1
|
Chantachotikul P, Liu S, Furukawa K, Deguchi S. AP2A1 modulates cell states between senescence and rejuvenation. Cell Signal 2025; 127:111616. [PMID: 39848456 DOI: 10.1016/j.cellsig.2025.111616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/31/2024] [Accepted: 01/18/2025] [Indexed: 01/25/2025]
Abstract
Aging proceeds with the accumulation of senescent cells in multiple organs. These cells exhibit increased size compared to young cells, which promotes further senescence and age-related diseases. Currently, the molecular mechanism behind the maintenance of such huge cell architecture undergoing senescence remains poorly understood. Here we focus on the reorganization of actin stress fibers induced upon replicative senescence in human fibroblasts, widely used as a senescent cell model. We identified, together with our previous proteomic study, that AP2A1 (alpha 1 adaptin subunit of the adaptor protein 2) is upregulated in senescent cells along the length of enlarged stress fibers. Knockdown of AP2A1 reversed senescence-associated phenotypes, exhibiting features of cellular rejuvenation, while its overexpression in young cells advanced senescence phenotypes. Similar functions of AP2A1 were identified in UV- or drug-induced senescence and were observed in epithelial cells as well. Furthermore, we found that AP2A1 is colocalized with integrin β1, and both proteins move linearly along stress fibers. With the observations that focal adhesions are enlarged in senescent cells and that this coincides with strengthened cell adhesion to the substrate, these results suggest that senescent cells maintain their large size by reinforcing their effective anchorage through integrin β1 translocation along stress fibers. This mechanism may work efficiently in senescent cells, compared with a case relying on random diffusion of integrin β1, given the enlarged cell size and resulting increase in travel time and distance for endocytosed vesicle transportation.
Collapse
Affiliation(s)
- Pirawan Chantachotikul
- Division of Bioengineering, Graduate School of Engineering Science, The University of Osaka, Japan
| | - Shiyou Liu
- Division of Bioengineering, Graduate School of Engineering Science, The University of Osaka, Japan
| | - Kana Furukawa
- Division of Bioengineering, Graduate School of Engineering Science, The University of Osaka, Japan; R(3) Institute for Newly-Emerging Science Design, The University of Osaka, Japan
| | - Shinji Deguchi
- Division of Bioengineering, Graduate School of Engineering Science, The University of Osaka, Japan; R(3) Institute for Newly-Emerging Science Design, The University of Osaka, Japan; Global Center for Medical Engineering and Informatics, The University of Osaka, Japan.
| |
Collapse
|
2
|
Abavisani M, Faraji S, Ebadpour N, Karav S, Sahebkar A. Beyond the Hayflick limit: How microbes influence cellular aging. Ageing Res Rev 2025; 104:102657. [PMID: 39788433 DOI: 10.1016/j.arr.2025.102657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/23/2024] [Accepted: 01/05/2025] [Indexed: 01/12/2025]
Abstract
Cellular senescence, a complex biological process resulting in permanent cell-cycle arrest, is central to aging and age-related diseases. A key concept in understanding cellular senescence is the Hayflick Limit, which refers to the limited capacity of normal human cells to divide, after which they become senescent. Senescent cells (SC) accumulate with age, releasing pro-inflammatory and tissue-remodeling factors collectively known as the senescence-associated secretory phenotype (SASP). The causes of senescence are multifaceted, including telomere attrition, oxidative stress, and genotoxic damage, and they extend to influences from microbial sources. Research increasingly emphasizes the role of the microbiome, especially gut microbiota (GM), in modulating host senescence processes. Beneficial microbial metabolites, such as short-chain fatty acids (SCFAs), support host health by maintaining antioxidant defenses and reducing inflammation, potentially mitigating senescence onset. Conversely, pathogenic bacteria like Pseudomonas aeruginosa and Helicobacter pylori introduce factors that damage host DNA or increase ROS, accelerating senescence via pathways such as NF-κB and p53-p21. This review explores the impact of bacterial factors on cellular senescence, highlighting the role of specific bacterial toxins in promoting senescence. Additionally, it discusses how dysbiosis and the loss of beneficial microbial species further contribute to age-related cellular deterioration. Modulating the gut microbiome to delay cellular senescence opens a path toward targeted anti-aging strategies. This work underscores the need for deeper investigation into microbial influence on aging, supporting innovative interventions to manage and potentially reverse cellular senescence.
Collapse
Affiliation(s)
- Mohammad Abavisani
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saba Faraji
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Ebadpour
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Shaban HA, Gasser SM. Dynamic 3D genome reorganization during senescence: defining cell states through chromatin. Cell Death Differ 2025; 32:9-15. [PMID: 37596440 PMCID: PMC11748698 DOI: 10.1038/s41418-023-01197-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/20/2023] Open
Abstract
Cellular senescence, a cell state characterized by growth arrest and insensitivity to growth stimulatory hormones, is accompanied by a massive change in chromatin organization. Senescence can be induced by a range of physiological signals and pathological stresses and was originally thought to be an irreversible state, implicated in normal development, wound healing, tumor suppression and aging. Recently cellular senescence was shown to be reversible in some cases, with exit being triggered by the modulation of the cell's transcriptional program by the four Yamanaka factors, the suppression of p53 or H3K9me3, PDK1, and/or depletion of AP-1. Coincident with senescence reversal are changes in chromatin organization, most notably the loss of senescence-associated heterochromatin foci (SAHF) found in oncogene-induced senescence. In addition to fixed-cell imaging, chromatin conformation capture and multi-omics have been used to examine chromatin reorganization at different spatial resolutions during senescence. They identify determinants of SAHF formation and other key features that differentiate distinct types of senescence. Not surprisingly, multiple factors, including the time of induction, the type of stress experienced, and the type of cell involved, influence the global reorganization of chromatin in senescence. Here we discuss how changes in the three-dimensional organization of the genome contribute to the regulation of transcription at different stages of senescence. In particular, the distinct contributions of heterochromatin- and lamina-mediated interactions, changes in gene expression, and other cellular control mechanisms are discussed. We propose that high-resolution temporal and spatial analyses of the chromatin landscape during senescence will identify early markers of the different senescence states to help guide clinical diagnosis.
Collapse
Affiliation(s)
- Haitham A Shaban
- Precision Oncology Center, Department of Oncology, Lausanne University Hospital, 1005, Lausanne, Switzerland.
- Agora Cancer Research Center Lausanne, Rue du Bugnon 25A, 1005, Lausanne, Switzerland.
- Spectroscopy Department, Institute of Physics Research National Research Centre, Cairo, 33 El-Behouth St., Dokki, Giza, 12311, Egypt.
| | - Susan M Gasser
- Fondation ISREC, Rue du Bugnon 25A, 1005, Lausanne, Switzerland
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|
4
|
Gurdal M, Ercan G, Barut Selver O, Aberdam D, Zeugolis DI. Development of Biomimetic Substrates for Limbal Epithelial Stem Cells Using Collagen-Based Films, Hyaluronic Acid, Immortalized Cells, and Macromolecular Crowding. Life (Basel) 2024; 14:1552. [PMID: 39768260 PMCID: PMC11678493 DOI: 10.3390/life14121552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 01/05/2025] Open
Abstract
Despite the promising potential of cell-based therapies developed using tissue engineering techniques to treat a wide range of diseases, including limbal stem cell deficiency (LSCD), which leads to corneal blindness, their commercialization remains constrained. This is primarily attributable to the limited cell sources, the use of non-standardizable, unscalable, and unsustainable techniques, and the extended manufacturing processes required to produce transplantable tissue-like surrogates. Herein, we present the first demonstration of the potential of a novel approach combining collagen films (CF), hyaluronic acid (HA), human telomerase-immortalized limbal epithelial stem cells (T-LESCs), and macromolecular crowding (MMC) to develop innovative biomimetic substrates for limbal epithelial stem cells (LESCs). The initial step involved the fabrication and characterization of CF and CF enriched with HA (CF-HA). Subsequently, T-LESCs were seeded on CF, CF-HA, and tissue culture plastic (TCP). Thereafter, the effect of these matrices on basic cellular function and tissue-specific extracellular matrix (ECM) deposition with or without MMC was evaluated. The viability and metabolic activity of cells cultured on CF, CF-HA, and TCP were found to be similar, while CF-HA induced the highest (p < 0.05) cell proliferation. It is notable that CF and HA induced cell growth, whereas MMC increased (p < 0.05) the deposition of collagen IV, fibronectin, and laminin in the T-LESC culture. The data highlight the potential of, in particular, immortalized cells and MMC for the development of biomimetic cell culture substrates, which could be utilized in ocular surface reconstruction following further in vitro, in vivo, and clinical validation of the approach.
Collapse
Affiliation(s)
- Mehmet Gurdal
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, 35100 Izmir, Türkiye;
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, H91 TK33 Galway, Ireland;
| | - Gulinnaz Ercan
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, 35100 Izmir, Türkiye;
- Department of Stem Cell, Institute of Health Sciences, Ege University, 35100 Izmir, Türkiye;
| | - Ozlem Barut Selver
- Department of Stem Cell, Institute of Health Sciences, Ege University, 35100 Izmir, Türkiye;
- Department of Ophthalmology, Faculty of Medicine, Ege University, 35100 Izmir, Türkiye
| | - Daniel Aberdam
- INSERM U1138, Centre des Cordeliers, Université de Paris, 75006 Paris, France;
| | - Dimitrios I. Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, H91 TK33 Galway, Ireland;
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), D04 V1W8 Dublin, Ireland
| |
Collapse
|
5
|
Kim WJ, Basit A, Lee JH. USP11 modulates mitotic progression and senescence by regulating the p53-p21 axis through MDM2 deubiquitination. Biochem Biophys Res Commun 2024; 726:150275. [PMID: 38901057 DOI: 10.1016/j.bbrc.2024.150275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
USP11 is overexpressed in colorectal cancer (CRC) and breast cancer tissues compared to normal tissues, suggesting a role in promoting cell proliferation and inhibiting cell death. In this study, we observed that depleting USP11 inhibits cell proliferation and delays cell cycle progression. This depletion leads to increased p53 protein levels due to an extended half-life, resulting in elevated p21 mRNA levels in a p53-dependent manner. The rise in p53 protein upon USP11 depletion is linked to a reduced half-life of MDM2, a known E3 ligase for p53, via enhanced polyubiquitination of MDM2. These findings indicate that USP11 might act as a deubiquitinase for MDM2, regulating the MDM2-p53-p21 axis. Additionally, USP11 depletion promotes the induction of senescent cells in a manner dependent on its deubiquitinase activity. Our findings provide insights into the physiological significance of high USP11 expression in primary tumors and its reduction in senescent cells, highlighting its potential as a therapeutic target.
Collapse
Affiliation(s)
- Won-Joo Kim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 443-721, South Korea; Department of Biomedical Sciences, The Graduate School, Ajou University, Suwon, 443-721, South Korea
| | - Abdul Basit
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 443-721, South Korea; Department of Biomedical Sciences, The Graduate School, Ajou University, Suwon, 443-721, South Korea
| | - Jae-Ho Lee
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 443-721, South Korea; Department of Biomedical Sciences, The Graduate School, Ajou University, Suwon, 443-721, South Korea.
| |
Collapse
|
6
|
Verlinden SF. The genetic advantage of healthy centenarians: unraveling the central role of NLRP3 in exceptional healthspan. FRONTIERS IN AGING 2024; 5:1452453. [PMID: 39301197 PMCID: PMC11410711 DOI: 10.3389/fragi.2024.1452453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024]
Abstract
Despite extensive research into extending human healthspan (HS) and compressing morbidity, the mechanisms underlying aging remain elusive. However, a better understanding of the genetic advantages responsible for the exceptional HS of healthy centenarians (HC), who live in good physical and mental health for one hundred or more years, could lead to innovative health-extending strategies. This review explores the role of NLRP3, a critical component of innate immunity that significantly impacts aging. It is activated by pathogen-associated signals and self-derived signals that increase with age, leading to low-grade inflammation implicated in age-related diseases. Furthermore, NLRP3 functions upstream in several molecular aging pathways, regulates cellular senescence, and may underlie the robust health observed in HC. By targeting NLRP3, mice exhibit a phenotype akin to that of HC, the HS of monkeys is extended, and aging symptoms are reversed in humans. Thus, targeting NLRP3 could offer a promising approach to extend HS. Additionally, a paradigm shift is proposed. Given that the HS of the broader population is 30 years shorter than that of HC, it is postulated that they suffer from a form of accelerated aging. The term 'auto-aging' is suggested to describe accelerated aging driven by NLRP3.
Collapse
|
7
|
Matuszewska J, Krawiec A, Radziemski A, Uruski P, Tykarski A, Mikuła-Pietrasik J, Książek K. Alterations of receptors and insulin-like growth factor binding proteins in senescent cells. Eur J Cell Biol 2024; 103:151438. [PMID: 38945074 DOI: 10.1016/j.ejcb.2024.151438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024] Open
Abstract
The knowledge about cellular senescence expands dynamically, providing more and more conclusive evidence of its triggers, mechanisms, and consequences. Senescence-associated secretory phenotype (SASP), one of the most important functional traits of senescent cells, is responsible for a large extent of their context-dependent activity. Both SASP's components and signaling pathways are well-defined. A literature review shows, however, that a relatively underinvestigated aspect of senescent cell autocrine and paracrine activity is the change in the production of proteins responsible for the reception and transmission of SASP signals, i.e., receptors and binding proteins. For this reason, we present in this article the current state of knowledge regarding senescence-associated changes in cellular receptors and insulin-like growth factor binding proteins. We also discuss the role of these alterations in senescence induction and maintenance, pro-cancerogenic effects of senescent cells, and aging-related structural and functional malfunctions.
Collapse
Affiliation(s)
- Julia Matuszewska
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str., Poznań 60-781, Poland
| | - Adrianna Krawiec
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str., Poznań 60-781, Poland
| | - Artur Radziemski
- Poznan University of Medical Sciences, Department of Hypertensiology, Długa 1/2 Str., Poznań 61-848, Poland
| | - Paweł Uruski
- Poznan University of Medical Sciences, Department of Hypertensiology, Długa 1/2 Str., Poznań 61-848, Poland
| | - Andrzej Tykarski
- Poznan University of Medical Sciences, Department of Hypertensiology, Długa 1/2 Str., Poznań 61-848, Poland
| | - Justyna Mikuła-Pietrasik
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str., Poznań 60-781, Poland
| | - Krzysztof Książek
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str., Poznań 60-781, Poland.
| |
Collapse
|
8
|
Welter EM, Benavides S, Archer TK, Kosyk O, Zannas AS. Machine learning-based morphological quantification of replicative senescence in human fibroblasts. GeroScience 2024; 46:2425-2439. [PMID: 37985642 PMCID: PMC10828145 DOI: 10.1007/s11357-023-01007-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/28/2023] [Indexed: 11/22/2023] Open
Abstract
Although aging has been investigated extensively at the organismal and cellular level, the morphological changes that individual cells undergo along their replicative lifespan have not been precisely quantified. Here, we present the results of a readily accessible machine learning-based pipeline that uses standard fluorescence microscope and open access software to quantify the minute morphological changes that human fibroblasts undergo during their replicative lifespan in culture. Applying this pipeline in a widely used fibroblast cell line (IMR-90), we find that advanced replicative age robustly increases (+28-79%) cell surface area, perimeter, number and total length of pseudopodia, and nuclear surface area, while decreasing cell circularity, with phenotypic changes largely occurring as replicative senescence is reached. These senescence-related morphological changes are recapitulated, albeit to a variable extent, in primary dermal fibroblasts derived from human donors of different ancestry, age, and sex groups. By performing integrative analysis of single-cell morphology, our pipeline further classifies senescent-like cells and quantifies how their numbers increase with replicative senescence in IMR-90 cells and in dermal fibroblasts across all tested donors. These findings provide quantitative insights into replicative senescence, while demonstrating applicability of a readily accessible computational pipeline for high-throughput cell phenotyping in aging research.
Collapse
Affiliation(s)
- Emma M Welter
- Department of Psychiatry, University of North Carolina at Chapel Hill, 438 Taylor Hall, 109 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Sofia Benavides
- Department of Psychiatry, University of North Carolina at Chapel Hill, 438 Taylor Hall, 109 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Trevor K Archer
- Chromatin and Gene Expression Section, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, 27709, USA
| | - Oksana Kosyk
- Department of Psychiatry, University of North Carolina at Chapel Hill, 438 Taylor Hall, 109 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Anthony S Zannas
- Department of Psychiatry, University of North Carolina at Chapel Hill, 438 Taylor Hall, 109 Mason Farm Road, Chapel Hill, NC, 27599, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, 438 Taylor Hall, 109 Mason Farm Road, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
9
|
Park SS, Lee YK, Choi YW, Lim SB, Park SH, Kim HK, Shin JS, Kim YH, Lee DH, Kim JH, Park TJ. Cellular senescence is associated with the spatial evolution toward a higher metastatic phenotype in colorectal cancer. Cell Rep 2024; 43:113912. [PMID: 38446659 DOI: 10.1016/j.celrep.2024.113912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/21/2023] [Accepted: 02/19/2024] [Indexed: 03/08/2024] Open
Abstract
In this study, we explore the dynamic process of colorectal cancer progression, emphasizing the evolution toward a more metastatic phenotype. The term "evolution" as used in this study specifically denotes the phenotypic transition toward a higher metastatic potency from well-formed glandular structures to collective invasion, ultimately resulting in the development of cancer cell buddings at the invasive front. Our findings highlight the spatial correlation of this evolution with tumor cell senescence, revealing distinct types of senescent tumor cells (types I and II) that play different roles in the overall cancer progression. Type I senescent tumor cells (p16INK4A+/CXCL12+/LAMC2-/MMP7-) are identified in the collective invasion region, whereas type II senescent tumor cells (p16INK4A+/CXCL12+/LAMC2+/MMP7+), representing the final evolved form, are prominently located in the partial-EMT region. Importantly, type II senescent tumor cells associate with local invasion and lymph node metastasis in colorectal cancer, potentially affecting patient prognosis.
Collapse
Affiliation(s)
- Soon Sang Park
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 16499, Korea; Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea; Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon 16499, Korea
| | - Young-Kyoung Lee
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 16499, Korea; Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon 16499, Korea
| | - Yong Won Choi
- Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon 16499, Korea; Department of Hematology and Oncology, Ajou University School of Medicine, Suwon 16499, Korea
| | - Su Bin Lim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 16499, Korea; Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea; Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon 16499, Korea
| | - So Hyun Park
- Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon 16499, Korea; Department of Pathology, Ajou University School of Medicine, Suwon 16499, Korea
| | - Han Ki Kim
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea; Department of Brain Science and Neurology, Ajou University School of Medicine, Suwon 16499, Korea
| | - Jun Sang Shin
- Department of Surgery, Ajou University School of Medicine, Suwon 16499, Korea
| | - Young Hwa Kim
- Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon 16499, Korea; Department of Pathology, Ajou University School of Medicine, Suwon 16499, Korea
| | - Dong Hyun Lee
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 16499, Korea; Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea; Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon 16499, Korea
| | - Jang-Hee Kim
- Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon 16499, Korea; Department of Pathology, Ajou University School of Medicine, Suwon 16499, Korea.
| | - Tae Jun Park
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 16499, Korea; Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea; Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon 16499, Korea.
| |
Collapse
|
10
|
Alessio N, Aprile D, Peluso G, Mazzone V, Patrone D, Di Bernardo G, Galderisi U. IGFBP5 is released by senescent cells and is internalized by healthy cells, promoting their senescence through interaction with retinoic receptors. Cell Commun Signal 2024; 22:122. [PMID: 38351010 PMCID: PMC10863175 DOI: 10.1186/s12964-024-01469-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/02/2024] [Indexed: 02/16/2024] Open
Abstract
Cells that are exposed to harmful genetic damage, either from internal or external sources, may undergo senescence if they are unable to repair their DNA. Senescence, characterized by a state of irreversible growth arrest, can spread to neighboring cells through a process known as the senescence-associated secretory phenotype (SASP). This phenomenon contributes to both aging and the development of cancer. The SASP comprises a variety of factors that regulate numerous functions, including the induction of secondary senescence, modulation of immune system activity, remodeling of the extracellular matrix, alteration of tissue structure, and promotion of cancer progression. Identifying key factors within the SASP is crucial for understanding the underlying mechanisms of senescence and developing effective strategies to counteract cellular senescence. Our research has specifically focused on investigating the role of IGFBP5, a component of the SASP observed in various experimental models and conditions.Through our studies, we have demonstrated that IGFBP5 actively contributes to promoting senescence and can induce senescence in neighboring cells. We have gained valuable insights into the mechanisms through which IGFBP5 exerts its pro-senescence effects. These mechanisms include its release following genotoxic stress, involvement in signaling pathways mediated by reactive oxygen species and prostaglandins, internalization via specialized structures called caveolae, and interaction with a specific protein known as RARα. By uncovering these mechanisms, we have advanced our understanding of the intricate role of IGFBP5 in the senescence process. The significance of IGFBP5 as a pro-aging factor stems from an in vivo study we conducted on patients undergoing Computer Tomography analysis. In these patients, we observed an elevation in circulating IGFBP5 levels in response to radiation-induced organismal stress.Globally, our findings highlight the potential of IGFBP5 as a promising therapeutic target for age-related diseases and cancer.
Collapse
Affiliation(s)
- Nicola Alessio
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, via Luigi De Crecchio 7, Naples, 80138, Italy
| | - Domenico Aprile
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, via Luigi De Crecchio 7, Naples, 80138, Italy
| | | | - Valeria Mazzone
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, via Luigi De Crecchio 7, Naples, 80138, Italy
| | - Deanira Patrone
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, via Luigi De Crecchio 7, Naples, 80138, Italy
| | - Giovanni Di Bernardo
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, via Luigi De Crecchio 7, Naples, 80138, Italy.
| | - Umberto Galderisi
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, via Luigi De Crecchio 7, Naples, 80138, Italy.
- Genome and Stem Cell Center (GENKÖK), Erciyes University, Kayseri, Turkey.
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine Temple University, PA, Philadelphia, USA.
| |
Collapse
|
11
|
Kruczkowska W, Gałęziewska J, Kciuk M, Gielecińska A, Płuciennik E, Pasieka Z, Zhao LY, Yu YJ, Kołat D, Kałuzińska-Kołat Ż. Senescent adipocytes and type 2 diabetes - current knowledge and perspective concepts. Biomol Concepts 2024; 15:bmc-2022-0046. [PMID: 38530804 DOI: 10.1515/bmc-2022-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Among civilization diseases, the number of individuals suffering from type 2 diabetes (T2DM) is expected to increase to more than a billion in less than 20 years, which is associated with, e.g., populational aging, poor diet, sedentary lifestyle, genetic predispositions, and immunological factors. T2DM affects many organs and is characterized by insulin resistance, high glucose levels, and adipocyte dysfunction, which are related to senescence. Although this type of cellular aging has beneficial biological functions, it can also act unfavorable since senescent adipocytes resist apoptosis, enhance cytokine secretion, downregulate cell identity genes, and acquire the senescence-associated secretory phenotype that renders a more oxidative environment. Opposing T2DM is possible via a wide variety of senotherapies, including senolytics and senomorphics; nevertheless, further research is advised to expand therapeutic possibilities and benefits. Consequences that ought to be deeply researched include secretory phenotype, chronic inflammation, increasing insulin resistance, as well as impairment of adipogenesis and functioning of adipocyte cells. Herein, despite reviewing T2DM and fat tissue senescence, we summarized the latest adipocyte-related anti-diabetes solutions and suggested further research directions.
Collapse
Affiliation(s)
- Weronika Kruczkowska
- Faculty of Biomedical Sciences, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland
| | - Julia Gałęziewska
- Faculty of Biomedical Sciences, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland
| | - Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Adrianna Gielecińska
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Elżbieta Płuciennik
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland
| | - Zbigniew Pasieka
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| | - Lin-Yong Zhao
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yi-Jin Yu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Damian Kołat
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| | - Żaneta Kałuzińska-Kołat
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| |
Collapse
|
12
|
Hasan A, Khan NA, Uddin S, Khan AQ, Steinhoff M. Deregulated transcription factors in the emerging cancer hallmarks. Semin Cancer Biol 2024; 98:31-50. [PMID: 38123029 DOI: 10.1016/j.semcancer.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/25/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Cancer progression is a multifaceted process that entails several stages and demands the persistent expression or activation of transcription factors (TFs) to facilitate growth and survival. TFs are a cluster of proteins with DNA-binding domains that attach to promoter or enhancer DNA strands to start the transcription of genes by collaborating with RNA polymerase and other supporting proteins. They are generally acknowledged as the major regulatory molecules that coordinate biological homeostasis and the appropriate functioning of cellular components, subsequently contributing to human physiology. TFs proteins are crucial for controlling transcription during the embryonic stage and development, and the stability of different cell types depends on how they function in different cell types. The development and progression of cancer cells and tumors might be triggered by any anomaly in transcription factor function. It has long been acknowledged that cancer development is accompanied by the dysregulated activity of TF alterations which might result in faulty gene expression. Recent studies have suggested that dysregulated transcription factors play a major role in developing various human malignancies by altering and rewiring metabolic processes, modifying the immune response, and triggering oncogenic signaling cascades. This review emphasizes the interplay between TFs involved in metabolic and epigenetic reprogramming, evading immune attacks, cellular senescence, and the maintenance of cancer stemness in cancerous cells. The insights presented herein will facilitate the development of innovative therapeutic modalities to tackle the dysregulated transcription factors underlying cancer.
Collapse
Affiliation(s)
- Adria Hasan
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Lucknow 226026, India; Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow 226026, India
| | - Naushad Ahmad Khan
- Department of Surgery, Trauma and Vascular Surgery Clinical Research, Hamad General Hospital, Doha 3050, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Biosciences, Integral University, Lucknow 226026, India; Animal Research Center, Qatar University, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar.
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Animal Research Center, Qatar University, Doha, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Department of Medicine, Weill Cornell Medicine Qatar, Qatar Foundation-Education City, Doha 24144, Qatar; Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; College of Medicine, Qatar University, Doha 2713, Qatar
| |
Collapse
|
13
|
Hong J, Min S, Yoon G, Lim SB. SRSF7 downregulation induces cellular senescence through generation of MDM2 variants. Aging (Albany NY) 2023; 15:14591-14606. [PMID: 38159247 PMCID: PMC10781460 DOI: 10.18632/aging.205420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024]
Abstract
Alternative splicing (AS) enables a pre-mRNA to generate different functional protein variants. The change in AS has been reported as an emerging contributor to cellular senescence and aging. However, it remains to be elucidated which senescent AS variants are generated in and regulate senescence. Here, we observed commonly down-regulated SRSF7 in senescent cells, using publicly available RNA-seq datasets of several in vitro senescence models. We further confirmed SRSF7 deregulation from our previous microarray datasets of time-series replicative senescence (RS) and oxidative stress-induced senescence (OSIS) of human diploid fibroblast (HDF). We validated the time-course changes of SRSF mRNA and protein levels, developing both RS and OSIS. SRSF knockdown in HDF was enough to induce senescence, accompanied by p53 protein stabilization and MDM2 variants formation. Interestingly, expression of MDM2 variants showed similar patterns of p53 expression in both RS and OSIS. Next, we identified MDM2-C as a key functional AS variant generated specifically by SRSF7 depletion. Finally, we validated that MDM2-C overexpression induced senescence of HDF. These results indicate that SRSF7 down-regulation plays a key role in p53-mediated senescence by regulating AS of MDM2, a key negative regulator of p53, implying its critical involvement in the entry into cell senescence.
Collapse
Affiliation(s)
- Jiwon Hong
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 16499, Korea
- Inflamm-aging Translational Research Center, Ajou University Medical Center, Suwon 16499, Korea
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon 16499, Korea
| | - Seongki Min
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 16499, Korea
- Inflamm-aging Translational Research Center, Ajou University Medical Center, Suwon 16499, Korea
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon 16499, Korea
| | - Gyesoon Yoon
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 16499, Korea
- Inflamm-aging Translational Research Center, Ajou University Medical Center, Suwon 16499, Korea
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon 16499, Korea
| | - Su Bin Lim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 16499, Korea
- Inflamm-aging Translational Research Center, Ajou University Medical Center, Suwon 16499, Korea
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon 16499, Korea
| |
Collapse
|
14
|
Alexakou E, Bakopoulou A, Apatzidou DA, Kritis A, Malousi A, Anastassiadou V. Biological Effects of "Inflammageing" on Human Oral Cells: Insights into a Potential Confounder of Age-Related Diseases. Int J Mol Sci 2023; 25:5. [PMID: 38203178 PMCID: PMC10778866 DOI: 10.3390/ijms25010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
OBJECTIVES The term "inflammageing" describes the process of inflammation-induced aging that leads living cells to a state of permanent cell cycle arrest due to chronic antigenic irritation. This in vitro study aimed to shed light on the mechanisms of "inflammageing" on human oral cells. METHODS Primary cultures of human gingival fibroblasts (hGFs) were exposed to variable pro-inflammatory stimuli, including lipopolysaccharide (LPS), Tumor Necrosis Factor-alpha (TNFa), and gingival crevicular fluid (GCF) collected from active periodontal pockets of systemically healthy patients. Inflammageing was studied through two experimental models, employing either late-passage ("aged") cells (p. 10) that were exposed to the pro-inflammatory stimuli or early-passage ("young") cells (p. 1) continuously exposed during a period of several passages (up to p. 10) to the above-mentioned stimuli. Cells were evaluated for the expression of beta-galactosidase activity (histochemical staining), senescence-associated genes (qPCR analysis), and biomarkers related to a Senescence-Associated Secretory Phenotype (SASP), through proteome profile analysis and bioinformatics. RESULTS A significant increase (p < 0.05) in beta-galactosidase-positive cells was observed after exposure to each pro-inflammatory stimulus. The senescence-associated gene expression included upregulation for CCND1 and downregulation for SUSD6, and STAG1, a profile typical for cellular senescence. Overall, pro-inflammatory priming of late-passage cells caused more pronounced effects in terms of senescence than long-term exposure of early-passage cells to these stimuli. Proteomic analysis showed induction of SASP, evidenced by upregulation of several pro-inflammatory proteins (IL-6, IL-10, IL-16, IP-10, MCP-1, MCP-2, M-CSF, MIP-1a, MIP-1b, TNFb, sTNF-RI, sTNF-RII, TIMP-2) implicated in cellular aging and immune responses. The least potent impact on the induction of SASP was provoked by LPS and the most pronounced by GCF. CONCLUSION This study demonstrates that long-term exposure of hGFs to various pro-inflammatory signals induced or accelerated cellular senescence with the most pronounced impact noted for the late-passage cells. The outcome of these analyses provides insights into oral chronic inflammation as a potential confounder of age-related diseases.
Collapse
Affiliation(s)
- Elli Alexakou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.TH.), 54124 Thessaloniki, Greece; (E.A.); (V.A.)
| | - Athina Bakopoulou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.TH.), 54124 Thessaloniki, Greece; (E.A.); (V.A.)
| | - Danae A. Apatzidou
- Department of Preventive Dentistry, Periodontology & Implant Biology, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.TH.), 54124 Thessaloniki, Greece;
| | - Aristeidis Kritis
- Department of Physiology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.TH.), 54124 Thessaloniki, Greece;
- Regenerative Medicine Center, Basic and Translational Research Unit (BTRU) of Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Andigoni Malousi
- Department of Biological Chemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.TH.), 54124 Thessaloniki, Greece;
| | - Vassiliki Anastassiadou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.TH.), 54124 Thessaloniki, Greece; (E.A.); (V.A.)
| |
Collapse
|
15
|
Park SC, Lee YS, Cho KA, Kim SY, Lee YI, Lee SR, Lim IK. What matters in aging is signaling for responsiveness. Pharmacol Ther 2023; 252:108560. [PMID: 37952903 DOI: 10.1016/j.pharmthera.2023.108560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/03/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
Biological responsiveness refers to the capacity of living organisms to adapt to changes in both their internal and external environments through physiological and behavioral mechanisms. One of the prominent aspects of aging is the decline in this responsiveness, which can lead to a deterioration in the processes required for maintenance, survival, and growth. The vital link between physiological responsiveness and the essential life processes lies within the signaling systems. To devise effective strategies for controlling the aging process, a comprehensive reevaluation of this connecting loop is imperative. This review aims to explore the impact of aging on signaling systems responsible for responsiveness and introduce a novel perspective on intervening in the aging process by restoring the compromised responsiveness. These innovative mechanistic approaches for modulating altered responsiveness hold the potential to illuminate the development of action plans aimed at controlling the aging process and treating age-related disorders.
Collapse
Affiliation(s)
- Sang Chul Park
- The Future Life & Society Research Center, Advanced Institute of Aging Science, Chonnam National University, Gwangju 61469, Republic of Korea.
| | - Young-Sam Lee
- Department of New Biology, DGIST, Daegu 42988, Republic of Korea; Well Aging Research Center, Division of Biotechnology, DGIST, Daegu 42988, Republic of Korea.
| | - Kyung A Cho
- Department of Biochemistry, Chonnam National University Medical School, Jeollanam-do 58128, Republic of Korea
| | - Sung Young Kim
- Department of Biochemistry, Konkuk University School of Medicine, Seoul 05029, Republic of Korea
| | - Yun-Il Lee
- Well Aging Research Center, Division of Biotechnology, DGIST, Daegu 42988, Republic of Korea; Interdisciplinary Engineering Major, Department of Interdisciplinary Studies, DGIST, Daegu 42988, Republic of Korea
| | - Seung-Rock Lee
- Department of Biochemistry, Chonnam National University Medical School, Jeollanam-do 58128, Republic of Korea; Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - In Kyoung Lim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| |
Collapse
|
16
|
Kim YH, Lee YK, Park SS, Park SH, Eom SY, Lee YS, Lee WJ, Jang J, Seo D, Kang HY, Kim JC, Lim SB, Yoon G, Kim HS, Kim JH, Park TJ. Mid-old cells are a potential target for anti-aging interventions in the elderly. Nat Commun 2023; 14:7619. [PMID: 37993434 PMCID: PMC10665435 DOI: 10.1038/s41467-023-43491-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/10/2023] [Indexed: 11/24/2023] Open
Abstract
The biological process of aging is thought to result in part from accumulation of senescent cells in organs. However, the present study identified a subset of fibroblasts and smooth muscle cells which are the major constituents of organ stroma neither proliferative nor senescent in tissues of the elderly, which we termed "mid-old status" cells. Upregulation of pro-inflammatory genes (IL1B and SAA1) and downregulation of anti-inflammatory genes (SLIT2 and CXCL12) were detected in mid-old cells. In the stroma, SAA1 promotes development of the inflammatory microenvironment via upregulation of MMP9, which decreases the stability of epithelial cells present on the basement membrane, decreasing epithelial cell function. Remarkably, the microenvironmental change and the functional decline of mid-old cells could be reversed by a young cell-originated protein, SLIT2. Our data identify functional reversion of mid-old cells as a potential method to prevent or ameliorate aspects of aging-related tissue dysfunction.
Collapse
Affiliation(s)
- Young Hwa Kim
- Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, Korea
| | - Young-Kyoung Lee
- Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, Korea
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, Korea
| | - Soon Sang Park
- Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, Korea
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Korea
| | - So Hyun Park
- Department of Pathology, Ajou University School of Medicine, Suwon, 16499, Korea
| | - So Yeong Eom
- Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Korea
- Department of Pathology, Ajou University School of Medicine, Suwon, 16499, Korea
| | - Young-Sam Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology, Daegu, 42988, Korea
| | - Wonhee John Lee
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science & Technology, Daegu, 42988, Korea
| | - Juhee Jang
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science & Technology, Daegu, 42988, Korea
| | - Daeha Seo
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science & Technology, Daegu, 42988, Korea
| | - Hee Young Kang
- Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, Korea
- Department of Dermatology, Ajou University School of Medicine, Suwon, 16499, Korea
| | - Jin Cheol Kim
- Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, Korea
- Department of Dermatology, Ajou University School of Medicine, Suwon, 16499, Korea
| | - Su Bin Lim
- Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, Korea
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Korea
| | - Gyesoon Yoon
- Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, Korea
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Korea
| | - Hong Seok Kim
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon, 22212, Korea
| | - Jang-Hee Kim
- Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, Korea.
- Department of Pathology, Ajou University School of Medicine, Suwon, 16499, Korea.
| | - Tae Jun Park
- Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, Korea.
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, Korea.
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Korea.
| |
Collapse
|
17
|
Grun LK, Maurmann RM, Scholl JN, Fogaça ME, Schmitz CRR, Dias CK, Gasparotto J, Padoin AV, Mottin CC, Klamt F, Figueiró F, Jones MH, Filippi-Chiela EC, Guma FCR, Barbé-Tuana FM. Obesity drives adipose-derived stem cells into a senescent and dysfunctional phenotype associated with P38MAPK/NF-KB axis. Immun Ageing 2023; 20:51. [PMID: 37821967 PMCID: PMC10566105 DOI: 10.1186/s12979-023-00378-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Adipose-derived stem cells (ADSC) are multipotent cells implicated in tissue homeostasis. Obesity represents a chronic inflammatory disease associated with metabolic dysfunction and age-related mechanisms, with progressive accumulation of senescent cells and compromised ADSC function. In this study, we aimed to explore mechanisms associated with the inflammatory environment present in obesity in modulating ADSC to a senescent phenotype. We evaluated phenotypic and functional alterations through 18 days of treatment. ADSC were cultivated with a conditioned medium supplemented with a pool of plasma from eutrophic individuals (PE, n = 15) or with obesity (PO, n = 14), and compared to the control. RESULTS Our results showed that PO-treated ADSC exhibited decreased proliferative capacity with G2/M cycle arrest and CDKN1A (p21WAF1/Cip1) up-regulation. We also observed increased senescence-associated β-galactosidase (SA-β-gal) activity, which was positively correlated with TRF1 protein expression. After 18 days, ADSC treated with PO showed augmented CDKN2A (p16INK4A) expression, which was accompanied by a cumulative nuclear enlargement. After 10 days, ADSC treated with PO showed an increase in NF-κB phosphorylation, while PE and PO showed an increase in p38MAPK activation. PE and PO treatment also induced an increase in senescence-associated secretory phenotype (SASP) cytokines IL-6 and IL-8. PO-treated cells exhibited decreased metabolic activity, reduced oxygen consumption related to basal respiration, increased mitochondrial depolarization and biomass, and mitochondrial network remodeling, with no superoxide overproduction. Finally, we observed an accumulation of lipid droplets in PO-treated ADSC, implying an adaptive cellular mechanism induced by the obesogenic stimuli. CONCLUSIONS Taken together, our data suggest that the inflammatory environment observed in obesity induces a senescent phenotype associated with p38MAPK/NF-κB axis, which stimulates and amplifies the SASP and is associated with impaired mitochondrial homeostasis.
Collapse
Affiliation(s)
- L K Grun
- Graduate Program in Pediatrics and Child Health, School of Medicine, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.
- Group of Inflammation and Cellular Senescence, Immunobiology Laboratory, School of Health Sciences and Life, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.
| | - R M Maurmann
- Graduate Program in Cellular and Molecular Biology, School of Health, Sciences, and Life, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Group of Inflammation and Cellular Senescence, Immunobiology Laboratory, School of Health Sciences and Life, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - J N Scholl
- Graduate Program in Biological Sciences: Biochemistry, Federal University at Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - M E Fogaça
- Group of Inflammation and Cellular Senescence, Immunobiology Laboratory, School of Health Sciences and Life, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - C R R Schmitz
- Group of Inflammation and Cellular Senescence, Immunobiology Laboratory, School of Health Sciences and Life, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Graduate Program in Biological Sciences: Biochemistry, Federal University at Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - C K Dias
- Graduate Program in Biological Sciences: Biochemistry, Federal University at Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - J Gasparotto
- Institute of Biomedical Sciences, Federal University at Alfenas, Alfenas, Brazil
| | - A V Padoin
- Graduate Program in Medicine and Health Sciences, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - C C Mottin
- Graduate Program in Medicine and Health Sciences, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - F Klamt
- Graduate Program in Biological Sciences: Biochemistry, Federal University at Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - F Figueiró
- Graduate Program in Biological Sciences: Biochemistry, Federal University at Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - M H Jones
- Graduate Program in Pediatrics and Child Health, School of Medicine, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - E C Filippi-Chiela
- Institute of Basic Health Sciences, Department of Morphological Sciences, Federal University at Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Center for Biotechnology, Federal University at Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - F C R Guma
- Graduate Program in Biological Sciences: Biochemistry, Federal University at Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - F M Barbé-Tuana
- Graduate Program in Pediatrics and Child Health, School of Medicine, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Graduate Program in Cellular and Molecular Biology, School of Health, Sciences, and Life, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Group of Inflammation and Cellular Senescence, Immunobiology Laboratory, School of Health Sciences and Life, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| |
Collapse
|
18
|
Park J, Kim H, Alabdalla L, Mishra S, Mchaourab H. Generation and characterization of a zebrafish knockout model of abcb4, a homolog of the human multidrug efflux transporter P-glycoprotein. Hum Genomics 2023; 17:84. [PMID: 37674192 PMCID: PMC10481557 DOI: 10.1186/s40246-023-00530-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/25/2023] [Indexed: 09/08/2023] Open
Abstract
The ATP-binding cassette subfamily B member 1 (ABCB1), encoding a multidrug transporter referred to as P-glycoprotein (Pgp), plays a critical role in the efflux of xenobiotics in humans and is implicated in cancer resistance to chemotherapy. Therefore, developing high-throughput animal models to screen for Pgp function and bioavailability of substrates and inhibitors is paramount. Here, we generated and validated a zebrafish knockout line of abcb4, a human Pgp transporter homolog. CRISPR/Cas9 genome editing technology was deployed to generate a frameshift mutation in exon 4 of zebrafish abcb4. The zebrafish abcb4 homozygous mutant exhibited elevated accumulation of fluorescent rhodamine 123, a substrate of human Pgp, in the intestine and brain area of embryos. Moreover, abcb4 knockout embryos were sensitized toward toxic compounds such as doxorubicin and vinblastine compared to the WT zebrafish. Immunostaining for zebrafish Abcb4 colocalized in the endothelial brain cells of adult zebrafish. Transcriptome profiling using Gene Set Enrichment Analysis uncovered that the 'cell cycle process,' 'mitotic cell cycles,' and 'microtubule-based process' were significantly downregulated in the abcb4 knockout brain with age. This study establishes and validates the abcb4 knockout zebrafish as an animal model to study Pgp function in vivo. Unexpectedly it reveals a potentially novel role for zebrafish abcb4 in age-related changes in the brain. The zebrafish lines generated here will provide a platform to aid in the discovery of modulators of Pgp function as well as the characterization of human mutants thereof.
Collapse
Affiliation(s)
- Jinhee Park
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37240, USA
| | - Hyosung Kim
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Leen Alabdalla
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37240, USA
| | - Smriti Mishra
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37240, USA
| | - Hassane Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37240, USA.
| |
Collapse
|
19
|
Park J, Kim H, Alabdalla L, Mishra S, Mchaourab H. Generation and characterization of a zebrafish knockout model of abcb4, a homolog of the human multidrug efflux transporter P-glycoprotein. RESEARCH SQUARE 2023:rs.3.rs-3192988. [PMID: 37546821 PMCID: PMC10402247 DOI: 10.21203/rs.3.rs-3192988/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The ATP-binding cassette subfamily B member 1 (ABCB1), encoding a multidrug transporter referred to as P-glycoprotein (Pgp), plays a critical role in the efflux of xenobiotics in humans and is implicated in cancer resistance to chemotherapy. Therefore, developing high throughput animal models to screen for Pgp function and bioavailability of substrates and inhibitors is paramount. Here, we generated and validated a zebrafish knockout line of abcb4 , a human Pgp transporter homolog. CRISPR/Cas9 genome editing technology was deployed to generate a frameshift mutation in exon 4 of zebrafish abcb4 . The zebrafish abcb4 homozygous mutant exhibited elevated accumulation of fluorescent rhodamine 123, a substrate of human Pgp, in the intestine and brain area of embryos. Moreover, abcb4 knockout embryos were sensitized toward toxic compounds such as doxorubicin and vinblastine compared to the WT zebrafish. Immuno-staining for zebrafish Abcb4 colocalized in the endothelial brain cells of adult zebrafish. Transcriptome profiling using Gene Set Enrichment Analysis (GSEA) uncovered that the 'cell cycle process,' 'mitotic cell cycles,' and 'microtubule-based process' were significantly downregulated in the abcb4 knockout brain with age. This study establishes and validates the a bcb4 knockout zebrafish as an animal model to study Pgp function in vivo. Unexpectedly it reveals a potentially novel role for zebrafish abcb4 in age-related changes in the brain. The zebrafish lines generated here will provide a platform to aid in the discovery of modulators of Pgp function as well as the characterization of human mutants thereof.
Collapse
|
20
|
Kang T, Moore EC, Kopania EEK, King CD, Schilling B, Campisi J, Good JM, Brem RB. A natural variation-based screen in mouse cells reveals USF2 as a regulator of the DNA damage response and cellular senescence. G3 (BETHESDA, MD.) 2023; 13:jkad091. [PMID: 37097016 PMCID: PMC10320765 DOI: 10.1093/g3journal/jkad091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 04/26/2023]
Abstract
Cellular senescence is a program of cell cycle arrest, apoptosis resistance, and cytokine release induced by stress exposure in metazoan cells. Landmark studies in laboratory mice have characterized a number of master senescence regulators, including p16INK4a, p21, NF-κB, p53, and C/EBPβ. To discover other molecular players in senescence, we developed a screening approach to harness the evolutionary divergence between mouse species. We found that primary cells from the Mediterranean mouse Mus spretus, when treated with DNA damage to induce senescence, produced less cytokine and had less-active lysosomes than cells from laboratory Mus musculus. We used allele-specific expression profiling to catalog senescence-dependent cis-regulatory variation between the species at thousands of genes. We then tested for correlation between these expression changes and interspecies sequence variants in the binding sites of transcription factors. Among the emergent candidate senescence regulators, we chose a little-studied cell cycle factor, upstream stimulatory factor 2 (USF2), for molecular validation. In acute irradiation experiments, cells lacking USF2 had compromised DNA damage repair and response. Longer-term senescent cultures without USF2 mounted an exaggerated senescence regulatory program-shutting down cell cycle and DNA repair pathways, and turning up cytokine expression, more avidly than wild-type. We interpret these findings under a model of pro-repair, anti-senescence regulatory function by USF2. Our study affords new insights into the mechanisms by which cells commit to senescence, and serves as a validated proof of concept for natural variation-based regulator screens.
Collapse
Affiliation(s)
- Taekyu Kang
- Buck Institute for Research on Aging, Novato, CA 94945, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Emily C Moore
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Emily E K Kopania
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | | | | | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Jeffrey M Good
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Rachel B Brem
- Buck Institute for Research on Aging, Novato, CA 94945, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
21
|
Giroud J, Bouriez I, Paulus H, Pourtier A, Debacq-Chainiaux F, Pluquet O. Exploring the Communication of the SASP: Dynamic, Interactive, and Adaptive Effects on the Microenvironment. Int J Mol Sci 2023; 24:10788. [PMID: 37445973 DOI: 10.3390/ijms241310788] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Cellular senescence is a complex cell state that can occur during physiological ageing or after exposure to stress signals, regardless of age. It is a dynamic process that continuously evolves in a context-dependent manner. Senescent cells interact with their microenvironment by producing a heterogenous and plastic secretome referred to as the senescence-associated secretory phenotype (SASP). Hence, understanding the cross-talk between SASP and the microenvironment can be challenging due to the complexity of signal exchanges. In this review, we first aim to update the definition of senescence and its associated biomarkers from its discovery to the present day. We detail the regulatory mechanisms involved in the expression of SASP at multiple levels and develop how SASP can orchestrate microenvironment modifications, by focusing on extracellular matrix modifications, neighboring cells' fate, and intercellular communications. We present hypotheses on how these microenvironmental events may affect dynamic changes in SASP composition in return. Finally, we discuss the various existing approaches to targeting SASP and clarify what is currently known about the biological effects of these modified SASPs on the cellular environment.
Collapse
Affiliation(s)
- Joëlle Giroud
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, 5000 Namur, Belgium
- University of Lille, CNRS, Inserm, Pasteur Institute of Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, 59000 Lille, France
| | - Inès Bouriez
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, 5000 Namur, Belgium
| | - Hugo Paulus
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, 5000 Namur, Belgium
| | - Albin Pourtier
- University of Lille, CNRS, Inserm, Pasteur Institute of Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, 59000 Lille, France
| | - Florence Debacq-Chainiaux
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, 5000 Namur, Belgium
| | - Olivier Pluquet
- University of Lille, CNRS, Inserm, Pasteur Institute of Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, 59000 Lille, France
| |
Collapse
|
22
|
Chen Q, Young L, Barsotti R. Mitochondria in cell senescence: A Friend or Foe? ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 136:35-91. [PMID: 37437984 DOI: 10.1016/bs.apcsb.2023.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Cell senescence denotes cell growth arrest in response to continuous replication or stresses damaging DNA or mitochondria. Mounting research suggests that cell senescence attributes to aging-associated failing organ function and diseases. Conversely, it participates in embryonic tissue maturation, wound healing, tissue regeneration, and tumor suppression. The acute or chronic properties and microenvironment may explain the double faces of senescence. Senescent cells display unique characteristics. In particular, its mitochondria become elongated with altered metabolomes and dynamics. Accordingly, mitochondria reform their function to produce more reactive oxygen species at the cost of low ATP production. Meanwhile, destructed mitochondrial unfolded protein responses further break the delicate proteostasis fostering mitochondrial dysfunction. Additionally, the release of mitochondrial damage-associated molecular patterns, mitochondrial Ca2+ overload, and altered NAD+ level intertwine other cellular organelle strengthening senescence. These findings further intrigue researchers to develop anti-senescence interventions. Applying mitochondrial-targeted antioxidants reduces cell senescence and mitigates aging by restoring mitochondrial function and attenuating oxidative stress. Metformin and caloric restriction also manifest senescent rescuing effects by increasing mitochondria efficiency and alleviating oxidative damage. On the other hand, Bcl2 family protein inhibitors eradicate senescent cells by inducing apoptosis to facilitate cancer chemotherapy. This review describes the different aspects of mitochondrial changes in senescence and highlights the recent progress of some anti-senescence strategies.
Collapse
Affiliation(s)
- Qian Chen
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States.
| | - Lindon Young
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Robert Barsotti
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| |
Collapse
|
23
|
Park SS, Lee YK, Park SH, Lim SB, Choi YW, Shin JS, Kim YH, Kim JH, Park TJ. p15 INK4B is an alternative marker of senescent tumor cells in colorectal cancer. Heliyon 2023; 9:e13170. [PMID: 36785830 PMCID: PMC9918768 DOI: 10.1016/j.heliyon.2023.e13170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Senescent tumor cells are nonproliferating tumor cells which are closely related to cancer progression by secreting senescence-related molecules, called senescence-associated secreting phenotypes. Therefore, the presence of senescent tumor cells is considered a prognostic factor in various cancer types. Although senescence-associated β-galactosidase staining is considered the best marker for detection of senescent tumor cells, it can only be performed in fresh-frozen tissues. p16INK4A, a cyclin-dependent inhibitor, has been used as an alternative marker to detect senescent tumor cells in formalin-fixed paraffin-embedded tissues. However, other reliable markers to detect senescent tumor cells is still lacking. In the present study, using public single-cell RNA-sequencing data, we found that p15INK4B, a cyclin-dependent kinase inhibitor, is a novel marker for detection of senescent tumor cells. Moreover, p15INK4B expression was positively correlated with that of p16INK4A in colorectal cancer tissues. In in vitro studies, mRNA expression of p15INK4B was increased together with that of p16INK4A in H2O2- and therapy-induced cancer senescence models. However, the mRNA level of p15INK4B did not increase in the oncogene-induced senescence model in primary colonic epithelial cells. In conclusion, p15INK4B is a potential alternative marker for detection of senescent tumor cells together with conventional markers in advanced stages of colorectal cancer.
Collapse
Key Words
- CDK, cyclin dependent kinase
- CRC, colorectal cancer
- Cellular senescence
- Colorectal cancer
- FBS, fetal bovine serum
- FFPE, formalin-fixed paraffin-embedded
- GSEA, gene set enrichent analysis
- H3K9me3, histone H3 lysine 9 trimethylation
- IHC, immunohistochemistry
- SA-β-Gal, senescence-associated β-galactosidase
- STC, senescent tumor cell
- Senescence marker
- Senescent tumor cells
- p15INK4B
- p16INK4A
- scRNA-seq, single cell RNA sequencing
Collapse
Affiliation(s)
- Soon Sang Park
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, South Korea,Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, South Korea,Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, South Korea
| | - Young-Kyoung Lee
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, South Korea,Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, South Korea
| | - So Hyun Park
- Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, South Korea,Department of Pathology, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Su Bin Lim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, South Korea,Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, South Korea,Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, South Korea
| | - Yong Won Choi
- Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, South Korea,Department of Hematology and Oncology, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Jun Sang Shin
- Department of Surgery, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Young Hwa Kim
- Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, South Korea
| | - Jang-Hee Kim
- Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, South Korea,Department of Pathology, Ajou University School of Medicine, Suwon, 16499, South Korea,Corresponding author. Department of Pathology, Ajou University School of Medicine, Suwon, 16499 South Korea.
| | - Tae Jun Park
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, South Korea,Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, South Korea,Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, South Korea,Corresponding author. Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499 South Korea.
| |
Collapse
|
24
|
Mitoribosomal Deregulation Drives Senescence via TPP1-Mediated Telomere Deprotection. Cells 2022; 11:cells11132079. [PMID: 35805162 PMCID: PMC9265344 DOI: 10.3390/cells11132079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/13/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
While mitochondrial bioenergetic deregulation has long been implicated in cellular senescence, its mechanistic involvement remains unclear. By leveraging diverse mitochondria-related gene expression profiles derived from two different cellular senescence models of human diploid fibroblasts, we found that the expression of mitoribosomal proteins (MRPs) was generally decreased during the early-to-middle transition prior to the exhibition of noticeable SA-β-gal activity. Suppressed expression patterns of the identified senescence-associated MRP signatures (SA-MRPs) were validated in aged human cells and rat and mouse skin tissues and in aging mouse fibroblasts at single-cell resolution. TIN2- and POT1-interaction protein (TPP1) was concurrently suppressed, which induced senescence, accompanied by telomere DNA damage. Lastly, we show that SA-MRP deregulation could be a potential upstream regulator of TPP1 suppression. Our results indicate that mitoribosomal deregulation could represent an early event initiating mitochondrial dysfunction and serve as a primary driver of cellular senescence and an upstream regulator of shelterin-mediated telomere deprotection.
Collapse
|
25
|
Zhang C, Zhang H, Ge J, Mi T, Cui X, Tu F, Gu X, Zeng T, Chen L. Landscape dynamic network biomarker analysis reveals the tipping point of transcriptome reprogramming to prevent skin photodamage. J Mol Cell Biol 2022; 13:822-833. [PMID: 34609489 PMCID: PMC8782598 DOI: 10.1093/jmcb/mjab060] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/18/2021] [Accepted: 07/29/2021] [Indexed: 12/03/2022] Open
Abstract
Skin, as the outmost layer of human body, is frequently exposed to environmental stressors including pollutants and ultraviolet (UV), which could lead to skin disorders. Generally, skin response process to ultraviolet B (UVB) irradiation is a nonlinear dynamic process, with unknown underlying molecular mechanism of critical transition. Here, the landscape dynamic network biomarker (l-DNB) analysis of time series transcriptome data on 3D skin model was conducted to reveal the complicated process of skin response to UV irradiation at both molecular and network levels. The advanced l-DNB analysis approach showed that: (i) there was a tipping point before critical transition state during pigmentation process, validated by 3D skin model; (ii) 13 core DNB genes were identified to detect the tipping point as a network biomarker, supported by computational assessment; (iii) core DNB genes such as COL7A1 and CTNNB1 can effectively predict skin lightening, validated by independent human skin data. Overall, this study provides new insights for skin response to repetitive UVB irradiation, including dynamic pathway pattern, biphasic response, and DNBs for skin lightening change, and enables us to further understand the skin resilience process after external stress.
Collapse
Affiliation(s)
- Chengming Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Zhang
- Unilever Research & Development Centre Shanghai, Shanghai 200335, China
| | - Jing Ge
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tingyan Mi
- Unilever Research & Development Centre Shanghai, Shanghai 200335, China
| | - Xiao Cui
- Unilever Research & Development Centre Shanghai, Shanghai 200335, China
| | - Fengjuan Tu
- Unilever Research & Development Centre Shanghai, Shanghai 200335, China
| | - Xuelan Gu
- Unilever Research & Development Centre Shanghai, Shanghai 200335, China
| | - Tao Zeng
- Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Luonan Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
- Guangdong Institute of Intelligence Science and Technology, Zhuhai 519031, China
| |
Collapse
|
26
|
Roger L, Tomas F, Gire V. Mechanisms and Regulation of Cellular Senescence. Int J Mol Sci 2021; 22:ijms222313173. [PMID: 34884978 PMCID: PMC8658264 DOI: 10.3390/ijms222313173] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 12/23/2022] Open
Abstract
Cellular senescence entails a state of an essentially irreversible proliferative arrest in which cells remain metabolically active and secrete a range of pro-inflammatory and proteolytic factors as part of the senescence-associated secretory phenotype. There are different types of senescent cells, and senescence can be induced in response to many DNA damage signals. Senescent cells accumulate in different tissues and organs where they have distinct physiological and pathological functions. Despite this diversity, all senescent cells must be able to survive in a nondividing state while protecting themselves from positive feedback loops linked to the constant activation of the DNA damage response. This capacity requires changes in core cellular programs. Understanding how different cell types can undergo extensive changes in their transcriptional programs, metabolism, heterochromatin patterns, and cellular structures to induce a common cellular state is crucial to preventing cancer development/progression and to improving health during aging. In this review, we discuss how senescent cells continuously evolve after their initial proliferative arrest and highlight the unifying features that define the senescent state.
Collapse
Affiliation(s)
- Lauréline Roger
- Structure and Instability of Genomes Laboratory, Muséum National d’Histoire Naturelle (MNHN), CNRS-UMR 7196/INSERM U1154, 43 Rue Cuvier, 75005 Paris, France;
| | - Fanny Tomas
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS UMR 5237, 1919 Route de Mende, 34293 Montpellier, France;
| | - Véronique Gire
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS UMR 5237, 1919 Route de Mende, 34293 Montpellier, France;
- Correspondence: ; Tel.: +33-(0)-434359513; Fax: +33-(0)-434359410
| |
Collapse
|
27
|
Ghadaouia S, Olivier MA, Martinez A, Kientega T, Qin J, Lambert-Lanteigne P, Cardin GB, Autexier C, Malaquin N, Rodier F. Homologous recombination-mediated irreversible genome damage underlies telomere-induced senescence. Nucleic Acids Res 2021; 49:11690-11707. [PMID: 34725692 PMCID: PMC8599762 DOI: 10.1093/nar/gkab965] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/28/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Loss of telomeric DNA leads to telomere uncapping, which triggers a persistent, p53-centric DNA damage response that sustains a stable senescence-associated proliferation arrest. Here, we show that in normal cells telomere uncapping triggers a focal telomeric DNA damage response accompanied by a transient cell cycle arrest. Subsequent cell division with dysfunctional telomeres resulted in sporadic telomeric sister chromatid fusions that gave rise to next-mitosis genome instability, including non-telomeric DNA lesions responsible for a stable, p53-mediated, senescence-associated proliferation arrest. Unexpectedly, the blocking of Rad51/RPA-mediated homologous recombination, but not non-homologous end joining (NHEJ), prevented senescence despite multiple dysfunctional telomeres. When cells approached natural replicative senescence, interphase senescent cells displayed genome instability, whereas near-senescent cells that underwent mitosis despite the presence of uncapped telomeres did not. This suggests that these near-senescent cells had not yet acquired irreversible telomeric fusions. We propose a new model for telomere-initiated senescence where tolerance of telomere uncapping eventually results in irreversible non-telomeric DNA lesions leading to stable senescence. Paradoxically, our work reveals that senescence-associated tumor suppression from telomere shortening requires irreversible genome instability at the single-cell level, which suggests that interventions to repair telomeres in the pre-senescent state could prevent senescence and genome instability.
Collapse
Affiliation(s)
- Sabrina Ghadaouia
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, H2X 0A9, Canada.,Institut du cancer de Montréal, Montreal, QC, H2X 0A9, Canada
| | - Marc-Alexandre Olivier
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, H2X 0A9, Canada.,Institut du cancer de Montréal, Montreal, QC, H2X 0A9, Canada
| | - Aurélie Martinez
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, H2X 0A9, Canada.,Institut du cancer de Montréal, Montreal, QC, H2X 0A9, Canada
| | - Tibila Kientega
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, H2X 0A9, Canada.,Institut du cancer de Montréal, Montreal, QC, H2X 0A9, Canada
| | - Jian Qin
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, H3A 0C7, Canada.,Jewish General Hospital, Lady Davis Institute, Montreal, QC, H3T 1E2, Canada
| | | | - Guillaume B Cardin
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, H2X 0A9, Canada.,Institut du cancer de Montréal, Montreal, QC, H2X 0A9, Canada
| | - Chantal Autexier
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, H3A 0C7, Canada.,Jewish General Hospital, Lady Davis Institute, Montreal, QC, H3T 1E2, Canada
| | - Nicolas Malaquin
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, H2X 0A9, Canada.,Institut du cancer de Montréal, Montreal, QC, H2X 0A9, Canada
| | - Francis Rodier
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, H2X 0A9, Canada.,Institut du cancer de Montréal, Montreal, QC, H2X 0A9, Canada.,Department of Radiology, Radio-Oncology and Nuclear Medicine, Université de Montréal, Montreal, QC, H3T 1J4, Canada
| |
Collapse
|
28
|
Dabrowska M, Uram L, Dabrowski M, Sikora E. Antigen presentation capability and AP-1 activation accompany methotrexate-induced colon cancer cell senescence in the context of aberrant β-catenin signaling. Mech Ageing Dev 2021; 197:111517. [PMID: 34139213 DOI: 10.1016/j.mad.2021.111517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 05/19/2021] [Accepted: 06/09/2021] [Indexed: 01/10/2023]
Abstract
Reversible cellular senescence was demonstrated previously to constitute colon cancer cell response to methotrexate. The current study presents a comparison of two senescent states of colon cancer cells, arrested and reversing, resulting from respectively, 120 h exposure to the drug, and 48 h exposure followed by 96 h regrowth in drug-free media. The upregulation of immunoproteasome subunit-coding genes and the increase in human leukocyte antigen HLA-A/B/C membrane level indicated MHC-I-restricted antigen presentation as common to both senescent states. Nuclear factor NF-κB p65 level decreased and activating protein AP-1: c-Jun, Fra2 and JunB nuclear levels increased in both senescent cell populations. Notably, the increase in AP-1- dependent transcription occurred after 48 h exposure to methotrexate. β-catenin nuclear level increased after 48 h exposure to the drug and remained as such only in senescence-arrested cells. β-catenin level was found uncoupled from the protein phosphorylation status indicating the deregulation of β-catenin signaling in colon cancer cells employed in the study. These findings carry implications for both, a general mechanism of senescence establishment and putative advantages for colon cancer treatment.
Collapse
Affiliation(s)
- Magdalena Dabrowska
- Laboratory of Molecular Bases of Ageing, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093, Warszawa, Poland.
| | - Lukasz Uram
- Faculty of Chemistry, Rzeszow University of Technology, 6 Powstancow Warszawy Ave., 35-959, Rzeszow, Poland.
| | - Michal Dabrowski
- Laboratory of Bioinformatics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093, Warszawa, Poland.
| | - Ewa Sikora
- Laboratory of Molecular Bases of Ageing, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093, Warszawa, Poland.
| |
Collapse
|
29
|
Cellular senescence and its role in white adipose tissue. Int J Obes (Lond) 2021; 45:934-943. [PMID: 33510393 DOI: 10.1038/s41366-021-00757-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/19/2020] [Accepted: 01/12/2021] [Indexed: 01/30/2023]
Abstract
Cell senescence is defined as a state of irreversible cell cycle arrest combined with DNA damage and the induction of a senescence-associated secretory phenotype (SASP). This includes increased secretion of many inflammatory agents, proteases, miRNA's, and others. Cell senescence has been widely studied in oncogenesis and has generally been considered to be protective, due to cell cycle arrest and the inhibition of proliferation. Cell senescence is also associated with ageing and extensive experimental data support its role in generating the ageing-associated phenotype. Senescent cells can also influence proximal "healthy" cells through SASPs and, e.g., inhibit normal development of progenitor/stem cells, thereby preventing tissue replacement of dying cells and reducing organ functions. Recent evidence demonstrates that SASPs may also play important roles in several chronic diseases including diabetes and cardiovascular disease. White adipose tissue (WAT) cells are highly susceptible to becoming senescent both with ageing but also with obesity and type 2 diabetes, independently of chronological age. WAT senescence is associated with inappropriate expansion (hypertrophy) of adipocytes, insulin resistance, and dyslipidemia. Major efforts have been made to identify approaches to delete senescent cells including the use of "senolytic" compounds. The most established senolytic treatment to date is the combination of dasatinib, an antagonist of the SRC family of kinases, and the antioxidant quercetin. This combination reduces cell senescence and improves chronic disorders in experimental animal models. Although only small and short-term studies have been performed in man, no severe adverse effects have been reported. Hopefully, these or other senolytic agents may provide novel ways to prevent and treat different chronic diseases in man. Here we review the current knowledge on cellular senescence in both murine and human studies. We also discuss the pathophysiological role of this process and the potential therapeutic relevance of targeting senescence selectively in WAT.
Collapse
|
30
|
Greenwood EK, Brown DR. Senescent Microglia: The Key to the Ageing Brain? Int J Mol Sci 2021; 22:4402. [PMID: 33922383 PMCID: PMC8122783 DOI: 10.3390/ijms22094402] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/13/2022] Open
Abstract
Ageing represents the single biggest risk factor for development of neurodegenerative disease. Despite being such long-lived cells, microglia have been relatively understudied for their role in the ageing process. Reliably identifying aged microglia has proven challenging, not least due to the diversity of cell populations, and the limitations of available models, further complicated by differences between human and rodent cells. Consequently, the literature contains multiple descriptions and categorisations of microglia with neurotoxic phenotypes, including senescence, without any unifying markers. The role of microglia in brain homeostasis, particularly iron storage and metabolism, may provide a key to reliable identification.
Collapse
Affiliation(s)
| | - David R. Brown
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK;
| |
Collapse
|
31
|
Ogrodnik M. Cellular aging beyond cellular senescence: Markers of senescence prior to cell cycle arrest in vitro and in vivo. Aging Cell 2021; 20:e13338. [PMID: 33711211 PMCID: PMC8045927 DOI: 10.1111/acel.13338] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/09/2021] [Accepted: 02/19/2021] [Indexed: 12/14/2022] Open
Abstract
The field of research on cellular senescence experienced a rapid expansion from being primarily focused on in vitro aspects of aging to the vast territories of animal and clinical research. Cellular senescence is defined by a set of markers, many of which are present and accumulate in a gradual manner prior to senescence induction or are found outside of the context of cellular senescence. These markers are now used to measure the impact of cellular senescence on aging and disease as well as outcomes of anti-senescence interventions, many of which are at the stage of clinical trials. It is thus of primary importance to discuss their specificity as well as their role in the establishment of senescence. Here, the presence and role of senescence markers are described in cells prior to cell cycle arrest, especially in the context of replicative aging and in vivo conditions. Specifically, this review article seeks to describe the process of "cellular aging": the progression of internal changes occurring in primary cells leading to the induction of cellular senescence and culminating in cell death. Phenotypic changes associated with aging prior to senescence induction will be characterized, as well as their effect on the induction of cell senescence and the final fate of cells reviewed. Using published datasets on assessments of senescence markers in vivo, it will be described how disparities between quantifications can be explained by the concept of cellular aging. Finally, throughout the article the applicational value of broadening cellular senescence paradigm will be discussed.
Collapse
Affiliation(s)
- Mikolaj Ogrodnik
- Ludwig Boltzmann Research Group Senescence and Healing of Wounds Vienna Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center Vienna Austria
- Austrian Cluster for Tissue Regeneration Vienna Austria
| |
Collapse
|
32
|
Tyler EJ, Gutierrez del Arroyo A, Hughes BK, Wallis R, Garbe JC, Stampfer MR, Koh J, Lowe R, Philpott MP, Bishop CL. Early growth response 2 (EGR2) is a novel regulator of the senescence programme. Aging Cell 2021; 20:e13318. [PMID: 33547862 PMCID: PMC7963333 DOI: 10.1111/acel.13318] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/16/2020] [Accepted: 12/31/2020] [Indexed: 12/14/2022] Open
Abstract
Senescence, a state of stable growth arrest, plays an important role in ageing and age-related diseases in vivo. Although the INK4/ARF locus is known to be essential for senescence programmes, the key regulators driving p16 and ARF transcription remain largely underexplored. Using siRNA screening for modulators of the p16/pRB and ARF/p53/p21 pathways in deeply senescent human mammary epithelial cells (DS HMECs) and fibroblasts (DS HMFs), we identified EGR2 as a novel regulator of senescence. EGR2 expression is up-regulated during senescence, and its ablation by siRNA in DS HMECs and HMFs transiently reverses the senescent phenotype. We demonstrate that EGR2 activates the ARF and p16 promoters and directly binds to both the ARF and p16 promoters. Loss of EGR2 down-regulates p16 levels and increases the pool of p16- p21- 'reversed' cells in the population. Moreover, EGR2 overexpression is sufficient to induce senescence. Our data suggest that EGR2 is a direct transcriptional activator of the p16/pRB and ARF/p53/p21 pathways in senescence and a novel marker of senescence.
Collapse
Affiliation(s)
- Eleanor J. Tyler
- Blizard InstituteBarts and The London School of Medicine and Dentistry, Queen Mary University of LondonLondonUK
| | - Ana Gutierrez del Arroyo
- Translational Medicine & TherapeuticsWilliam Harvey Research InstituteBarts and The London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Bethany K. Hughes
- Blizard InstituteBarts and The London School of Medicine and Dentistry, Queen Mary University of LondonLondonUK
| | - Ryan Wallis
- Blizard InstituteBarts and The London School of Medicine and Dentistry, Queen Mary University of LondonLondonUK
| | - James C. Garbe
- Biological Systems and Engineering DivisionLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | - Martha R. Stampfer
- Biological Systems and Engineering DivisionLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | - Jim Koh
- Division of General SurgeryDepartment of SurgeryUCSFSan FranciscoCaliforniaUSA
| | - Robert Lowe
- Blizard InstituteBarts and The London School of Medicine and Dentistry, Queen Mary University of LondonLondonUK
| | - Michael P. Philpott
- Blizard InstituteBarts and The London School of Medicine and Dentistry, Queen Mary University of LondonLondonUK
| | - Cleo L. Bishop
- Blizard InstituteBarts and The London School of Medicine and Dentistry, Queen Mary University of LondonLondonUK
| |
Collapse
|
33
|
Panax ginseng-Derived Extracellular Vesicles Facilitate Anti-Senescence Effects in Human Skin Cells: An Eco-Friendly and Sustainable Way to Use Ginseng Substances. Cells 2021; 10:cells10030486. [PMID: 33668388 PMCID: PMC7996359 DOI: 10.3390/cells10030486] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 02/06/2023] Open
Abstract
Ginseng is a traditional herbal medicine in eastern Asian countries. Most active constituents in ginseng are prepared via fermentation or organic acid pretreatment. Extracellular vesicles (EVs) are released by most organisms from prokaryotes to eukaryotes and play central roles in intra- and inter-species communications. Plants produce EVs upon exposure to microbes; however, their direct functions and utility for human health are barely known, except for being proposed as delivery vehicles. In this study, we isolated EVs from ginseng roots (GrEVs) or the culture supernatants of ginseng cells (GcEVs) derived from Panax ginseng C.A. Meyer and investigated their biological effects on human skin cells. GrEV or GcEV treatments improved the replicative senescent or senescence-associated pigmented phenotypes of human dermal fibroblasts or ultraviolet B radiation-treated human melanocytes, respectively, by downregulating senescence-associated molecules and/or melanogenesis-related proteins. Based on comprehensive lipidomic analysis using liquid chromatography mass spectrometry, the lipidomic profile of GrEVs differed from that of the parental root extracts, showing significant increases in 70 of 188 identified lipid species and prominent increases in diacylglycerols, some phospholipids (phosphatidylcholine, phosphatidylethanolamine, lysophosphatidylcholine), and sphingomyelin, revealing their unique vesicular properties. Therefore, our results imply that GEVs represent a novel type of bioactive and sustainable nanomaterials that can be applied to human tissues for improving tissue conditions and targeted delivery of active constituents.
Collapse
|
34
|
Park HS, Kim SY. Endothelial cell senescence: A machine learning-based meta-analysis of transcriptomic studies. Ageing Res Rev 2021; 65:101213. [PMID: 33189866 DOI: 10.1016/j.arr.2020.101213] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/30/2020] [Accepted: 11/09/2020] [Indexed: 01/04/2023]
Abstract
Numerous systemic vascular dysfunction that leads to age-related diseases is highly associated with endothelial cell (EC) senescence; thus, identifying consensus features of EC senescence is crucial in understanding the mechanisms and identifying potential therapeutic targets. Here, by utilizing a total of 8 screened studies from different origins of ECs, we have successfully obtained common features in both gene and pathway level via sophisticated machine learning algorithms. A total of 400 differentially expressed genes (DEGs) were newly discovered with meta-analysis when compared to the usage of individual studies. The generated parsimonious model established 36 genes and 57 pathways features with non-zero coefficient, suggesting remarkable association of phosphoglycerate dehydrogenase and serine biosynthesis pathway with endothelial cellular senescence. For the cross-validation process to measure model performance of 36 deduced features, leave-one-study-out cross-validation (LOSOCV) was employed, resulting in an overall area under the receiver operating characteristic (AUROC) of 0.983 (95 % CI, 0.952, 1.000) showing excellent discriminative performance. Moreover, pathway-level analysis was performed by Pathifier algorithm, obtaining a total of 698 pathway deregulation scores from the 10,416 merged genes. In this process, high dimensional data was eventually narrowed down to 57 core pathways with AUROC value of 0.982 (95 % CI, 0.945, 1.000). The robust model with high performance underscores the merit of utilizing sophisticated meta-analysis in finding consensus features of endothelial cell senescence, which may lead to the development of therapeutic targets and advanced understanding of vascular dysfunction pathogenesis with further elucidation.
Collapse
Affiliation(s)
- Hyun Suk Park
- Department of Biochemistry, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Sung Young Kim
- Department of Biochemistry, Konkuk University School of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
35
|
Kwon SM, Min S, Jeoun U, Sim MS, Jung GH, Hong SM, Jee BA, Woo HG, Lee C, Yoon G. Global spliceosome activity regulates entry into cellular senescence. FASEB J 2020; 35:e21204. [DOI: 10.1096/fj.202000395rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 12/30/2022]
Affiliation(s)
- So Mee Kwon
- Department of Biochemistry Ajou University School of Medicine Suwon Korea
- Department of Physiology Ajou University School of Medicine Suwon Korea
| | - Seongki Min
- Department of Biochemistry Ajou University School of Medicine Suwon Korea
- Department of Biomedical Sciences (BK21 Plus) Ajou University School of Medicine Suwon Korea
| | - Un‐woo Jeoun
- Department of Biochemistry Ajou University School of Medicine Suwon Korea
- Department of Biomedical Sciences (BK21 Plus) Ajou University School of Medicine Suwon Korea
| | - Min Seok Sim
- Department of Biochemistry Ajou University School of Medicine Suwon Korea
- Department of Biomedical Sciences (BK21 Plus) Ajou University School of Medicine Suwon Korea
| | - Gu Hyun Jung
- Department of Biochemistry Ajou University School of Medicine Suwon Korea
- Department of Biomedical Sciences (BK21 Plus) Ajou University School of Medicine Suwon Korea
| | - Sun Mi Hong
- Department of Biochemistry Ajou University School of Medicine Suwon Korea
- Department of Biomedical Sciences (BK21 Plus) Ajou University School of Medicine Suwon Korea
| | - Byul A. Jee
- Department of Physiology Ajou University School of Medicine Suwon Korea
| | - Hyun Goo Woo
- Department of Physiology Ajou University School of Medicine Suwon Korea
| | - Changhan Lee
- USC Leonard Davis School of Gerontology Los Angeles CA USA
| | - Gyesoon Yoon
- Department of Biochemistry Ajou University School of Medicine Suwon Korea
- Department of Biomedical Sciences (BK21 Plus) Ajou University School of Medicine Suwon Korea
| |
Collapse
|
36
|
Yao J, Ding D, Li X, Shen T, Fu H, Zhong H, Wei G, Ni T. Prevalent intron retention fine-tunes gene expression and contributes to cellular senescence. Aging Cell 2020; 19:e13276. [PMID: 33274830 PMCID: PMC7744961 DOI: 10.1111/acel.13276] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/24/2020] [Accepted: 10/18/2020] [Indexed: 12/20/2022] Open
Abstract
Intron retention (IR) is the least well‐understood alternative splicing type in animals, and its prevalence and function in physiological and pathological processes have long been underestimated. Cellular senescence contributes to individual aging and age‐related diseases and can also serve as an important cancer prevention mechanism. Dynamic IR events have been observed in senescence models and aged tissues; however, whether and how IR impacts senescence remain unclear. Through analyzing polyA+ RNA‐seq data from human replicative senescence models, we found IR was prevalent and dynamically regulated during senescence and IR changes negatively correlated with expression alteration of corresponding genes. We discovered that knocking down (KD) splicing factor U2AF1, which showed higher binding density to retained introns and decreased expression during senescence, led to senescence‐associated phenotypes and global IR changes. Intriguingly, U2AF1‐KD‐induced IR changes also negatively correlated with gene expression. Furthermore, we demonstrated that U2AF1‐mediated IR of specific gene (CPNE1 as an example) contributed to cellular senescence. Decreased expression of U2AF1, higher IR of CPNE1, and reduced expression of CPNE1 were also discovered in dermal fibroblasts with age. We discovered prevalent IR could fine‐tune gene expression and contribute to senescence‐associated phenotypes, largely extending the biological significance of IR.
Collapse
Affiliation(s)
- Jun Yao
- State Key Laboratory of Genetic Engineering Collaborative Innovation Center of Genetics and Development Human Phenome Institute School of Life Sciences Fudan University Shanghai P.R. China
| | - Dong Ding
- State Key Laboratory of Genetic Engineering Collaborative Innovation Center of Genetics and Development Human Phenome Institute School of Life Sciences Fudan University Shanghai P.R. China
| | - Xueping Li
- State Key Laboratory of Genetic Engineering Collaborative Innovation Center of Genetics and Development Human Phenome Institute School of Life Sciences Fudan University Shanghai P.R. China
| | - Ting Shen
- State Key Laboratory of Genetic Engineering Collaborative Innovation Center of Genetics and Development Human Phenome Institute School of Life Sciences Fudan University Shanghai P.R. China
| | - Haihui Fu
- State Key Laboratory of Genetic Engineering Collaborative Innovation Center of Genetics and Development Human Phenome Institute School of Life Sciences Fudan University Shanghai P.R. China
| | - Hua Zhong
- Department of Population Health NYU Langone School of Medicine New York NY USA
| | - Gang Wei
- State Key Laboratory of Genetic Engineering Collaborative Innovation Center of Genetics and Development Human Phenome Institute School of Life Sciences Fudan University Shanghai P.R. China
| | - Ting Ni
- State Key Laboratory of Genetic Engineering Collaborative Innovation Center of Genetics and Development Human Phenome Institute School of Life Sciences Fudan University Shanghai P.R. China
| |
Collapse
|
37
|
Yang D, Wei G, Long F, Nie H, Tian X, Qu L, Wang S, Li P, Qiu Y, Wang Y, Hong W, Ni T, Liu X, Zhu YZ. Histone methyltransferase Smyd3 is a new regulator for vascular senescence. Aging Cell 2020; 19:e13212. [PMID: 32779886 PMCID: PMC7511874 DOI: 10.1111/acel.13212] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/14/2020] [Accepted: 07/12/2020] [Indexed: 12/14/2022] Open
Abstract
Endothelial cell senescence is one of the main risk factors contributing to vascular diseases. As increasing number of “epigenetic drugs” entering clinical trials, understanding the mechanism of epigenetic regulation in vascular aging has significant implications in finding targets to cure vascular diseases. However, the epigenetic regulation of endothelial senescence remains unclear. Based on the findings that increased protein level of histone H3 lysine 4 (H3K4) methyltransferase Smyd3 and elevated H3K4me3 modification happened in angiotensin II (Ang II)‐induced senescence in rat endothelial cells, we are curious about whether and how Smyd3 can regulate endothelial senescence. We found that an increase of Smyd3 alone promoted senescence‐associated phenotypes, while knockdown of Smyd3 blocked senescence in endothelial cells. Furthermore, Smyd3‐specific inhibitor reversed vascular senescence‐associated phenotypes at cellular level. Importantly, Ang II‐induced vascular senescence can be greatly alleviated in Smyd3 knockout (KO) mice and those treated with Smyd3 inhibitor. Mechanistically, Smyd3 directly bound to the promoter region of Cdkn1a (coding for p21), then caused its increased H3K4me3 level and elevated gene expression, and ultimately gave rise to senescence‐associated phenotypes. Intriguingly, Smyd3‐mediated p21 upregulated expression also exists in human tissues of vascular disease, indicating it is probably an evolutionarily conserved mechanism in regulating vascular senescence. Thus, Smyd3 can act as a novel factor regulating endothelial senescence through transcriptionally promoting p21 expression. Blocking the Smyd3‐p21 signaling axis may also have potential medical implications in treating diseases related to vascular aging.
Collapse
Affiliation(s)
- Di Yang
- Department of Pharmacology Human Phenome Institute School of Pharmacy Fudan University Shanghai China
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy Macau University of Science and Technology Taipa China
| | - Gang Wei
- State Key Laboratory of Genetic Engineering & MOE Key Laboratory of Contemporary Anthropology Collaborative Innovation Center of Genetics and Development Human Phenome Institute School of Life Sciences and Huashan Hospital Fudan University Shanghai China
| | - Fen Long
- Department of Pharmacology Human Phenome Institute School of Pharmacy Fudan University Shanghai China
| | - Hongbo Nie
- State Key Laboratory of Genetic Engineering & MOE Key Laboratory of Contemporary Anthropology Collaborative Innovation Center of Genetics and Development Human Phenome Institute School of Life Sciences and Huashan Hospital Fudan University Shanghai China
| | - Xiaoli Tian
- Human Aging Research Institute School of Life Sciences Nanchang University Nanchang China
| | - Lefeng Qu
- Department of Vascular Surgery Changzheng Hospital Second Military Medical University Shanghai China
| | - ShuangXi Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research Qilu HospitalShandong University Jinan China
| | - Peng Li
- College of Pharmacy Xinxiang Medical University Xinxiang China
| | - Yue Qiu
- College of Pharmacy Xinxiang Medical University Xinxiang China
| | - Yang Wang
- College of Pharmacy Xinxiang Medical University Xinxiang China
| | - Wanjin Hong
- Institute of Molecular and Cellular Biology Singapore City Singapore
| | - Ting Ni
- State Key Laboratory of Genetic Engineering & MOE Key Laboratory of Contemporary Anthropology Collaborative Innovation Center of Genetics and Development Human Phenome Institute School of Life Sciences and Huashan Hospital Fudan University Shanghai China
| | - Xinhua Liu
- Department of Pharmacology Human Phenome Institute School of Pharmacy Fudan University Shanghai China
| | - Yi Zhun Zhu
- Department of Pharmacology Human Phenome Institute School of Pharmacy Fudan University Shanghai China
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy Macau University of Science and Technology Taipa China
| |
Collapse
|
38
|
Chen W, Wang X, Wei G, Huang Y, Shi Y, Li D, Qiu S, Zhou B, Cao J, Chen M, Qin P, Jin W, Ni T. Single-Cell Transcriptome Analysis Reveals Six Subpopulations Reflecting Distinct Cellular Fates in Senescent Mouse Embryonic Fibroblasts. Front Genet 2020; 11:867. [PMID: 32849838 PMCID: PMC7431633 DOI: 10.3389/fgene.2020.00867] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/16/2020] [Indexed: 12/31/2022] Open
Abstract
Replicative senescence is a hallmark of aging, which also contributes to individual aging. Mouse embryonic fibroblasts (MEFs) provide a convenient replicative senescence model. However, the heterogeneity of single MEFs during cellular senescence has remained unclear. Here, we conducted single-cell RNA sequencing on senescent MEFs. Principal component analysis showed obvious heterogeneity among these MEFs such that they could be divided into six subpopulations. Three types of gene expression analysis revealed distinct expression features of these six subpopulations. Trajectory analysis revealed three distinct lineages during MEF senescence. In the main lineage, some senescence-associated secretory phenotypes were upregulated in a subset of cells from senescent clusters, which could not be distinguished in a previous bulk study. In the other two lineages, a possibility of escape from cell cycle arrest and coupling between translation-related genes and ATP synthesis-related genes were also discovered. Additionally, we found co-expression of transcription factor HOXD8 coding gene and its potential target genes in the main lineage. Overexpression of Hoxd8 led to senescence-associated phenotypes, suggesting HOXD8 is a new regulator of MEF senescence. Together, our single-cell sequencing on senescent MEFs largely expanded the knowledge of a basic cell model for aging research.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Xuefei Wang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Gang Wei
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Yin Huang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yufang Shi
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- The First Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - Dan Li
- Field Application Department, Fluidigm (Shanghai) Instrument Technology Co., Ltd., Shanghai, China
| | - Shengnu Qiu
- Division of Biosciences, Faculty of Life Sciences, University College London, London, United Kingdom
| | - Bin Zhou
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Junhong Cao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Meng Chen
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Pengfei Qin
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Wenfei Jin
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Ting Ni
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| |
Collapse
|
39
|
Liu X, Wei L, Dong Q, Liu L, Zhang MQ, Xie Z, Wang X. A large-scale CRISPR screen and identification of essential genes in cellular senescence bypass. Aging (Albany NY) 2020; 11:4011-4031. [PMID: 31219803 PMCID: PMC6628988 DOI: 10.18632/aging.102034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 06/13/2019] [Indexed: 12/24/2022]
Abstract
Cellular senescence is an important mechanism of autonomous tumor suppression, while its consequence such as the senescence-associated secretory phenotype (SASP) may drive tumorigenesis and age-related diseases. Therefore, controlling the cell fate optimally when encountering senescence stress is helpful for anti-cancer or anti-aging treatments. To identify genes essential for senescence establishment or maintenance, we carried out a CRISPR-based screen with a deliberately designed single-guide RNA (sgRNA) library. The library comprised of about 12,000 kinds of sgRNAs targeting 1378 senescence-associated genes selected by integrating the information of literature mining, protein-protein interaction network, and differential gene expression. We successfully detected a dozen gene deficiencies potentially causing senescence bypass, and their phenotypes were further validated with a high true positive rate. RNA-seq analysis showed distinct transcriptome patterns of these bypass cells. Interestingly, in the bypass cells, the expression of SASP genes was maintained or elevated with CHEK2, HAS1, or MDK deficiency; but neutralized with MTOR, CRISPLD2, or MORF4L1 deficiency. Pathways of some age-related neurodegenerative disorders were also downregulated with MTOR, CRISPLD2, or MORF4L1 deficiency. The results demonstrated that disturbing these genes could lead to distinct cell fates as a consequence of senescence bypass, suggesting that they may play essential roles in cellular senescence.
Collapse
Affiliation(s)
- Xuehui Liu
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic and Systems Biology, Beijing National Research Center for Information Science and Technology, Department of Automation, Tsinghua University, Beijing 100084, China.,Present address: State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Lei Wei
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic and Systems Biology, Beijing National Research Center for Information Science and Technology, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Qiongye Dong
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic and Systems Biology, Beijing National Research Center for Information Science and Technology, Department of Automation, Tsinghua University, Beijing 100084, China.,Present address: Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Liyang Liu
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic and Systems Biology, Beijing National Research Center for Information Science and Technology, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Michael Q Zhang
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic and Systems Biology, Beijing National Research Center for Information Science and Technology, Department of Automation, Tsinghua University, Beijing 100084, China.,Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.,Department of Biological Sciences, Center for Systems Biology, The University of Texas, Richardson, TX 75080, USA
| | - Zhen Xie
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic and Systems Biology, Beijing National Research Center for Information Science and Technology, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Xiaowo Wang
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic and Systems Biology, Beijing National Research Center for Information Science and Technology, Department of Automation, Tsinghua University, Beijing 100084, China
| |
Collapse
|
40
|
Corrigendum. Aging Cell 2020; 19:e13165. [PMID: 32459888 PMCID: PMC7253056 DOI: 10.1111/acel.13165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
41
|
Swindell WR, Bojanowski K, Chaudhuri RK. A Zingerone Analog, Acetyl Zingerone, Bolsters Matrisome Synthesis, Inhibits Matrix Metallopeptidases, and Represses IL-17A Target Gene Expression. J Invest Dermatol 2020; 140:602-614.e15. [DOI: 10.1016/j.jid.2019.07.715] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/02/2019] [Accepted: 07/30/2019] [Indexed: 01/27/2023]
|
42
|
Extracellular Vesicles Derived from Senescent Fibroblasts Attenuate the Dermal Effect on Keratinocyte Differentiation. Int J Mol Sci 2020; 21:ijms21031022. [PMID: 32033114 PMCID: PMC7037765 DOI: 10.3390/ijms21031022] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/23/2020] [Accepted: 01/31/2020] [Indexed: 12/12/2022] Open
Abstract
The skin is a multilayered and primary defensive organ. Intimate intercellular communication in the skin is necessary to ensure effective surveillance. Extracellular vesicles (EVs) are being explored for their involvement in intercellular skin communication. The aim of this study was to evaluate how human dermal fibroblasts (HDFs) accelerate EV production during senescence and the effects of senescence-associated EVs on epidermal homeostasis. Replicative senescent HDFs were assessed with senescence-associated β-galactosidase staining and the expression of senescence-related markers. Isolated EVs were characterized by dynamic light scattering and EV marker expression. EVs secreted from untreated young or senescent HDFs, or from those treated with a nSMase inhibitor, antioxidant, and lysosomal activity regulators, were determined by sandwich ELISA for CD81. Human epidermal keratinocytes were treated with young- and senescent HDF-derived EVs. Compared to young HDFs, senescent HDFs produced relatively high levels of EVs due to the increased nSMase activity, oxidative stress, and altered lysosomal activity. The nSMase inhibitor, antioxidant, and agents that recovered lysosomal activity reduced EV secretion in senescent HDFs. Relative to young HDF-derived EVs, senescent HDF-derived EVs were less supportive in keratinocyte differentiation and barrier function but increased proinflammatory cytokine IL-6 levels. Our study suggests that dermis-derived EVs may regulate epidermal homeostasis by reflecting cellular status, which provides insight as to how the dermis communicates with the epidermis and influences skin senescence.
Collapse
|
43
|
Tempo-spatial alternative polyadenylation analysis reveals that 3' UTR lengthening of Mdm2 regulates p53 expression and cellular senescence in aged rat testis. Biochem Biophys Res Commun 2020; 523:1046-1052. [PMID: 31973811 DOI: 10.1016/j.bbrc.2020.01.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/11/2020] [Indexed: 12/21/2022]
Abstract
Although tissue aging is accompanied with cellular senescence, it is much complicated than senescence given both types and number of cells change with age. Alternative polyadenylation (APA) had shown tissue specificity and APA-mediated 3' untranslated region (3' UTR) lengthening could regulate senescence-associated phenotypes. However, whether tissue aging shows similar trends remains unknown. Here, we performed a comprehensive analysis on RNA-seq datasets derived from multiple cells and rat tissues of young and old age. Although APA-mediated 3' UTR lengthening in various senescent cells reinforced the previous discovery, tissue aging showed much more complexity in APA. Interestingly, testis was the only tissue displaying dramatic 3' UTR lengthening and decreased expression trend of corresponding genes in aged rat. Genes with longer 3' UTR in aged testis were enriched in senescence-associated pathways, among which, Mdm2, encoding an E3 ligase of p53, favored distal poly(A) site resulting in lengthened 3' UTR and decreased expression. Longer 3' UTR of Mdm2 generated less protein, and decreased Mdm2 expression led to senescence-associated phenotypes along with increased p53 and p21 protein abundance, which could all be reversed by Mdm2 overexpression. Our work revealed complicated APA changes during tissue aging and discovered APA-mediated 3' UTR lengthening of Mdm2 is a hidden layer in regulating the well-known senescence-related p53-p21 signal axis during testis aging, and also has potential implications regarding declined male fertility along aging.
Collapse
|
44
|
Chatsirisupachai K, Palmer D, Ferreira S, Magalhães JP. A human tissue-specific transcriptomic analysis reveals a complex relationship between aging, cancer, and cellular senescence. Aging Cell 2019; 18:e13041. [PMID: 31560156 PMCID: PMC6826163 DOI: 10.1111/acel.13041] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/28/2019] [Accepted: 08/31/2019] [Indexed: 11/29/2022] Open
Abstract
Aging is the biggest risk factor for cancer, but the mechanisms linking these two processes remain unclear. Using GTEx and TCGA data, we compared genes differentially expressed with age and genes differentially expressed in cancer among nine human tissues. In most tissues, aging and cancer gene expression pattern changed in the opposite direction. The exception was thyroid and uterus, where we found transcriptomic changes in the same direction in aging and in their corresponding cancers. The overlapping sets between genes differentially expressed with age and genes differentially expressed in cancer across tissues were enriched for several processes, mainly cell cycle and the immune system. Moreover, cellular senescence signatures, derived from a meta-analysis, changed in the same direction as aging in human tissues and in the opposite direction of cancer signatures. Therefore, transcriptomic changes in aging and in cellular senescence might relate to a decrease in cell proliferation, while cancer transcriptomic changes shift toward enhanced cell division. Our results highlight the complex relationship between aging and cancer and suggest that, while in general aging processes might be opposite to cancer, the transcriptomic links between human aging and cancer are tissue-specific.
Collapse
Affiliation(s)
- Kasit Chatsirisupachai
- Integrative Genomics of Ageing Group Institute of Ageing and Chronic Disease University of Liverpool Liverpool UK
| | - Daniel Palmer
- Integrative Genomics of Ageing Group Institute of Ageing and Chronic Disease University of Liverpool Liverpool UK
| | - Susana Ferreira
- Integrative Genomics of Ageing Group Institute of Ageing and Chronic Disease University of Liverpool Liverpool UK
| | - João Pedro Magalhães
- Integrative Genomics of Ageing Group Institute of Ageing and Chronic Disease University of Liverpool Liverpool UK
| |
Collapse
|
45
|
Jiménez-Merino J, Santos de Abreu I, Hiebert LS, Allodi S, Tiozzo S, De Barros CM, Brown FD. Putative stem cells in the hemolymph and in the intestinal submucosa of the solitary ascidian Styela plicata. EvoDevo 2019; 10:31. [PMID: 31788180 PMCID: PMC6876114 DOI: 10.1186/s13227-019-0144-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/02/2019] [Indexed: 12/28/2022] Open
Abstract
Background In various ascidian species, circulating stem cells have been documented to be involved in asexual reproduction and whole-body regeneration. Studies of these cell population(s) are mainly restricted to colonial species. Here, we investigate the occurrence of circulating stem cells in the solitary Styela plicata, a member of the Styelidae, a family with at least two independent origins of coloniality. Results Using flow cytometry, we characterized a population of circulating putative stem cells (CPSCs) in S. plicata and determined two gates likely enriched with CPSCs based on morphology and aldehyde dehydrogenase (ALDH) activity. We found an ALDH + cell population with low granularity, suggesting a stem-like state. In an attempt to uncover putative CPSCs niches in S. plicata, we performed a histological survey for hemoblast-like cells, followed by immunohistochemistry with stem cell and proliferation markers. The intestinal submucosa (IS) showed high cellular proliferation levels and high frequency of undifferentiated cells and histological and ultrastructural analyses revealed the presence of hemoblast aggregations in the IS suggesting a possible niche. Finally, we document the first ontogenetic appearance of distinct metamorphic circulatory mesenchyme cells, which precedes the emergence of juvenile hemocytes. Conclusions We find CPSCs in the hemolymph of the solitary ascidian Styela plicata, presumably involved in the regenerative capacity of this species. The presence of proliferating and undifferentiated mesenchymal cells suggests IS as a possible niche.
Collapse
Affiliation(s)
- Juan Jiménez-Merino
- 1Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Trav. 14, São Paulo, SP 101 05508-090 Brazil.,2Centro de Biologia Marinha (CEBIMar), Universidade de São Paulo, São Paulo, Brazil
| | - Isadora Santos de Abreu
- 3Laboratório de Neurobiologia Comparativa e do Desenvolvimento, Pós-Graduação em Ciências Biológicas-Fisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, RJ Brazil.,4Pós-Graduação em Ciências Morfológicas, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, RJ Brazil
| | - Laurel S Hiebert
- 1Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Trav. 14, São Paulo, SP 101 05508-090 Brazil.,2Centro de Biologia Marinha (CEBIMar), Universidade de São Paulo, São Paulo, Brazil
| | - Silvana Allodi
- 3Laboratório de Neurobiologia Comparativa e do Desenvolvimento, Pós-Graduação em Ciências Biológicas-Fisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, RJ Brazil.,4Pós-Graduação em Ciências Morfológicas, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, RJ Brazil
| | - Stefano Tiozzo
- 5CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Sorbonne Universités, 06230 Paris, France
| | - Cintia M De Barros
- 6Laboratório Integrado de Morfologia, Núcleo em Ecologia e Desenvolvimento Sócio Ambiental de Macaé, NUPEM, Universidade Federal do Rio de Janeiro, UFRJ, Macae, RJ Brazil
| | - Federico D Brown
- 1Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Trav. 14, São Paulo, SP 101 05508-090 Brazil.,2Centro de Biologia Marinha (CEBIMar), Universidade de São Paulo, São Paulo, Brazil.,Instituto Nacional de Ciência e Tecnologia em Estudos Interdisciplinares e Transdisciplinares em Ecologia e Evolução (IN-TREE), Salvador, BA Brazil
| |
Collapse
|
46
|
Mrazkova B, Dzijak R, Imrichova T, Kyjacova L, Barath P, Dzubak P, Holub D, Hajduch M, Nahacka Z, Andera L, Holicek P, Vasicova P, Sapega O, Bartek J, Hodny Z. Induction, regulation and roles of neural adhesion molecule L1CAM in cellular senescence. Aging (Albany NY) 2019; 10:434-462. [PMID: 29615539 PMCID: PMC5892697 DOI: 10.18632/aging.101404] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/22/2018] [Indexed: 12/12/2022]
Abstract
Aging involves tissue accumulation of senescent cells (SC) whose elimination through senolytic approaches may evoke organismal rejuvenation. SC also contribute to aging-associated pathologies including cancer, hence it is imperative to better identify and target SC. Here, we aimed to identify new cell-surface proteins differentially expressed on human SC. Besides previously reported proteins enriched on SC, we identified 78 proteins enriched and 73 proteins underrepresented in replicatively senescent BJ fibroblasts, including L1CAM, whose expression is normally restricted to the neural system and kidneys. L1CAM was: 1) induced in premature forms of cellular senescence triggered chemically and by gamma-radiation, but not in Ras-induced senescence; 2) induced upon inhibition of cyclin-dependent kinases by p16INK4a; 3) induced by TGFbeta and suppressed by RAS/MAPK(Erk) signaling (the latter explaining the lack of L1CAM induction in RAS-induced senescence); and 4) induced upon downregulation of growth-associated gene ANT2, growth in low-glucose medium or inhibition of the mevalonate pathway. These data indicate that L1CAM is controlled by a number of cell growth- and metabolism-related pathways during SC development. Functionally, SC with enhanced surface L1CAM showed increased adhesion to extracellular matrix and migrated faster. Our results provide mechanistic insights into senescence of human cells, with implications for future senolytic strategies.
Collapse
Affiliation(s)
- Blanka Mrazkova
- Department of Genome Integrity, Institute of Molecular Genetics of the ASCR, Prague 14220, Czech Republic
| | - Rastislav Dzijak
- Department of Genome Integrity, Institute of Molecular Genetics of the ASCR, Prague 14220, Czech Republic
| | - Terezie Imrichova
- Department of Genome Integrity, Institute of Molecular Genetics of the ASCR, Prague 14220, Czech Republic
| | - Lenka Kyjacova
- Department of Genome Integrity, Institute of Molecular Genetics of the ASCR, Prague 14220, Czech Republic
| | - Peter Barath
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava 84538, Slovakia
| | - Petr Dzubak
- Institute of Molecular and Translational Medicine, Palacky University, Olomouc 77147, Czech Republic
| | - Dusan Holub
- Institute of Molecular and Translational Medicine, Palacky University, Olomouc 77147, Czech Republic
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Palacky University, Olomouc 77147, Czech Republic
| | - Zuzana Nahacka
- Laboratory of Molecular Therapy, Institute of Biotechnology of the ASCR, Prague 14220, Czech Republic
| | - Ladislav Andera
- Laboratory of Molecular Therapy, Institute of Biotechnology of the ASCR, Prague 14220, Czech Republic
| | - Petr Holicek
- Laboratory of Molecular Therapy, Institute of Biotechnology of the ASCR, Prague 14220, Czech Republic
| | - Pavla Vasicova
- Department of Genome Integrity, Institute of Molecular Genetics of the ASCR, Prague 14220, Czech Republic
| | - Olena Sapega
- Laboratory of Immunological and Tumour Models, Institute of Molecular Genetics of the ASCR, Prague 14220, Czech Republic
| | - Jiri Bartek
- Department of Genome Integrity, Institute of Molecular Genetics of the ASCR, Prague 14220, Czech Republic.,Danish Cancer Society Research Center, Copenhagen DK-2100, Denmark.,Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Zdenek Hodny
- Department of Genome Integrity, Institute of Molecular Genetics of the ASCR, Prague 14220, Czech Republic
| |
Collapse
|
47
|
Zhao Z, Dong Q, Liu X, Wei L, Liu L, Li Y, Wang X. Dynamic transcriptome profiling in DNA damage-induced cellular senescence and transient cell-cycle arrest. Genomics 2019; 112:1309-1317. [PMID: 31376528 DOI: 10.1016/j.ygeno.2019.07.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 04/14/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022]
Abstract
Cellular senescence is an irreversible cell cycle arrest process associated with aging and senescence-related diseases. DNA damage is an extensive feature of cellular senescence and aging. Different levels of DNA damage could lead to cellular senescence or transient cell-cycle arrest, but the genetic regulatory mechanisms determining cell fate are still not clear. In this work, high-resolution time course analysis of gene expression in DNA damage-induced cellular senescence and transient cell-cycle arrest was used to explore the transcriptomic differences between different cell fates after DNA damage response and to investigate the key regulatory factors affecting senescent cell fates. Pathways such as the cell cycle, DNA repair and cholesterol metabolism showed characteristic differential response. A number of key transcription factors were predicted to regulating cell cycle and DNA repair. Our study provides genome-wide insights into the molecular-level mechanisms of senescent cell fate decisions after DNA damage response.
Collapse
Affiliation(s)
- Zhen Zhao
- Ministry of Education Key Laboratory of Bioinformatics, Center for Synthetic and System Biology, BNRist, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Qiongye Dong
- Ministry of Education Key Laboratory of Bioinformatics, Center for Synthetic and System Biology, BNRist, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Xuehui Liu
- Ministry of Education Key Laboratory of Bioinformatics, Center for Synthetic and System Biology, BNRist, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Lei Wei
- Ministry of Education Key Laboratory of Bioinformatics, Center for Synthetic and System Biology, BNRist, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Liyang Liu
- Ministry of Education Key Laboratory of Bioinformatics, Center for Synthetic and System Biology, BNRist, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Yanda Li
- Ministry of Education Key Laboratory of Bioinformatics, Center for Synthetic and System Biology, BNRist, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Xiaowo Wang
- Ministry of Education Key Laboratory of Bioinformatics, Center for Synthetic and System Biology, BNRist, Department of Automation, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
48
|
Abstract
Organismal aging is accompanied by a host of progressive metabolic alterations and an accumulation of senescent cells, along with functional decline and the appearance of multiple diseases. This implies that the metabolic features of cell senescence may contribute to the organism’s metabolic changes and be closely linked to age-associated diseases, especially metabolic syndromes. However, there is no clear understanding of senescent metabolic characteristics. Here, we review key metabolic features and regulators of cellular senescence, focusing on mitochondrial dysfunction and anabolic deregulation, and their link to other senescence phenotypes and aging. We further discuss the mechanistic involvement of the metabolic regulators mTOR, AMPK, and GSK3, proposing them as key metabolic switches for modulating senescence.
Collapse
Affiliation(s)
- So Mee Kwon
- Departments of Biochemistry, Ajou University School of Medicine, Suwon 16499, Korea
| | - Sun Mi Hong
- Departments of Biochemistry and Biomedical Sciences (BK21 Plus), Ajou University School of Medicine, Suwon 16499, Korea
| | - Young-Kyoung Lee
- Departments of Biochemistry, Ajou University School of Medicine, Suwon 16499, Korea
| | - Seongki Min
- Departments of Biochemistry and Biomedical Sciences (BK21 Plus), Ajou University School of Medicine, Suwon 16499, Korea
| | - Gyesoon Yoon
- Departments of Biochemistry and Biomedical Sciences (BK21 Plus), Ajou University School of Medicine, Suwon 16499, Korea
| |
Collapse
|
49
|
Chung HY, Kim DH, Lee EK, Chung KW, Chung S, Lee B, Seo AY, Chung JH, Jung YS, Im E, Lee J, Kim ND, Choi YJ, Im DS, Yu BP. Redefining Chronic Inflammation in Aging and Age-Related Diseases: Proposal of the Senoinflammation Concept. Aging Dis 2019; 10:367-382. [PMID: 31011483 PMCID: PMC6457053 DOI: 10.14336/ad.2018.0324] [Citation(s) in RCA: 324] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 03/24/2018] [Indexed: 12/13/2022] Open
Abstract
Age-associated chronic inflammation is characterized by unresolved and uncontrolled inflammation with multivariable low-grade, chronic and systemic responses that exacerbate the aging process and age-related chronic diseases. Currently, there are two major hypotheses related to the involvement of chronic inflammation in the aging process: molecular inflammation of aging and inflammaging. However, neither of these hypotheses satisfactorily addresses age-related chronic inflammation, considering the recent advances that have been made in inflammation research. A more comprehensive view of age-related inflammation, that has a scope beyond the conventional view, is therefore required. In this review, we discuss newly emerging data on multi-phase inflammatory networks and proinflammatory pathways as they relate to aging. We describe the age-related upregulation of nuclear factor (NF)-κB signaling, cytokines/chemokines, endoplasmic reticulum (ER) stress, inflammasome, and lipid accumulation. The later sections of this review present our expanded view of age-related senescent inflammation, a process we term "senoinflammation", that we propose here as a novel concept. As described in the discussion, senoinflammation provides a schema highlighting the important and ever-increasing roles of proinflammatory senescence-associated secretome, inflammasome, ER stress, TLRs, and microRNAs, which support the senoinflammation concept. It is hoped that this new concept of senoinflammation opens wider and deeper avenues for basic inflammation research and provides new insights into the anti-inflammatory therapeutic strategies targeting the multiple proinflammatory pathways and mediators and mediators that underlie the pathophysiological aging process.
Collapse
Affiliation(s)
- Hae Young Chung
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609-735, Korea.
| | - Dae Hyun Kim
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609-735, Korea.
| | - Eun Kyeong Lee
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609-735, Korea.
- Pathological and Analytical Center, Korea Institute of Toxicology, Daejeon 34114, Korea.
| | - Ki Wung Chung
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609-735, Korea.
| | - Sangwoon Chung
- Department of Internal Medicine, Pulmonary, Allergy, Critical Care & Sleep Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Bonggi Lee
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu 41062, Republic of Korea.
| | - Arnold Y. Seo
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| | - Jae Heun Chung
- Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan 50612, Korea.
| | - Young Suk Jung
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609-735, Korea.
| | - Eunok Im
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609-735, Korea.
| | - Jaewon Lee
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609-735, Korea.
| | - Nam Deuk Kim
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609-735, Korea.
| | - Yeon Ja Choi
- Department of Biopharmaceutical Engineering, Division of Chemistry and Biotechnology, Dongguk University, Gyeongju 38066, Korea.
| | - Dong Soon Im
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609-735, Korea.
| | - Byung Pal Yu
- Department of Physiology, The University of Texas Health Science Center at San Antonio, TX 78229, USA.
| |
Collapse
|
50
|
Nassrally MS, Lau A, Wise K, John N, Kotecha S, Lee KL, Brooks RF. Cell cycle arrest in replicative senescence is not an immediate consequence of telomere dysfunction. Mech Ageing Dev 2019; 179:11-22. [PMID: 30710559 DOI: 10.1016/j.mad.2019.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 12/19/2018] [Accepted: 01/28/2019] [Indexed: 11/15/2022]
Abstract
In replicative senescence, cells with critically-short telomeres activate a DNA-damage response leading to cell-cycle arrest, while those without telomere dysfunction would be expected to cycle normally. However, population growth declines more gradually than such a simple binary switch between cycling and non-cycling states would predict. We show here that late-passage cultures of human fibroblasts are not a simple mixture of cycling and non-cycling cells. Rather, although some cells had short cycle times comparable to those of younger cells, others continued to divide but with greatly extended cycle times, indicating a more-gradual approach to permanent arrest. Remarkably, in late passage cells, the majority showed prominent DNA-damage foci positive for 53BP1, yet many continued to divide. Evidently, the DNA-damage-response elicited by critically-short telomeres is not initially strong enough for complete cell-cycle arrest. A similar continuation of the cell cycle in the face of an active DNA-damage response was also seen in cells treated with a low dose of doxorubicin sufficient to produce multiple 53BP1 foci in all nuclei. Cell cycle checkpoint engagement in response to DNA damage is thus weaker than generally supposed, explaining why an accumulation of dysfunctional telomeres is needed before marked cell cycle elongation or permanent arrest is achieved.
Collapse
Affiliation(s)
- M Shamim Nassrally
- King's College London, Faculty of Life Sciences & Medicine, Department of Anatomy, Guy's Campus, LONDON SE1 1UL, UK
| | - Ashley Lau
- King's College London, Faculty of Life Sciences & Medicine, Department of Anatomy, Guy's Campus, LONDON SE1 1UL, UK
| | - Katherine Wise
- King's College London, Faculty of Life Sciences & Medicine, Department of Anatomy, Guy's Campus, LONDON SE1 1UL, UK
| | - Noah John
- King's College London, Faculty of Life Sciences & Medicine, Department of Anatomy, Guy's Campus, LONDON SE1 1UL, UK
| | - Sanjeev Kotecha
- King's College London, Faculty of Life Sciences & Medicine, Department of Anatomy, Guy's Campus, LONDON SE1 1UL, UK
| | - Kar Lai Lee
- King's College London, Faculty of Life Sciences & Medicine, Department of Anatomy, Guy's Campus, LONDON SE1 1UL, UK
| | - Robert F Brooks
- King's College London, Faculty of Life Sciences & Medicine, Department of Anatomy, Guy's Campus, LONDON SE1 1UL, UK; St George's, University of London, Molecular and Clinical Sciences Research Institute, Mailpoint J2A, Cranmer Terrace, London, SW17 0RE, UK.
| |
Collapse
|