consequences of the Alternative Oxidase (AOX) in Animal Mitochondria. Integr Comp Biol 2020; 59:994-1004. [PMID: 30912813 DOI: 10.1093/icb/icz015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The environment in which eukaryotes first evolved was drastically different from what they experience today, and one of the key limiting factors was the availability of oxygen for mitochondrial respiration. During the transition to a fully oxygenated Earth, other compounds such as sulfide posed a considerable constraint on using mitochondrial aerobic respiration for energy production. The ancestors of animals, and those that first evolved from the simpler eukaryotes have mitochondrial respiratory components that are absent from later-evolving animals. Specifically, mitochondria of most basal metazoans have a sulfide-resistant alternative oxidase (AOX), which provides a secondary oxidative pathway to the classical cytochrome pathway. In this essay, I argue that because of its resistance to sulfide, AOX respiration was critical to the evolution of animals by enabling oxidative metabolism under otherwise inhibitory conditions. I hypothesize that AOX allowed for metabolic flexibility during the stochastic oxygen environment of early Earth which shaped the evolution of basal metazoans. I briefly describe the known functions of AOX, with a particular focus on the decreased production of reactive oxygen species (ROS) during stress conditions. Then, I propose three evolutionary consequences of AOX-mediated protection from ROS observed in basal metazoans: 1) adaptation to stressful environments, 2) the persistence of facultative sexual reproduction, and 3) decreased mitochondrial DNA mutation rates. Recognizing the diversity of mitochondrial respiratory systems present in animals may help resolve the mechanisms involved in major evolutionary processes such as adaptation and speciation.
Collapse
Affiliation(s)
- Ryan J Weaver
- Department of Biological Sciences, Auburn University, 331 Funchess Hall, Auburn, AL 36849, USA
| |
Collapse
|
23
|
Christen F, Dufresne F, Leduc G, Dupont-Cyr BA, Vandenberg GW, Le François NR, Tardif JC, Lamarre SG, Blier PU. Thermal tolerance and fish heart integrity: fatty acids profiles as predictors of species resilience. CONSERVATION PHYSIOLOGY 2020; 8:coaa108. [PMID: 33408863 PMCID: PMC7771578 DOI: 10.1093/conphys/coaa108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 10/21/2020] [Accepted: 11/20/2020] [Indexed: 05/05/2023]
Abstract
The cardiovascular system is a major limiting system in thermal adaptation, but the exact physiological mechanisms underlying responses to thermal stress are still not completely understood. Recent studies have uncovered the possible role of reactive oxygen species production rates of heart mitochondria in determining species' upper thermal limits. The present study examines the relationship between individual response to a thermal challenge test (CTmax), susceptibility to peroxidation of membrane lipids, heart fatty acid profiles and cardiac antioxidant enzyme activities in two salmonid species from different thermal habitats (Salvelinus alpinus, Salvelinus fontinalis) and their hybrids. The susceptibility to peroxidation of membranes in the heart was negatively correlated with individual thermal tolerance. The same relationship was found for arachidonic and eicosapentaenoic acid. Total H2O2 buffering activity of the heart muscle was higher for the group with high thermal resistance. These findings underline a potential general causative relationship between sensitivity to oxidative stress, specific fatty acids, antioxidant activity in the cardiac muscle and thermal tolerance in fish and likely other ectotherms. Heart fatty acid profile could be indicative of species resilience to global change, and more importantly the plasticity of this trait could predict the adaptability of fish species or populations to changes in environmental temperature.
Collapse
Affiliation(s)
- Felix Christen
- Département de Biologie, Université du Québec à Rimouski, Rimouski, Québec, G5L3A1, Canada
| | - France Dufresne
- Département de Biologie, Université du Québec à Rimouski, Rimouski, Québec, G5L3A1, Canada
| | - Gabriel Leduc
- Département de Biologie, Université du Québec à Rimouski, Rimouski, Québec, G5L3A1, Canada
| | - Bernard A Dupont-Cyr
- Département de Biologie, Université du Québec à Rimouski, Rimouski, Québec, G5L3A1, Canada
| | - Grant W Vandenberg
- Département de Sciences Animales, Université Laval, Québec, Québec, G1V 0A6, Canada
| | | | - Jean-Claude Tardif
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, H1T 1C8, Canada
| | - Simon G Lamarre
- Département de Biologie, Université de Moncton, Moncton, New-Brunswick, E1A 3E9, Canada
| | - Pierre U Blier
- Département de Biologie, Université du Québec à Rimouski, Rimouski, Québec, G5L3A1, Canada
- Corresponding author: Département de Biologie, Université du Québec à Rimouski, Rimouski, Québec, G5L3A1, Canada.
| |
Collapse
|
24
|
Bettinazzi S, Nadarajah S, Dalpé A, Milani L, Blier PU, Breton S. Linking paternally inherited mtDNA variants and sperm performance. Philos Trans R Soc Lond B Biol Sci 2019; 375:20190177. [PMID: 31787040 DOI: 10.1098/rstb.2019.0177] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Providing robust links between mitochondrial genotype and phenotype is of major importance given that mitochondrial DNA (mtDNA) variants can affect reproductive success. Because of the strict maternal inheritance (SMI) of mitochondria in animals, haplotypes that negatively affect male fertility can become fixed in populations. This phenomenon is known as 'mother's curse'. Doubly uniparental inheritance (DUI) of mitochondria is a stable exception in bivalves, which entails two mtDNA lineages that evolve independently and are transmitted separately through oocytes and sperm. This makes the DUI mitochondrial lineages subject to different sex-specific selective sieves during mtDNA evolution, thus DUI is a unique model to evaluate how direct selection on sperm mitochondria could contribute to male reproductive fitness. In this study, we tested the impact of mtDNA variants on sperm performance and bioenergetics in DUI and SMI species. Analyses also involved measures of sperm performance following inhibition of main energy pathways and sperm response to oocyte presence. Compared to SMI, DUI sperm exhibited (i) low speed and linearity, (ii) a strict OXPHOS-dependent strategy of energy production, and (iii) a partial metabolic shift towards fermentation following egg detection. Discussion embraces the adaptive value of mtDNA variation and suggests a link between male-energetic adaptation, fertilization success and paternal mitochondria preservation. This article is part of the theme issue 'Linking the mitochondrial genotype to phenotype: a complex endeavour'.
Collapse
Affiliation(s)
- Stefano Bettinazzi
- Département des Sciences Biologiques, Université de Montréal, Montréal, Québec, Canada H2V 2S9
| | - Sugahendni Nadarajah
- Département des Sciences Biologiques, Université de Montréal, Montréal, Québec, Canada H2V 2S9.,Département Sciences de l'Univers, Environnement, Ecologie, Sorbonne Université, 75005 Paris, France
| | - Andréanne Dalpé
- Département des Sciences Biologiques, Université de Montréal, Montréal, Québec, Canada H2V 2S9
| | - Liliana Milani
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna 40126, Italia
| | - Pierre U Blier
- Département de Biologie, Université du Québec à Rimouski, Rimouski, Québec, Canada G5L 3A1
| | - Sophie Breton
- Département des Sciences Biologiques, Université de Montréal, Montréal, Québec, Canada H2V 2S9
| |
Collapse
|
25
|
Johnson AA, Shokhirev MN, Shoshitaishvili B. Revamping the evolutionary theories of aging. Ageing Res Rev 2019; 55:100947. [PMID: 31449890 DOI: 10.1016/j.arr.2019.100947] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/20/2019] [Accepted: 08/21/2019] [Indexed: 01/04/2023]
Abstract
Radical lifespan disparities exist in the animal kingdom. While the ocean quahog can survive for half a millennium, the mayfly survives for less than 48 h. The evolutionary theories of aging seek to explain why such stark longevity differences exist and why a deleterious process like aging evolved. The classical mutation accumulation, antagonistic pleiotropy, and disposable soma theories predict that increased extrinsic mortality should select for the evolution of shorter lifespans and vice versa. Most experimental and comparative field studies conform to this prediction. Indeed, animals with extreme longevity (e.g., Greenland shark, bowhead whale, giant tortoise, vestimentiferan tubeworms) typically experience minimal predation. However, data from guppies, nematodes, and computational models show that increased extrinsic mortality can sometimes lead to longer evolved lifespans. The existence of theoretically immortal animals that experience extrinsic mortality - like planarian flatworms, panther worms, and hydra - further challenges classical assumptions. Octopuses pose another puzzle by exhibiting short lifespans and an uncanny intelligence, the latter of which is often associated with longevity and reduced extrinsic mortality. The evolutionary response to extrinsic mortality is likely dependent on multiple interacting factors in the organism, population, and ecology, including food availability, population density, reproductive cost, age-mortality interactions, and the mortality source.
Collapse
Affiliation(s)
| | - Maxim N Shokhirev
- Razavi Newman Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Boris Shoshitaishvili
- Division of Literatures, Cultures, and Languages, Stanford University, Stanford, CA, United States
| |
Collapse
|
26
|
Munro D, Pamenter ME. Comparative studies of mitochondrial reactive oxygen species in animal longevity: Technical pitfalls and possibilities. Aging Cell 2019; 18:e13009. [PMID: 31322803 PMCID: PMC6718592 DOI: 10.1111/acel.13009] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/03/2019] [Accepted: 06/30/2019] [Indexed: 11/30/2022] Open
Abstract
The mitochondrial oxidative theory of aging has been repeatedly investigated over the past 30 years by comparing the efflux of hydrogen peroxide (H2O2) from isolated mitochondria of long‐ and short‐lived species using horseradish peroxidase‐based assays. However, a clear consensus regarding the relationship between H2O2 production rates and longevity has not emerged. Concomitantly, novel insights into the mechanisms of reactive oxygen species (ROS) handling by mitochondria themselves should have raised concerns about the validity of this experimental approach. Here, we review pitfalls of the horseradish peroxidase/amplex red detection system for the measurement of mitochondrial ROS formation rates, with an emphasis on longevity studies. Importantly, antioxidant systems in the mitochondrial matrix are often capable of scavenging H2O2 faster than mitochondria produce it. As a consequence, as much as 84% of the H2O2 produced by mitochondria may be consumed before it diffuses into the reaction medium, where it can be detected by the horseradish peroxidase/amplex red system, this proportion is likely not consistent across species. Furthermore, previous studies often used substrates that elicit H2O2 formation at a much higher rate than in physiological conditions and at sites of secondary importance in vivo. Recent evidence suggests that the activity of matrix antioxidants may correlate with longevity instead of the rate of H2O2 formation. We conclude that past studies have been methodologically insufficient to address the putative relationship between longevity and mitochondrial ROS. Thus, novel methodological approaches are required that more accurately encompass mitochondrial ROS metabolism.
Collapse
Affiliation(s)
- Daniel Munro
- Department of Biology University of Ottawa Ottawa Ontario Canada
| | - Matthew E. Pamenter
- Department of Biology University of Ottawa Ottawa Ontario Canada
- University of Ottawa Brain and Mind Research Institute Ottawa Ontario Canada
| |
Collapse
|
27
|
Rodríguez E, Dégletagne C, Hagen TM, Abele D, Blier PU. Mitochondrial Traits Previously Associated With Species Maximum Lifespan Do Not Correlate With Longevity Across Populations of the Bivalve Arctica islandica. Front Physiol 2019; 10:946. [PMID: 31404340 PMCID: PMC6676799 DOI: 10.3389/fphys.2019.00946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/09/2019] [Indexed: 01/09/2023] Open
Abstract
The mitochondrial oxidative stress theory of aging posits that membrane susceptibility to peroxidation and the organization of the electron transport system (ETS) linked with reactive oxygen species (ROS) generation are two main drivers of lifespan. While a clear correlation has been established from species comparative studies, the significance of these characteristics as potential modulators of lifespan divergences among populations of individual species is still to be tested. The bivalve Arctica islandica, the longest-lived non-colonial animal with a record lifespan of 507 years, possesses a lower mitochondrial peroxidation index (PI) and reduced H2O2 efflux linked to complexes I and III activities than related species. Taking advantage of the wide variation in maximum reported longevities (MRL) among 6 European populations (36–507 years), we examined whether these two mitochondrial properties could explain differences in longevity. We report no relationship between membrane PI and MRL in populations of A. islandica, as well as a lack of intraspecific relationship between ETS complex activities and MRL. Individuals from brackish sites characterized by wide temperature and salinity windows had, however, markedly lower ETS enzyme activities relative to citrate synthase activity. Our results highlight environment-dependent remodeling of mitochondrial phenotypes.
Collapse
Affiliation(s)
| | - Cyril Dégletagne
- Department of Functional Ecology, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany.,CNRS, ENTPE, UMR5023 Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Tory M Hagen
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | - Doris Abele
- Department of Functional Ecology, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Pierre U Blier
- Département de Biologie, Université du Québec, Rimouski, QC, Canada
| |
Collapse
|
28
|
Munro D, Baldy C, Pamenter ME, Treberg JR. The exceptional longevity of the naked mole-rat may be explained by mitochondrial antioxidant defenses. Aging Cell 2019; 18:e12916. [PMID: 30768748 PMCID: PMC6516170 DOI: 10.1111/acel.12916] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/31/2018] [Accepted: 12/30/2018] [Indexed: 12/21/2022] Open
Abstract
Naked mole-rats (NMRs) are mouse-sized mammals that exhibit an exceptionally long lifespan (>30 vs. <4 years for mice), and resist aging-related pathologies such as cardiovascular and pulmonary diseases, cancer, and neurodegeneration. However, the mechanisms underlying this exceptional longevity and disease resistance remain poorly understood. The oxidative stress theory of aging posits that (a) senescence results from the accumulation of oxidative damage inflicted by reactive oxygen species (ROS) of mitochondrial origin, and (b) mitochondria of long-lived species produce less ROS than do mitochondria of short-lived species. However, comparative studies over the past 28 years have produced equivocal results supporting this latter prediction. We hypothesized that, rather than differences in ROS generation, the capacity of mitochondria to consume ROS might distinguish long-lived species from short-lived species. To test this hypothesis, we compared mitochondrial production and consumption of hydrogen peroxide (H2 O2 ; as a proxy of overall ROS metabolism) between NMR and mouse skeletal muscle and heart. We found that the two species had comparable rates of mitochondrial H2 O2 generation in both tissues; however, the capacity of mitochondria to consume ROS was markedly greater in NMRs. Specifically, maximal observed consumption rates were approximately two and fivefold greater in NMRs than in mice, for skeletal muscle and heart, respectively. Our results indicate that differences in matrix ROS detoxification capacity between species may contribute to their divergence in lifespan.
Collapse
Affiliation(s)
- Daniel Munro
- Department of Biological SciencesUniversity of ManitobaWinnipegManitobaCanada
- Department of BiologyUniversity of OttawaOttawaOntarioCanada
- Centre on AgingUniversity of ManitobaWinnipegManitobaCanada
| | - Cécile Baldy
- Department of BiologyUniversity of OttawaOttawaOntarioCanada
| | - Matthew E. Pamenter
- Department of BiologyUniversity of OttawaOttawaOntarioCanada
- University of Ottawa Brain and Mind Research InstituteOttawaOntarioCanada
| | - Jason R. Treberg
- Department of Biological SciencesUniversity of ManitobaWinnipegManitobaCanada
- Centre on AgingUniversity of ManitobaWinnipegManitobaCanada
- Department of food and Human Nutritional SciencesUniversity of ManitobaWinnipegManitobaCanada
| |
Collapse
|
29
|
Ertl NG, O'Connor WA, Elizur A. Molecular effects of a variable environment on Sydney rock oysters, Saccostrea glomerata: Thermal and low salinity stress, and their synergistic effect. Mar Genomics 2019; 43:19-32. [DOI: 10.1016/j.margen.2018.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 10/07/2018] [Accepted: 10/18/2018] [Indexed: 12/26/2022]
|
30
|
Kake-Guena S, Touisse K, Warren B, Scott K, Dufresne F, Blier P, Lemieux H. Temperature-related differences in mitochondrial function among clones of the cladoceran Daphnia pulex. J Therm Biol 2017; 69:23-31. [DOI: 10.1016/j.jtherbio.2017.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/10/2017] [Accepted: 05/20/2017] [Indexed: 10/19/2022]
|
31
|
|
32
|
Pozzi A, Plazzi F, Milani L, Ghiselli F, Passamonti M. SmithRNAs: Could Mitochondria "Bend" Nuclear Regulation? Mol Biol Evol 2017; 34:1960-1973. [PMID: 28444389 PMCID: PMC5850712 DOI: 10.1093/molbev/msx140] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Typically, animal mitochondria have very compact genomes, with few short intergenic regions, and no introns. Hence, it may seem that there is little space for unknown functions in mitochondrial DNA (mtDNA). However, mtDNA can also operate through RNA interference, as small non coding RNAs (sncRNAs) produced by mtDNA have already been proposed for humans. We sequenced sncRNA libraries from isolated mitochondria of Ruditapes philippinarum (Mollusca Bivalvia) gonads, a species with doubly uniparental inheritance of mitochondria, and identified several putative sncRNAs of mitochondrial origin. Some sncRNAs are transcribed by intergenic regions that form stable stem-hairpin structures, which makes them good miRNA-like candidates. We decided to name them small mitochondrial highly-transcribed RNAs (smithRNAs). Many concurrent data support that we have recovered sncRNAs of mitochondrial origin that might be involved in gonad formation and able to affect nuclear gene expression. This possibility has been never suggested before. If mtDNA can affect nuclear gene expression through RNA interference, this opens a plethora of new possibilities for it to interact with the nucleus, and makes metazoan mtDNA a much more complex genome than previously thought.
Collapse
Affiliation(s)
- Andrea Pozzi
- Department of Biological Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Federico Plazzi
- Department of Biological Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Liliana Milani
- Department of Biological Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Fabrizio Ghiselli
- Department of Biological Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Marco Passamonti
- Department of Biological Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
33
|
What modulates animal longevity? Fast and slow aging in bivalves as a model for the study of lifespan. Semin Cell Dev Biol 2017; 70:130-140. [PMID: 28778411 DOI: 10.1016/j.semcdb.2017.07.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 12/12/2022]
Abstract
Delineating the physiological and biochemical causes of aging process in the animal kingdom is a highly active area of research not only because of potential benefits for human health but also because aging process is related to life history strategies (growth and reproduction) and to responses of organisms to environmental conditions and stress. In this synthesis, we advocate studying bivalve species as models for revealing the determinants of species divergences in maximal longevity. This taxonomic group includes the longest living metazoan on earth (Arctica islandica), which insures the widest range of maximum life span when shorter living species are also included in the comparative model. This model can also be useful for uncovering factors modulating the pace of aging in given species by taking advantages of the wide disparity of lifespan among different populations of the same species. For example, maximal lifespan in different populations of A islandica range from approximately 36 years to over 500 years. In the last 15 years, research has revealed that either regulation or tolerance to oxidative stress is tightly correlated to longevity in this group which support further investigations on this taxon to unveil putative mechanistic links between Reactive Oxygen Species and aging process.
Collapse
|
34
|
Sahm A, Bens M, Platzer M, Cellerino A. Parallel evolution of genes controlling mitonuclear balance in short-lived annual fishes. Aging Cell 2017; 16:488-496. [PMID: 28295945 PMCID: PMC5418189 DOI: 10.1111/acel.12577] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2016] [Indexed: 12/15/2022] Open
Abstract
The current molecular understanding of the aging process derives almost exclusively from the study of random or targeted single‐gene mutations in highly inbred laboratory species, mostly invertebrates. Little information is available as to the genetic mechanisms responsible for natural lifespan variation and the evolution of lifespan, especially in vertebrates. Here, we investigated the pattern of positive selection in annual (i.e., short‐lived) and nonannual (i.e., longer‐lived) African killifishes to identify a genomic substrate for evolution of annual life history (and reduced lifespan). We identified genes under positive selection in all steps of mitochondrial biogenesis: mitochondrial (mt) DNA replication, transcription from mt promoters, processing and stabilization of mt RNAs, mt translation, assembly of respiratory chain complexes, and electron transport chain. Signs of paralleled evolution (i.e., evolution in more than one branch of Nothobranchius phylogeny) are observed in four out of five steps. Moreover, some genes under positive selection in Nothobranchius are under positive selection also in long‐lived mammals such as bats and mole‐rats. Complexes of the respiratory chain are formed in a coordinates multistep process where nuclearly and mitochondrially encoded components are assembled and inserted into the inner mitochondrial membrane. The coordination of this process is named mitonuclear balance, and experimental manipulations of mitonuclear balance can increase longevity of laboratory species. Our data strongly indicate that these genes are also casually linked to evolution lifespan in vertebrates.
Collapse
Affiliation(s)
- Arne Sahm
- Leibniz Insitute on Ageing; Fritz-Lipmann Institute; Jena 07745 Germany
| | - Martin Bens
- Leibniz Insitute on Ageing; Fritz-Lipmann Institute; Jena 07745 Germany
| | - Matthias Platzer
- Leibniz Insitute on Ageing; Fritz-Lipmann Institute; Jena 07745 Germany
| | - Alessandro Cellerino
- Leibniz Insitute on Ageing; Fritz-Lipmann Institute; Jena 07745 Germany
- Bio@SNS; Scuola Normale Superiore; Pisa 56124 Italy
| |
Collapse
|
35
|
Hassall C, Amaro R, Ondina P, Outeiro A, Cordero-Rivera A, San Miguel E. Population-level variation in senescence suggests an important role for temperature in an endangered mollusc. J Zool (1987) 2016. [DOI: 10.1111/jzo.12395] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- C. Hassall
- School of Biology; University of Leeds; Leeds UK
| | - R. Amaro
- Departamento de Zoología; Genética y Antropología Física; University of Santiago de Compostela; Lugo Spain
| | - P. Ondina
- Departamento de Zoología; Genética y Antropología Física; University of Santiago de Compostela; Lugo Spain
| | - A. Outeiro
- Departamento de Zoología; Genética y Antropología Física; University of Santiago de Compostela; Lugo Spain
| | - A. Cordero-Rivera
- Departamento de Ecoloxía e Bioloxía Animal; University of Vigo; Pontevedra Spain
| | - E. San Miguel
- Departamento de Zoología; Genética y Antropología Física; University of Santiago de Compostela; Lugo Spain
| |
Collapse
|
36
|
Ertl NG, O’Connor WA, Wiegand AN, Elizur A. Molecular analysis of the Sydney rock oyster (Saccostrea glomerata) CO2 stress response. ACTA ACUST UNITED AC 2016. [DOI: 10.1186/s40665-016-0019-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
37
|
Jarman SN, Polanowski AM, Faux CE, Robbins J, De Paoli-Iseppi R, Bravington M, Deagle BE. Molecular biomarkers for chronological age in animal ecology. Mol Ecol 2016; 24:4826-47. [PMID: 26308242 DOI: 10.1111/mec.13357] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/08/2015] [Accepted: 08/21/2015] [Indexed: 01/07/2023]
Abstract
The chronological age of an individual animal predicts many of its biological characteristics, and these in turn influence population-level ecological processes. Animal age information can therefore be valuable in ecological research, but many species have no external features that allow age to be reliably determined. Molecular age biomarkers provide a potential solution to this problem. Research in this area of molecular ecology has so far focused on a limited range of age biomarkers. The most commonly tested molecular age biomarker is change in average telomere length, which predicts age well in a small number of species and tissues, but performs poorly in many other situations. Epigenetic regulation of gene expression has recently been shown to cause age-related modifications to DNA and to cause changes in abundance of several RNA types throughout animal lifespans. Age biomarkers based on these epigenetic changes, and other new DNA-based assays, have already been applied to model organisms, humans and a limited number of wild animals. There is clear potential to apply these marker types more widely in ecological studies. For many species, these new approaches will produce age estimates where this was previously impractical. They will also enable age information to be gathered in cross-sectional studies and expand the range of demographic characteristics that can be quantified with molecular methods. We describe the range of molecular age biomarkers that have been investigated to date and suggest approaches for developing the newer marker types as age assays in nonmodel animal species.
Collapse
Affiliation(s)
- Simon N Jarman
- Australian Antarctic Division, 203 Channel Highway, Kingston, Tas., 7050, Australia
| | - Andrea M Polanowski
- Australian Antarctic Division, 203 Channel Highway, Kingston, Tas., 7050, Australia
| | - Cassandra E Faux
- Australian Antarctic Division, 203 Channel Highway, Kingston, Tas., 7050, Australia
| | - Jooke Robbins
- Center for Coastal Studies, 5 Holway Avenue, Provincetown, MA, 02657, USA
| | - Ricardo De Paoli-Iseppi
- Australian Antarctic Division, 203 Channel Highway, Kingston, Tas., 7050, Australia.,Institute of Marine and Antarctic Studies, University of Tasmania, Castray Esplanade, Hobart, Tas., 7000, Australia
| | - Mark Bravington
- Marine Laboratory, Commonwealth Scientific and Industrial Research Organisation, Castray Esplanade, Hobart, Tas., 7000, Australia
| | - Bruce E Deagle
- Australian Antarctic Division, 203 Channel Highway, Kingston, Tas., 7050, Australia
| |
Collapse
|
38
|
Hermann PM, Watson SN, Wildering WC. Phospholipase A2 - nexus of aging, oxidative stress, neuronal excitability, and functional decline of the aging nervous system? Insights from a snail model system of neuronal aging and age-associated memory impairment. Front Genet 2014; 5:419. [PMID: 25538730 PMCID: PMC4255604 DOI: 10.3389/fgene.2014.00419] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 11/13/2014] [Indexed: 02/02/2023] Open
Abstract
The aging brain undergoes a range of changes varying from subtle structural and physiological changes causing only minor functional decline under healthy normal aging conditions, to severe cognitive or neurological impairment associated with extensive loss of neurons and circuits due to age-associated neurodegenerative disease conditions. Understanding how biological aging processes affect the brain and how they contribute to the onset and progress of age-associated neurodegenerative diseases is a core research goal in contemporary neuroscience. This review focuses on the idea that changes in intrinsic neuronal electrical excitability associated with (per)oxidation of membrane lipids and activation of phospholipase A2 (PLA2) enzymes are an important mechanism of learning and memory failure under normal aging conditions. Specifically, in the context of this special issue on the biology of cognitive aging we portray the opportunities offered by the identifiable neurons and behaviorally characterized neural circuits of the freshwater snail Lymnaea stagnalis in neuronal aging research and recapitulate recent insights indicating a key role of lipid peroxidation-induced PLA2 as instruments of aging, oxidative stress and inflammation in age-associated neuronal and memory impairment in this model system. The findings are discussed in view of accumulating evidence suggesting involvement of analogous mechanisms in the etiology of age-associated dysfunction and disease of the human and mammalian brain.
Collapse
Affiliation(s)
- Petra M Hermann
- Department of Biological Sciences, University of Calgary Calgary, AB, Canada ; Department of Physiology and Pharmacology, University of Calgary Calgary, AB, Canada
| | - Shawn N Watson
- Department of Biological Sciences, University of Calgary Calgary, AB, Canada
| | - Willem C Wildering
- Department of Biological Sciences, University of Calgary Calgary, AB, Canada ; Department of Physiology and Pharmacology, University of Calgary Calgary, AB, Canada ; Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada
| |
Collapse
|
39
|
Glazier DS. Is metabolic rate a universal ‘pacemaker’ for biological processes? Biol Rev Camb Philos Soc 2014; 90:377-407. [DOI: 10.1111/brv.12115] [Citation(s) in RCA: 218] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 04/16/2014] [Accepted: 04/17/2014] [Indexed: 12/11/2022]
|
40
|
Low abundance of the matrix arm of complex I in mitochondria predicts longevity in mice. Nat Commun 2014; 5:3837. [PMID: 24815183 PMCID: PMC4024759 DOI: 10.1038/ncomms4837] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 04/09/2014] [Indexed: 01/19/2023] Open
Abstract
Mitochondrial function is an important determinant of the ageing process; however, the mitochondrial properties that enable longevity are not well understood. Here we show that optimal assembly of mitochondrial complex I predicts longevity in mice. Using an unbiased high-coverage high-confidence approach, we demonstrate that electron transport chain proteins, especially the matrix arm subunits of complex I, are decreased in young long-living mice, which is associated with improved complex I assembly, higher complex I-linked state 3 oxygen consumption rates and decreased superoxide production, whereas the opposite is seen in old mice. Disruption of complex I assembly reduces oxidative metabolism with concomitant increase in mitochondrial superoxide production. This is rescued by knockdown of the mitochondrial chaperone, prohibitin. Disrupted complex I assembly causes premature senescence in primary cells. We propose that lower abundance of free catalytic complex I components supports complex I assembly, efficacy of substrate utilization and minimal ROS production, enabling enhanced longevity.
Collapse
|
41
|
Oxidative phosphorylation in Debaryomyces hansenii: physiological uncoupling at different growth phases. Biochimie 2014; 102:124-36. [PMID: 24657599 DOI: 10.1016/j.biochi.2014.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 03/03/2014] [Indexed: 12/31/2022]
Abstract
Physiological uncoupling of mitochondrial oxidative phosphorylation (OxPhos) was studied in Debaryomyces hansenii. In other species, such as Yarrowia lipolytica and Saccharomyces cerevisiae, OxPhos can be uncoupled through differential expression of branched respiratory chain enzymes or by opening of a mitochondrial unspecific channel (ScMUC), respectively. However D. hansenii mitochondria, which contain both a branched respiratory chain and a mitochondrial unspecific channel (DhMUC), selectively uncouple complex I-dependent rate of oxygen consumption in the stationary growth phase. The uncoupled complex I-dependent respiration was only 20% of the original activity. Inhibition was not due to inactivation of complex I, lack of protein expression or to differential expression of alternative oxidoreductases. Furthermore, all other respiratory chain activities were normal. Decrease of complex I-dependent respiration was due to NAD(+) loss from the matrix, probably through an open of DhMUC. When NAD(+) was added back, coupled complex I-activity was recovered. NAD(+) re-uptake was independent of DhMUC opening and seemed to be catalyzed by a NAD(+)-specific transporter, which was sensitive to bathophenanthroline, bromocresol purple or pyridoxal-5'-phosphate as described for S. cerevisiae mitochondrial NAD(+) transporters. Loss of NAD(+) from the matrix through an open MUC is proposed as an additional mechanism to uncouple OxPhos.
Collapse
|
42
|
Cabrera-Orefice A, Chiquete-Félix N, Espinasa-Jaramillo J, Rosas-Lemus M, Guerrero-Castillo S, Peña A, Uribe-Carvajal S. The branched mitochondrial respiratory chain from Debaryomyces hansenii: Components and supramolecular organization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:73-84. [DOI: 10.1016/j.bbabio.2013.07.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 07/23/2013] [Accepted: 07/25/2013] [Indexed: 11/29/2022]
|