1
|
Hollingsworth BA, Aldrich JT, Case CM, DiCarlo AL, Hoffman CM, Jakubowski AA, Liu Q, Loelius SG, PrabhuDas M, Winters TA, Cassatt DR. Immune Dysfunction from Radiation Exposure. Radiat Res 2023; 200:396-416. [PMID: 38152282 PMCID: PMC10751071 DOI: 10.1667/rade-22-00004.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
The hematopoietic system is highly sensitive to ionizing radiation. Damage to the immune system may result in opportunistic infections and hemorrhage, which could lead to mortality. Inflammation triggered by tissue damage can also lead to additional local or widespread tissue damage. The immune system is responsible for tissue repair and restoration, which is made more challenging when it is in the process of self-recovery. Because of these challenges, the Radiation and Nuclear Countermeasures Program (RNCP) and the Basic Immunology Branch (BIB) under the Division of Allergy, Immunology, and Transplantation (DAIT) within the National Institute of Allergy and Infectious Diseases (NIAID), along with partners from the Biomedical Advanced Research and Development Authority (BARDA), and the Radiation Injury Treatment Network (RITN) sponsored a two-day meeting titled Immune Dysfunction from Radiation Exposure held on September 9-10, 2020. The intent was to discuss the manifestations and mechanisms of radiation-induced immune dysfunction in people and animals, identify knowledge gaps, and discuss possible treatments to restore immune function and enhance tissue repair after irradiation.
Collapse
Affiliation(s)
- Brynn A. Hollingsworth
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
- Current address: Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, Maryland
| | | | - Cullen M. Case
- Radiation Injury Treatment Network, Minneapolis, Minnesota
| | - Andrea L. DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Corey M. Hoffman
- Biomedical Advanced Research and Development Authority (BARDA), Office of the Assistant Secretary for Preparedness and Response (ASPR), Department of Health and Human Services (HHS), Washington, DC
| | | | - Qian Liu
- Basic Immunology Branch (BIB), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Shannon G. Loelius
- Biomedical Advanced Research and Development Authority (BARDA), Office of the Assistant Secretary for Preparedness and Response (ASPR), Department of Health and Human Services (HHS), Washington, DC
| | - Mercy PrabhuDas
- Basic Immunology Branch (BIB), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Thomas A. Winters
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - David R. Cassatt
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| |
Collapse
|
2
|
Long-Term Immunological Consequences of Radiation Exposure in a Diverse Cohort of Rhesus Macaques. Int J Radiat Oncol Biol Phys 2023; 115:945-956. [PMID: 36288757 PMCID: PMC9974872 DOI: 10.1016/j.ijrobp.2022.10.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE The aim of this study was to develop an improved understanding of the delayed immunologic effects of acute total body irradiation (TBI) using a diverse cohort of nonhuman primates as a model for an irradiated human population. METHODS AND MATERIALS Immune recovery was evaluated in 221 rhesus macaques either left unirradiated (n = 36) or previously irradiated (n = 185) at 1.1 to 8.5 Gy TBI (median, 6.5 Gy) when aged 2.1 to 15.5 years (median, 4.2 years). Blood was drawn annually for up to 5 years total between 0.5 and 14.3 years after exposure. Blood was analyzed by complete blood count, immunophenotyping of monocytes, dendritic cells (DC) and lymphocytes by flow cytometry, and signal joint T-cell receptor exclusion circle quantification in isolated peripheral blood CD4 and CD8 T cells. Animals were categorized by age, irradiation status, and time since irradiation. Sex-adjusted means of immune metrics were evaluated by generalized estimating equation models to identify cell populations altered by TBI. RESULTS Overall, the differences between irradiated and nonirradiated animals were subtle and largely restricted to younger animals and select cell populations. Subsets of monocytes, DC, T cells, and B cells showed significant interaction effects between radiation dose and age after adjustment for sex. Irradiation at a young age caused transient increases in the percentage of peripheral blood myeloid DC and dose-dependent changes in monocyte balance for at least 5 years after TBI. TBI also led to a sustained decrease in the percentage of circulating memory B cells. Young irradiated animals exhibited statistically significant and prolonged disruption of the naïve/effector memory/central memory CD4 and CD8 T-cell equilibrium and exhibited a dose-dependent increase in thymopoiesis for 2 to 3 years after exposure. CONCLUSIONS This study indicates TBI subtly but significantly alters the circulating proportions of cellular mediators of adaptive immune memory for several years after irradiation, especially in macaques under 5 years of age and those receiving a high dose of radiation.
Collapse
|
3
|
Pugh JL, Coplen CP, Sukhina AS, Uhrlaub J, Padilla‐Torres J, Hayashi T, Nikolich‐Žugich J. Lifelong cytomegalovirus and early-LIFE irradiation synergistically potentiate age-related defects in response to vaccination and infection. Aging Cell 2022; 21:e13648. [PMID: 35657768 PMCID: PMC9282846 DOI: 10.1111/acel.13648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/02/2022] [Accepted: 05/18/2022] [Indexed: 12/02/2022] Open
Abstract
While whole-body irradiation (WBI) can induce some hallmarks of immune aging, (re)activation of persistent microbial infection also occurs following WBI and may contribute to immune effects of WBI over the lifespan. To test this hypothesis in a model relevant to human immune aging, we examined separate and joint effects of lifelong latent murine cytomegalovirus (MCMV) and of early-life WBI over the course of the lifespan. In late life, we then measured the response to a West Nile virus (WNV) live attenuated vaccine, and lethal WNV challenge subsequent to vaccination. We recently published that a single dose of non-lethal WBI in youth, on its own, was not sufficient to accelerate aging of the murine immune system, despite widespread DNA damage and repopulation stress in hematopoietic cells. However, 4Gy sub-lethal WBI caused manifest reactivation of MCMV. Following vaccination and challenge with WNV in the old age, MCMV-infected animals experiencing 4Gy, but not lower, dose of sub-lethal WBI in youth had reduced survival. By contrast, old irradiated mice lacking MCMV and MCMV-infected, but not irradiated, mice were both protected to the same high level as the old non-irradiated, uninfected controls. Analysis of the quality and quantity of anti-WNV immunity showed that higher mortality in MCMV-positive WBI mice correlated with increased levels of MCMV-specific immune activation during WNV challenge. Moreover, we demonstrate that infection, including that by WNV, led to MCMV reactivation. Our data suggest that MCMV reactivation may be an important determinant of increased late-life mortality following early-life irradiation and late-life acute infection.
Collapse
Affiliation(s)
- Jason L. Pugh
- Department of ImmunobiologyUniversity of Arizona College of MedicineTucsonArizonaUSA
- Arizona Center on AgingUniversity of Arizona College of MedicineTucsonArizonaUSA
- Graduate Interdisciplinary Program in GeneticsUniversity of ArizonaTucsonArizonaUSA
| | - Christopher P. Coplen
- Department of ImmunobiologyUniversity of Arizona College of MedicineTucsonArizonaUSA
- Arizona Center on AgingUniversity of Arizona College of MedicineTucsonArizonaUSA
| | - Alona S. Sukhina
- Department of ImmunobiologyUniversity of Arizona College of MedicineTucsonArizonaUSA
| | - Jennifer L. Uhrlaub
- Department of ImmunobiologyUniversity of Arizona College of MedicineTucsonArizonaUSA
- Arizona Center on AgingUniversity of Arizona College of MedicineTucsonArizonaUSA
| | - Jose Padilla‐Torres
- Department of ImmunobiologyUniversity of Arizona College of MedicineTucsonArizonaUSA
| | | | - Janko Nikolich‐Žugich
- Department of ImmunobiologyUniversity of Arizona College of MedicineTucsonArizonaUSA
- Arizona Center on AgingUniversity of Arizona College of MedicineTucsonArizonaUSA
- Graduate Interdisciplinary Program in GeneticsUniversity of ArizonaTucsonArizonaUSA
- BIO5 Institute University of ArizonaTucsonArizonaUSA
| |
Collapse
|
4
|
Fan X, Fan Z, Yang Z, Huang T, Tong Y, Yang D, Mao X, Yang M. Flavonoids-Natural Gifts to Promote Health and Longevity. Int J Mol Sci 2022; 23:ijms23042176. [PMID: 35216290 PMCID: PMC8879655 DOI: 10.3390/ijms23042176] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 02/01/2023] Open
Abstract
The aging of mammals is accompanied by the progressive atrophy of tissues and organs and the accumulation of random damage to macromolecular DNA, protein, and lipids. Flavonoids have excellent antioxidant, anti-inflammatory, and neuroprotective effects. Recent studies have shown that flavonoids can delay aging and prolong a healthy lifespan by eliminating senescent cells, inhibiting senescence-related secretion phenotypes (SASPs), and maintaining metabolic homeostasis. However, only a few systematic studies have described flavonoids in clinical treatment for anti-aging, which needs to be explored further. This review first highlights the association between aging and macromolecular damage. Then, we discuss advances in the role of flavonoid molecules in prolonging the health span and lifespan of organisms. This study may provide crucial information for drug design and developmental and clinical applications based on flavonoids.
Collapse
Affiliation(s)
- Xiaolan Fan
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (X.F.); (Z.F.); (Z.Y.); (T.H.); (Y.T.); (D.Y.); (X.M.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Ziqiang Fan
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (X.F.); (Z.F.); (Z.Y.); (T.H.); (Y.T.); (D.Y.); (X.M.)
| | - Ziyue Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (X.F.); (Z.F.); (Z.Y.); (T.H.); (Y.T.); (D.Y.); (X.M.)
| | - Tiantian Huang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (X.F.); (Z.F.); (Z.Y.); (T.H.); (Y.T.); (D.Y.); (X.M.)
| | - Yingdong Tong
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (X.F.); (Z.F.); (Z.Y.); (T.H.); (Y.T.); (D.Y.); (X.M.)
| | - Deying Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (X.F.); (Z.F.); (Z.Y.); (T.H.); (Y.T.); (D.Y.); (X.M.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xueping Mao
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (X.F.); (Z.F.); (Z.Y.); (T.H.); (Y.T.); (D.Y.); (X.M.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingyao Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (X.F.); (Z.F.); (Z.Y.); (T.H.); (Y.T.); (D.Y.); (X.M.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence:
| |
Collapse
|
5
|
Palacio L, Goyer M, Maggiorani D, Espinosa A, Villeneuve N, Bourbonnais S, Moquin‐Beaudry G, Le O, Demaria M, Davalos AR, Decaluwe H, Beauséjour C. Restored immune cell functions upon clearance of senescence in the irradiated splenic environment. Aging Cell 2019; 18:e12971. [PMID: 31148373 PMCID: PMC6612633 DOI: 10.1111/acel.12971] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 04/16/2019] [Accepted: 05/06/2019] [Indexed: 01/01/2023] Open
Abstract
Some studies show eliminating senescent cells rejuvenate aged mice and attenuate deleterious effects of chemotherapy. Nevertheless, it remains unclear whether senescence affects immune cell function. We provide evidence that exposure of mice to ionizing radiation (IR) promotes the senescent‐associated secretory phenotype (SASP) and expression of p16INK4a in splenic cell populations. We observe splenic T cells exhibit a reduced proliferative response when cultured with allogenic cells in vitro and following viral infection in vivo. Using p16‐3MR mice that allow elimination of p16INK4a‐positive cells with exposure to ganciclovir, we show that impaired T‐cell proliferation is partially reversed, mechanistically dependent on p16INK4a expression and the SASP. Moreover, we found macrophages isolated from irradiated spleens to have a reduced phagocytosis activity in vitro, a defect also restored by the elimination of p16INK4a expression. Our results provide molecular insight on how senescence‐inducing IR promotes loss of immune cell fitness, which suggest senolytic drugs may improve immune cell function in aged and patients undergoing cancer treatment.
Collapse
Affiliation(s)
- Lina Palacio
- Centre de recherche du CHU Ste‐Justine Montreal Quebec Canada
- Département de pharmacologie et physiologie, Faculté de Médecine Université de Montréal Montreal Quebec Canada
| | - Marie‐Lyn Goyer
- Centre de recherche du CHU Ste‐Justine Montreal Quebec Canada
- Département de pharmacologie et physiologie, Faculté de Médecine Université de Montréal Montreal Quebec Canada
| | - Damien Maggiorani
- Centre de recherche du CHU Ste‐Justine Montreal Quebec Canada
- Département de pharmacologie et physiologie, Faculté de Médecine Université de Montréal Montreal Quebec Canada
| | - Andrea Espinosa
- Centre de recherche du CHU Ste‐Justine Montreal Quebec Canada
| | | | | | - Gaël Moquin‐Beaudry
- Centre de recherche du CHU Ste‐Justine Montreal Quebec Canada
- Département de pharmacologie et physiologie, Faculté de Médecine Université de Montréal Montreal Quebec Canada
| | - Oanh Le
- Centre de recherche du CHU Ste‐Justine Montreal Quebec Canada
| | - Marco Demaria
- European Research Institute for the Biology of Aging (ERIBA), University Medical Center Groningen (UMCG) University of Groningen Groningen The Netherlands
| | | | - Hélène Decaluwe
- Centre de recherche du CHU Ste‐Justine Montreal Quebec Canada
- Département de Pédiatrie, Faculté de Médecine Université de Montréal Montreal Quebec Canada
| | - Christian Beauséjour
- Centre de recherche du CHU Ste‐Justine Montreal Quebec Canada
- Département de pharmacologie et physiologie, Faculté de Médecine Université de Montréal Montreal Quebec Canada
| |
Collapse
|
6
|
DNA damage in aging, the stem cell perspective. Hum Genet 2019; 139:309-331. [PMID: 31324975 DOI: 10.1007/s00439-019-02047-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/05/2019] [Indexed: 02/07/2023]
Abstract
DNA damage is one of the most consistent cellular process proposed to contribute to aging. The maintenance of genomic and epigenomic integrity is critical for proper function of cells and tissues throughout life, and this homeostasis is under constant strain from both extrinsic and intrinsic insults. Considering the relationship between lifespan and genotoxic burden, it is plausible that the longest-lived cellular populations would face an accumulation of DNA damage over time. Tissue-specific stem cells are multipotent populations residing in localized niches and are responsible for maintaining all lineages of their resident tissue/system throughout life. However, many of these stem cells are impacted by genotoxic stress. Several factors may dictate the specific stem cell population response to DNA damage, including the niche location, life history, and fate decisions after damage accrual. This leads to differential handling of DNA damage in different stem cell compartments. Given the importance of adult stem cells in preserving normal tissue function during an individual's lifetime, DNA damage sensitivity and accumulation in these compartments could have crucial implications for aging. Despite this, more support for direct functional effects driven by accumulated DNA damage in adult stem cell compartments is needed. This review will present current evidence for the accumulation and potential influence of DNA damage in adult tissue-specific stem cells and propose inquiry directions that could benefit individual healthspan.
Collapse
|
7
|
Thompson HL, Smithey MJ, Uhrlaub JL, Jeftić I, Jergović M, White SE, Currier N, Lang AM, Okoye A, Park B, Picker LJ, Surh CD, Nikolich-Žugich J. Lymph nodes as barriers to T-cell rejuvenation in aging mice and nonhuman primates. Aging Cell 2019; 18:e12865. [PMID: 30430748 PMCID: PMC6351843 DOI: 10.1111/acel.12865] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/04/2018] [Accepted: 09/27/2018] [Indexed: 01/16/2023] Open
Abstract
In youth, thymic involution curtails production of new naïve T cells, placing the onus of T-cell maintenance upon secondary lymphoid organs (SLO). This peripheral maintenance preserves the size of the T-cell pool for much of the lifespan, but wanes in the last third of life, leading to a dearth of naïve T cells in blood and SLO, and contributing to suboptimal immune defense. Both keratinocyte growth factor (KGF) and sex steroid ablation (SSA) have been shown to transiently increase the size and cellularity of the old thymus. It is less clear whether this increase can improve protection of old animals from infectious challenge. Here, we directly measured the extent to which thymic rejuvenation benefits the peripheral T-cell compartment of old mice and nonhuman primates. Following treatment of old animals with either KGF or SSA, we observed robust rejuvenation of thymic size and cellularity, and, in a reporter mouse model, an increase in recent thymic emigrants (RTE) in the blood. However, few RTE were found in the spleen and even fewer in the lymph nodes, and SSA-treated mice showed no improvement in immune defense against West Nile virus. In parallel, we found increased disorganization and fibrosis in old LN of both mice and nonhuman primates. These results suggest that SLO defects with aging can negate the effects of successful thymic rejuvenation in immune defense.
Collapse
Affiliation(s)
- Heather L. Thompson
- Department of Immunobiology; University of Arizona College of Medicine-Tucson; Tucson Arizona
- Arizona Center on Aging; University of Arizona College of Medicine-Tucson; Tucson Arizona
| | - Megan J. Smithey
- Department of Immunobiology; University of Arizona College of Medicine-Tucson; Tucson Arizona
- Arizona Center on Aging; University of Arizona College of Medicine-Tucson; Tucson Arizona
| | - Jennifer L. Uhrlaub
- Department of Immunobiology; University of Arizona College of Medicine-Tucson; Tucson Arizona
- Arizona Center on Aging; University of Arizona College of Medicine-Tucson; Tucson Arizona
| | - Ilija Jeftić
- Department of Immunobiology; University of Arizona College of Medicine-Tucson; Tucson Arizona
- Arizona Center on Aging; University of Arizona College of Medicine-Tucson; Tucson Arizona
| | - Mladen Jergović
- Department of Immunobiology; University of Arizona College of Medicine-Tucson; Tucson Arizona
- Arizona Center on Aging; University of Arizona College of Medicine-Tucson; Tucson Arizona
| | - Sarah E. White
- Department of Immunobiology; University of Arizona College of Medicine-Tucson; Tucson Arizona
- Arizona Center on Aging; University of Arizona College of Medicine-Tucson; Tucson Arizona
- Honors College; University of Arizona; Tucson Arizona
| | - Noreen Currier
- Vaccine and Gene Therapy Institute; Oregon Health and Science University; Beaverton Oregon
- Oregon National Primate Research Center; Beaverton Oregon
| | - Anna M. Lang
- Vaccine and Gene Therapy Institute; Oregon Health and Science University; Beaverton Oregon
- Oregon National Primate Research Center; Beaverton Oregon
| | - Afam Okoye
- Vaccine and Gene Therapy Institute; Oregon Health and Science University; Beaverton Oregon
- Oregon National Primate Research Center; Beaverton Oregon
| | - Byung Park
- Knight Cancer Center; Oregon Health and Science University; Portland Oregon
| | - Louis J. Picker
- Vaccine and Gene Therapy Institute; Oregon Health and Science University; Beaverton Oregon
- Oregon National Primate Research Center; Beaverton Oregon
| | - Charles D. Surh
- Academy of Immunology and Microbiology; Institute for Basic Science; Pohang South Korea
- Department of Integrative Biosciences and Biotechnology; Pohang University of Science and Technology; Pohang South Korea
- Division of Developmental Immunology; La Jolla Institute for Allergy and Immunology; California
| | - Janko Nikolich-Žugich
- Department of Immunobiology; University of Arizona College of Medicine-Tucson; Tucson Arizona
- Arizona Center on Aging; University of Arizona College of Medicine-Tucson; Tucson Arizona
- Oregon National Primate Research Center; Beaverton Oregon
| |
Collapse
|
8
|
Impact of early life exposure to ionizing radiation on influenza vaccine response in an elderly Japanese cohort. Vaccine 2018; 36:6650-6659. [PMID: 30274868 DOI: 10.1016/j.vaccine.2018.09.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 09/12/2018] [Accepted: 09/23/2018] [Indexed: 01/10/2023]
Abstract
The objective of this study was to evaluate effects of whole body radiation exposure early in life on influenza vaccination immune responses much later in life. A total of 292 volunteers recruited from the cohort members of ongoing Adult Health Study (AHS) of Japanese atomic bomb (A-bomb) survivors completed this observational study spanning two influenza seasons (2011-2012 and 2012-2013). Peripheral blood samples were collected prior to and three weeks after vaccination. Serum hemagglutination inhibition (HAI) antibody titers were measured as well as concentrations of 25 cytokines and chemokines in culture supernatant from peripheral blood mononuclear cells, with and without in vitro stimulation with influenza vaccine. We found that influenza vaccination modestly enhanced serum HAI titers in this unique cohort of elderly subjects, with seroprotection ranging from 18 to 48% for specific antigen/season combinations. Twelve percent of subjects were seroprotected against all three vaccine antigens post-vaccination. Males were generally more likely to be seroprotected for one or more antigens post-vaccination, with no differences in vaccine responses based on age at vaccination or radiation exposure in early life. These results show that early life exposure to ionizing radiation does not prevent responses of elderly A-bomb survivors to seasonal influenza vaccine.
Collapse
|
9
|
Candéias SM, Mika J, Finnon P, Verbiest T, Finnon R, Brown N, Bouffler S, Polanska J, Badie C. Low-dose radiation accelerates aging of the T-cell receptor repertoire in CBA/Ca mice. Cell Mol Life Sci 2017; 74:4339-4351. [PMID: 28667356 PMCID: PMC11107572 DOI: 10.1007/s00018-017-2581-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 06/15/2017] [Accepted: 06/26/2017] [Indexed: 11/28/2022]
Abstract
While the biological effects of high-dose-ionizing radiation on human health are well characterized, the consequences of low-dose radiation exposure remain poorly defined, even though they are of major importance for radiological protection. Lymphocytes are very radiosensitive, and radiation-induced health effects may result from immune cell loss and/or immune system impairment. To decipher the mechanisms of effects of low doses, we analyzed the modulation of the T-cell receptor gene repertoire in mice exposed to a single low (0.1 Gy) or high (1 Gy) dose of radiation. High-throughput T-cell receptor gene profiling was used to visualize T-lymphocyte dynamics over time in control and irradiated mice. Radiation exposure induces "aging-like" effects on the T-cell receptor gene repertoire, detectable as early as 1 month post-exposure and for at least 6 months. Surprisingly, these effects are more pronounced in animals exposed to 0.1 Gy than to 1 Gy, where partial correction occurs over time. Importantly, we found that low-dose radiation effects are partially due to the hematopoietic stem cell impairment. Collectively, our findings show that acute low-dose radiation exposure specifically results in long-term alterations of the T-lymphocyte repertoire.
Collapse
Affiliation(s)
- Serge M Candéias
- CEA, Fundamental Research Division, Biosciences and Biotechnologies Institute, Laboratory of Chemistry and Biology of Metals, 38054, Grenoble, France.
- Laboratory of Chemistry and Biology of Metals, CNRS, UMR5249, 38054, Grenoble, France.
- Laboratory of Chemistry and Biology of Metals, UMR5249, University of Grenoble-Alpes, 38054, Grenoble, France.
| | - Justyna Mika
- Data Mining Group, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Gliwice, Poland
| | - Paul Finnon
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, CRCE, Public Health England, Didcot, UK
| | - Tom Verbiest
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, CRCE, Public Health England, Didcot, UK
| | - Rosemary Finnon
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, CRCE, Public Health England, Didcot, UK
| | - Natalie Brown
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, CRCE, Public Health England, Didcot, UK
| | - Simon Bouffler
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, CRCE, Public Health England, Didcot, UK
| | - Joanna Polanska
- Data Mining Group, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Gliwice, Poland
| | - Christophe Badie
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, CRCE, Public Health England, Didcot, UK.
| |
Collapse
|