1
|
Deng YH, Chiou CS, Tsai CY, Singh AK, Achtmann EAP, Peng BY, Lin TYM, Cheng HC, Chiang PC, Deng WP. Organic light-emitting diode therapy promotes longevity through the upregulation of SIRT1 in senescence-accelerated mouse prone 8 mice. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 257:112957. [PMID: 38941921 DOI: 10.1016/j.jphotobiol.2024.112957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/27/2024] [Accepted: 06/07/2024] [Indexed: 06/30/2024]
Abstract
Phototherapy has been extensively used to prevent and treat signs of aging and stimulate wound healing, and phototherapy through light-emitting diodes (LEDs). In contrast to LED, organic LED (OLED) devices are composed of organic semiconductors that possess novel characteristics. We investigated the regenerative potential of OLED for restoring cellular potential from senescence and thus delaying animal aging. Bone marrow-derived stem cells (BMSCs) and adipose-derived stem cells (ADSCs) were isolated from the control and OLED- treated groups to evaluate their proliferation, migration, and differentiation potentials. Cellular senescence was evaluated using a senescence-associated β-galactosidase (SA-β-gal) activity assay and gene expression biomarker assessment. OLED treatment significantly increased the cell proliferation, colony formation, and migration abilities of stem cells. SA-β-gal activity was significantly decreased in both ADSCs and BMSCs in the OLED-treated group. Gene expression biomarkers from treated mice indicated a significant upregulation of IGF-1 (insulin growthfactor-1). The upregulation of the SIRT1 gene inhibited the p16 and p19 genes then to downregulate the p53 expressions for regeneration of stem cells in the OLED-treated group. Our findings indicated that the survival rates of 10-month aging senescence-accelerated mouse prone 8 mice were prolonged and that their gross appearance improved markedly after OLED treatment. Histological analysis of skin and brain tissue also indicated significantly greater collagen fibers density, which prevents ocular abnormalities and β-amyloid accumulation. Lordokyphosis and bone characteristics were observed to resemble those of younger mice after OLED treatment. In conclusion, OLED therapy reduced the signs of aging and enhanced stem-cell senescence recovery and then could be used for tissue regeneration.
Collapse
Affiliation(s)
- Yue-Hua Deng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan; Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Chi-Sheng Chiou
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11001, Taiwan; Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11001, Taiwan
| | - Ching-Yu Tsai
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan; Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Abhinay Kumar Singh
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan; Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Edlin Anahi Pelaze Achtmann
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan; Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Bou-Yue Peng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan; Division of Oral and Maxillofacial Surgery, Department of Dentistry, Taipei Medical University Hospital, Taipei 110301, Taiwan
| | - Tommy Yet-Min Lin
- Department of Ophthalmology, Taipei Medical University Hospital, Taipei 110301, Taiwan
| | - Hsin-Chung Cheng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan; Department of Dentistry, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Pao-Chang Chiang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan; Dental Department, Wan Fang Hospital, Taipei Medical University, Taipei 116081, Taiwan.
| | - Win-Ping Deng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan; Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan.
| |
Collapse
|
2
|
Niu N, Ye J, Hu Z, Zhang J, Wang Y. Regulative Roles of Metabolic Plasticity Caused by Mitochondrial Oxidative Phosphorylation and Glycolysis on the Initiation and Progression of Tumorigenesis. Int J Mol Sci 2023; 24:ijms24087076. [PMID: 37108242 PMCID: PMC10139088 DOI: 10.3390/ijms24087076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/23/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
One important feature of tumour development is the regulatory role of metabolic plasticity in maintaining the balance of mitochondrial oxidative phosphorylation and glycolysis in cancer cells. In recent years, the transition and/or function of metabolic phenotypes between mitochondrial oxidative phosphorylation and glycolysis in tumour cells have been extensively studied. In this review, we aimed to elucidate the characteristics of metabolic plasticity (emphasizing their effects, such as immune escape, angiogenesis migration, invasiveness, heterogeneity, adhesion, and phenotypic properties of cancers, among others) on tumour progression, including the initiation and progression phases. Thus, this article provides an overall understanding of the influence of abnormal metabolic remodeling on malignant proliferation and pathophysiological changes in carcinoma.
Collapse
Affiliation(s)
- Nan Niu
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
- College of Physics and Optoelectronic Engineering, Canghai Campus of Shenzhen University, Shenzhen 518060, China
| | - Jinfeng Ye
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
| | - Zhangli Hu
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
| | - Junbin Zhang
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
| | - Yun Wang
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
3
|
Raffin J, de Souto Barreto P, Le Traon AP, Vellas B, Aubertin-Leheudre M, Rolland Y. Sedentary behavior and the biological hallmarks of aging. Ageing Res Rev 2023; 83:101807. [PMID: 36423885 DOI: 10.1016/j.arr.2022.101807] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 11/09/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022]
Abstract
While the benefits of physical exercise for a healthy aging are well-recognized, a growing body of evidence shows that sedentary behavior has deleterious health effects independently, to some extent, of physical activity levels. Yet, the increasing prevalence of sedentariness constitutes a major public health issue that contributes to premature aging but the potential cellular mechanisms through which prolonged immobilization may accelerate biological aging remain unestablished. This narrative review summarizes the impact of sedentary behavior using different models of extreme sedentary behaviors including bedrest, unilateral limb suspension and space travel studies, on the hallmarks of aging such as genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication. We further highlight the remaining knowledge gaps that need more research in order to promote healthspan extension and to provide future contributions to the field of geroscience.
Collapse
Affiliation(s)
- Jérémy Raffin
- Gérontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, 37 Allées Jules Guesdes, 31000 Toulouse, France.
| | - Philipe de Souto Barreto
- Gérontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, 37 Allées Jules Guesdes, 31000 Toulouse, France; CERPOP UMR 1295, University of Toulouse III, Inserm, UPS, Toulouse, France
| | - Anne Pavy Le Traon
- Institute for Space Medicine and Physiology (MEDES), Neurology Department CHU Toulouse, INSERM U 1297, Toulouse, France
| | - Bruno Vellas
- Gérontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, 37 Allées Jules Guesdes, 31000 Toulouse, France; CERPOP UMR 1295, University of Toulouse III, Inserm, UPS, Toulouse, France
| | - Mylène Aubertin-Leheudre
- Département des Sciences de l'activité physique, Faculté des sciences, Université du Québec à Montréal, Montreal, Canada; Centre de recherche, Institut universitaire de gériatrie de Montréal (IUGM), CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montreal, Canada, Faculté des sciences, Université du Québec à Montréal, Montreal, Canada
| | - Yves Rolland
- Gérontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, 37 Allées Jules Guesdes, 31000 Toulouse, France; CERPOP UMR 1295, University of Toulouse III, Inserm, UPS, Toulouse, France
| |
Collapse
|
4
|
Zhu Q, Liang P, Chu C, Zhang A, Zhou W. Protein sumoylation in normal and cancer stem cells. Front Mol Biosci 2022; 9:1095142. [PMID: 36601585 PMCID: PMC9806136 DOI: 10.3389/fmolb.2022.1095142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Stem cells with the capacity of self-renewal and differentiation play pivotal roles in normal tissues and malignant tumors. Whereas stem cells are supposed to be genetically identical to their non-stem cell counterparts, cell stemness is deliberately regulated by a dynamic network of molecular mechanisms. Reversible post-translational protein modifications (PTMs) are rapid and reversible non-genetic processes that regulate essentially all physiological and pathological process. Numerous studies have reported the involvement of post-translational protein modifications in the acquirement and maintenance of cell stemness. Recent studies underscore the importance of protein sumoylation, i.e., the covalent attachment of the small ubiquitin-like modifiers (SUMO), as a critical post-translational protein modification in the stem cell populations in development and tumorigenesis. In this review, we summarize the functions of protein sumoylation in different kinds of normal and cancer stem cells. In addition, we describe the upstream regulators and the downstream effectors of protein sumoylation associated with cell stemness. We also introduce the translational studies aiming at sumoylation to target stem cells for disease treatment. Finally, we propose future directions for sumoylation studies in stem cells.
Collapse
Affiliation(s)
- Qiuhong Zhu
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Panpan Liang
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Cuiying Chu
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Aili Zhang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States,*Correspondence: Aili Zhang, ; Wenchao Zhou,
| | - Wenchao Zhou
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China,*Correspondence: Aili Zhang, ; Wenchao Zhou,
| |
Collapse
|
5
|
Wagner KD, Wagner N. The Senescence Markers p16INK4A, p14ARF/p19ARF, and p21 in Organ Development and Homeostasis. Cells 2022; 11:cells11121966. [PMID: 35741095 PMCID: PMC9221567 DOI: 10.3390/cells11121966] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 02/07/2023] Open
Abstract
It is widely accepted that senescent cells accumulate with aging. They are characterized by replicative arrest and the release of a myriad of factors commonly called the senescence-associated secretory phenotype. Despite the replicative cell cycle arrest, these cells are metabolically active and functional. The release of SASP factors is mostly thought to cause tissue dysfunction and to induce senescence in surrounding cells. As major markers for aging and senescence, p16INK4, p14ARF/p19ARF, and p21 are established. Importantly, senescence is also implicated in development, cancer, and tissue homeostasis. While many markers of senescence have been identified, none are able to unambiguously identify all senescent cells. However, increased levels of the cyclin-dependent kinase inhibitors p16INK4A and p21 are often used to identify cells with senescence-associated phenotypes. We review here the knowledge of senescence, p16INK4A, p14ARF/p19ARF, and p21 in embryonic and postnatal development and potential functions in pathophysiology and homeostasis. The establishment of senolytic therapies with the ultimate goal to improve healthy aging requires care and detailed knowledge about the involvement of senescence and senescence-associated proteins in developmental processes and homeostatic mechanism. The review contributes to these topics, summarizes open questions, and provides some directions for future research.
Collapse
|
6
|
Wu M, Lu L, Chen S, Li Y, Zhang Q, Fu S, Deng X. Natural products inducing nucleolar stress: implications in cancer therapy. Anticancer Drugs 2022; 33:e21-e27. [PMID: 34561998 DOI: 10.1097/cad.0000000000001146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The nucleolus is the site of ribosome biogenesis and is found to play an important role in stress sensing. For over 100 years, the increase in the size and number of nucleoli has been considered as a marker of aggressive tumors. Despite this, the contribution of the nucleolus and the biologic processes mediated by it to cancer pathogenesis has been largely overlooked. This state has been changed over the recent decades with the demonstration that the nucleolus controls numerous cellular functions associated with cancer development. Induction of nucleolar stress has recently been regarded as being superior to conventional cytotoxic/cytostatic strategy in that it is more selective to neoplastic cells while sparing normal cells. Natural products represent an excellent source of bioactive molecules and some of them have been found to be able to induce nucleolar stress. The demonstration of these nucleolar stress-inducing natural products has paved the way for a new therapeutic approach to more delicate tumor cell-killing. This review provides a contemporary summary of the role of the nucleolus as a novel promising target for cancer therapy, with particular emphasis on natural products as an exciting new class of anti-cancer drugs with nucleolar stress-inducing properties.
Collapse
Affiliation(s)
- Mi Wu
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University
- Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha
| | - Lu Lu
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University
- Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha
| | - Sisi Chen
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University
- Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha
| | - Ying Li
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University
- Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha
| | - Qiuting Zhang
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University
- Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha
| | - Shujun Fu
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University
- Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha
| | - Xiyun Deng
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University
- Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha
- Department of Pathophysiology, Jishou University School of Medicine, Jishou, Hunan, China
| |
Collapse
|
7
|
Gu L, Zheng H, Zhao R, Zhang X, Wang Q. Diosgenin inhibits the proliferation of gastric cancer cells via inducing mesoderm posterior 1 down-regulation-mediated alternative reading frame expression. Hum Exp Toxicol 2021; 40:S632-S645. [PMID: 34806916 DOI: 10.1177/09603271211053292] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Whether and how mesoderm posterior 1 (MESP1) plays a role in the proliferation of gastric cancer cells remain unclear. METHODS The expression of MESP1 was compared in 48 human gastric cancer tissues and adjacent normal tissues. Knockdown of MESP1 was performed to investigate the role of MESP1 in the proliferation and apoptosis of BGC-823 and MGC-803 gastric cancer cells. Knockdown of alternative reading frame (ARF) was performed to study the role of ARF in the inhibitory effect of MESP1 knockdown on cell proliferation in gastric cancer cells. Mouse subcutaneous xenograft tumor model bearing BGC-823 cells was used to investigate the role of MESP1 in the growth of gastric tumor in vivo. The effect of seven active ingredients from T. terrestris on MESP1 expression was tested. The anti-cancer effect of diosgenin was confirmed in gastric cancer cells. MESP1 dependence of the anti-cancer effect of diosgenin was confirmed by MESP1 knockdown. RESULTS MESP1 was highly expressed in human gastric cancer tissues (p < 0.05). MESP1 knockdown induced apoptosis and up-regulated the expression of ARF in gastric cancer cells (p < 0.05). Knockdown of ARF attenuated the anti-cancer effect of MESP1 knockdown (p < 0.05). In addition, MESP1 knockdown also suppressed tumor growth in vivo (p < 0.05). Diosgenin inhibits both mRNA and protein expression of MESP1 (p < 0.05). MESP1 knockdown attenuated the anti-cancer effect of diosgenin (p < 0.05). CONCLUSIONS MESP1 promotes the proliferation of gastric cancer cells via inhibiting ARF expression. Diosgenin exerts anti-cancer effect through inhibiting MESP1 expression in gastric cancer cells.
Collapse
Affiliation(s)
- Lin Gu
- Department of Gastroenterology, 74540The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, P. R. China
| | - Hailun Zheng
- Department of Gastroenterology, 74540The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, P. R. China
| | - Rui Zhao
- Department of Gastroenterology, 74540The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, P. R. China
| | - Xiaojing Zhang
- Department of Surgical Oncology, 74540The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, P. R. China
| | - Qizhi Wang
- Department of Gastroenterology, 74540The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, P. R. China
| |
Collapse
|
8
|
Analyzing mRNAsi-Related Genes Identifies Novel Prognostic Markers and Potential Drug Combination for Patients with Basal Breast Cancer. DISEASE MARKERS 2021; 2021:4731349. [PMID: 34646403 PMCID: PMC8505092 DOI: 10.1155/2021/4731349] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/11/2021] [Indexed: 12/28/2022]
Abstract
Basal breast cancer subtype is the worst prognosis subtypes among all breast cancer subtypes. Recently, a new tumor stemness index-mRNAsi is found to be able to measure the degree of oncogenic differentiation of tissues. The mRNAsi involved in a variety of cancer processes is derived from the innovative application of one-class logistic regression (OCLR) machine learning algorithm to the whole genome expression of various stem cells and tumor cells. However, it is largely unknown about mRNAsi in basal breast cancer. Here, we find that basal breast cancer carries the highest mRNAsi among all four subtypes of breast cancer, especially 385 mRNAsi-related genes are positively related to the high mRNAsi value in basal breast cancer. This high mRNAsi is also closely related to active cell cycle, DNA replication, and metabolic reprogramming in basal breast cancer. Intriguingly, in the 385 genes, TRIM59, SEPT3, RAD51AP1, and EXO1 can act as independent protective prognostic factors, but CTSF and ABHD4B can serve as independent bad prognostic factors in patients with basal breast cancer. Remarkably, we establish a robust prognostic model containing the 6 mRNAsi-related genes that can effectively predict the survival rate of patients with the basal breast cancer subtype. Finally, the drug sensitivity analysis reveals that some drug combinations may be effectively against basal breast cancer via targeting the mRNAsi-related genes. Taken together, our study not only identifies novel prognostic biomarkers for basal breast cancers but also provides the drug sensitivity data by establishing an mRNAsi-related prognostic model.
Collapse
|
9
|
Li Y, Wu H, Wang Q, Xu S. ZNF217: the cerberus who fails to guard the gateway to lethal malignancy. Am J Cancer Res 2021; 11:3378-3405. [PMID: 34354851 PMCID: PMC8332857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/14/2021] [Indexed: 06/13/2023] Open
Abstract
The aberrant expression of the zinc finger protein 217 (ZNF217) promotes multiple malignant phenotypes, such as replicative immortality, maintenance of proliferation, malignant heterogeneity, metastasis, and cell death resistance, via diverse mechanisms, including transcriptional activation, mRNA N6-methyladenosine (m6A) regulation, and protein interactions. The induction of these cellular processes by ZNF217 leads to therapeutic resistance and patients' poor outcomes. However, few ZNF217 related clinical applications or trials, have been reported. Moreover, looming observations about ZNF217 roles in m6A regulation and cancer immune response triggered significant attention while lacking critical evidence. Thus, in this review, we revisit the literature about ZNF217 and emphasize its importance as a prognostic biomarker for early prevention and as a therapeutic target.
Collapse
Affiliation(s)
- Yingpu Li
- Department of Breast Surgery, Harbin Medical University Cancer HospitalHarbin, China
| | - Hao Wu
- Sino-Russian Medical Research Center, Harbin Medical University Cancer HospitalHarbin, China
- Heilongjiang Academy of Medical SciencesHarbin, China
| | - Qin Wang
- Department of Breast Surgery, Harbin Medical University Cancer HospitalHarbin, China
- Sino-Russian Medical Research Center, Harbin Medical University Cancer HospitalHarbin, China
- Heilongjiang Academy of Medical SciencesHarbin, China
| | - Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer HospitalHarbin, China
- Sino-Russian Medical Research Center, Harbin Medical University Cancer HospitalHarbin, China
- Heilongjiang Academy of Medical SciencesHarbin, China
| |
Collapse
|
10
|
Xiao G, Zhang X, Zhang X, Chen Y, Xia Z, Cao H, Huang J, Cheng Q. Aging-related genes are potential prognostic biomarkers for patients with gliomas. Aging (Albany NY) 2021; 13:13239-13263. [PMID: 33946049 PMCID: PMC8148480 DOI: 10.18632/aging.203008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/04/2021] [Indexed: 04/25/2023]
Abstract
Aging has a significant role in the proliferation and development of cancers. This study explored the expression profiles, prognostic value, and potential roles of aging-related genes in gliomas. We designed risk score and cluster models based on aging-related genes and glioma cases using LASSO Cox regression analysis, consensus clustering analysis and univariate cox regression analyses. High risk score was related to malignant clinical features and poor prognosis based on 10 datasets, 2953 cases altogether. Genetic alterations analysis revealed that high risk scores were associated with genomic aberrations of aging-related oncogenes. GSVA analysis exhibited the potential function of the aging-related genes. More immune cell infiltration was found in high-risk group cases, and glioma patients in high-risk group may be more responsive to immunotherapy. Knock-down of CTSC, an aging-related gene, can inhibit cell cycle progression, colony formation, cell proliferation and increase cell senescence in glioma cell lines in vitro. Indeed, high expression of CTSC was associated with poor prognosis in glioma cases. In conclusion, this study revealed that aging-related genes have prognostic potential for glioma patients and further identified potential mechanisms for aging-related genes in tumorigenesis and progression in gliomas.
Collapse
Affiliation(s)
- Gelei Xiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Hunan, China
| | - Xiangyang Zhang
- Department of Oncology, Xiangya Hospital, Central South University, Hunan, China
| | - Xun Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Hunan, China
| | - Yuanbing Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Hunan, China
| | - Zhiwei Xia
- Department of Neurology, Hunan Aerospace Hospital, Changsha, Hunan, China
| | - Hui Cao
- Department of Psychiatry, The Second People’s Hospital of Hunan Province, Hunan, China
- The Hospital of Hunan University of Chinese Medicine, Hunan, China
| | - Jun Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Hunan, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, China
| |
Collapse
|
11
|
Zhong P, Shu R, Wu H, Liu Z, Shen X, Hu Y. Low KRT15 expression is associated with poor prognosis in patients with breast invasive carcinoma. Exp Ther Med 2021; 21:305. [PMID: 33717248 PMCID: PMC7885068 DOI: 10.3892/etm.2021.9736] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022] Open
Abstract
Although keratin 15 (KRT15) has been indicated to be overexpressed in several types of tumor, its role in breast invasive carcinoma (BRCA) has so far remained elusive. The aim of the present study was to explore KRT15 expression in BRCA based on data obtained from The Cancer Genome Atlas and The Genotype-Tissue Expression. KRT15 expression was compared using a Wilcoxon rank-sum test. Functional enrichment analysis was performed to reveal the biological roles and pathways of KRT15. The association between KRT15 expression and immune-cell infiltration was evaluated via single-sample gene set enrichment analysis (ssGSEA). To investigate the relationship between clinicopathological features and KRT15 expression, the prognostic value of KRT15 and other clinical factors was evaluated using Cox regression analysis and Kaplan-Meier (KM) plots. Subgroup prognostic analysis was also performed using forest plots and KM curves. Finally, a tissue microarray was used to assess KRT15 expression in BRCA tissues. KRT15 expression was significantly lower in BRCA tissues compared with that in normal tissues. Functional enrichment analysis suggested that KRT15-related genes were primarily enriched in the transmembrane transporter complex, cornification and ligand-receptor interactions. Increased KRT15 was associated with several tumor-suppressive pathways. ssGSEA revealed that high KRT15 expression was significantly associated with natural killer-cell, B-cell and mast-cell infiltration. Significant associations were observed between low KRT15 expression and advanced stage clinicopathological factors, as well as unfavorable overall survival (OS) and disease-specific survival. Multivariate Cox regression analysis suggested that KRT15 was an independent prognostic factor for OS (P=0.039; hazard ratio, 0.590; 95% CI, 0.358-0.974). Subgroup prognostic analysis demonstrated that low KRT15 was a reliable predictor of poor OS. Immunohistochemistry of a tissue microarray indicated that positive KRT15 expression rates were significantly higher in normal tissues compared with those in the BRCA tissues. In conclusion, low KRT15 expression was significantly associated with poor prognosis in patients with BRCA. Thus, KRT15 may serve an important role in BRCA progression and may be used as a promising prognostic marker for diagnostic and prognostic analyses in patients with BRCA.
Collapse
Affiliation(s)
- Pengcheng Zhong
- Laboratory of Herbal Drug Discovery, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Rong Shu
- Laboratory of Herbal Drug Discovery, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Huiwen Wu
- Laboratory of Herbal Drug Discovery, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Zhiwen Liu
- Laboratory of Herbal Drug Discovery, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Xiaoling Shen
- Laboratory of Herbal Drug Discovery, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Yingjie Hu
- Laboratory of Herbal Drug Discovery, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| |
Collapse
|
12
|
Zhai X, Wu Y, Zhang D, Li H, Chong T, Zhao J. MiR-6838-5p facilitates the proliferation and invasion of renal cell carcinoma cells through inhibiting the DMTF1/ARF-p53 axis. J Bioenerg Biomembr 2021; 53:191-202. [PMID: 33686550 DOI: 10.1007/s10863-021-09888-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/01/2021] [Indexed: 01/10/2023]
Abstract
Renal cell carcinoma (RCC) is one of the most common renal malignancies in the urinary system. Numerous studies have demonstrated that miRNAs can regulate tumorigenesis and progression. This study aims to investigate the role and regulatory mechanism of miR-6838-5p in RCC. Our study confirmed that miR-6838-5p was upregulated in human RCC tissues (30/42, 77.43%, P < 0.01) and RCC cell lines (P < 0.05) compared to adjacent non-neoplastic tissues and normal renal epithelial cells. In vitro, overexpression of miR-6838-5p enhanced cell proliferation and invasion in human RCC cell lines (ACHN and 786-O), which were detected by CCK-8, Transwell and Colony formation assays (P < 0.05), and knockdown of miR-6838-5p suppressed cell proliferation and invasion (P < 0.05). Results of Bioinformatics analysis combined with Dual-luciferase reporter gene assay demonstrated that miR-6838-5p could bind to Cyclin D binding myb-like transcription factor 1 (DMTF1). In addition, RT-qPCR and Western blotting confirmed that DMTF1 was downregulated in RCC tissues and cell lines. Meanwhile, it was demonstrated that overexpression of miR-6838-5p inhibited DMTF1 level in ACHN cells. Next, we confirmed that DMTF1 overexpression reversed the inhibitory effects of overexpression of miR-6838-5p on phosphatase and tensin homolog (PTEN), tumor protein 53(p53), murine double minute 2 (MDM2) and alternative reading frame (ARF) protein levels in the ARF-p53 signaling pathway. In conclusion, our research showed that miR-6838-5p enhanced the proliferation and invasion of RCC cells by inhibiting the DMTF1/ARF-p53 axis.
Collapse
Affiliation(s)
- Xiaoqiang Zhai
- Department of Urology, The Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Yan Wu
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Dong Zhang
- Department of Urology, The Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Hecheng Li
- Department of Urology, The Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Tie Chong
- Department of Urology, The Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Jun Zhao
- Department of Urology, The Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
13
|
Negroni MA, Macit MN, Stoldt M, Feldmeyer B, Foitzik S. Molecular regulation of lifespan extension in fertile ant workers. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190736. [PMID: 33678017 DOI: 10.1098/rstb.2019.0736] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The evolution of sociality in insects caused a divergence in lifespan between reproductive and non-reproductive castes. Ant queens can live for decades, while most workers survive only weeks to a few years. In most organisms, longevity is traded-off with reproduction, but in social insects, these two life-history traits are positively linked. Once fertility is induced in workers, e.g. by queen removal, worker lifespan increases. The molecular regulation of this positive link between fecundity and longevity and generally the molecular underpinnings of caste-specific senescence are not well understood. Here, we investigate the transcriptomic regulation of lifespan and reproduction in fat bodies of three worker groups in the ant Temnothorax rugatulus. In a long-term experiment, workers that became fertile in the absence of the queen showed increased survival and upregulation of genes involved in longevity and fecundity pathways. Interestingly, workers that re-joined their queen after months exhibited intermediate ovary development, but retained a high expression of longevity and fecundity genes. Strikingly, the queen's presence causes a general downregulation of genes in worker fat bodies. Our findings point to long-term consequences of fertility induction in workers, even after re-joining their queen. Moreover, we reveal longevity genes and pathways modulated during insect social evolution. This article is part of the theme issue 'Ageing and sociality: why, when and how does sociality change ageing patterns?'
Collapse
Affiliation(s)
- Matteo Antoine Negroni
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Maide Nesibe Macit
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Marah Stoldt
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Barbara Feldmeyer
- Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Susanne Foitzik
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
14
|
van Wijnen AJ, Bagheri L, Badreldin AA, Larson AN, Dudakovic A, Thaler R, Paradise CR, Wu Z. Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development. Bone 2021; 143:115659. [PMID: 32979540 DOI: 10.1016/j.bone.2020.115659] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/02/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023]
Abstract
Epigenetic regulatory proteins support mammalian development, cancer, aging and tissue repair by controlling many cellular processes including stem cell self-renewal, lineage-commitment and senescence in both skeletal and non-skeletal tissues. We review here our knowledge of epigenetic regulatory protein complexes that support the formation of inaccessible heterochromatin and suppress expression of cell and tissue-type specific biomarkers during development. Maintenance and formation of heterochromatin critically depends on epigenetic regulators that recognize histone 3 lysine trimethylation at residues K9 and K27 (respectively, H3K9me3 and H3K27me3), which represent transcriptionally suppressive epigenetic marks. Three chromobox proteins (i.e., CBX1, CBX3 or CBX5) associated with the heterochromatin protein 1 (HP1) complex are methyl readers that interpret H3K9me3 marks which are mediated by H3K9 methyltransferases (i.e., SUV39H1 or SUV39H2). Other chromobox proteins (i.e., CBX2, CBX4, CBX6, CBX7 and CBX8) recognize H3K27me3, which is deposited by Polycomb Repressive Complex 2 (PRC2; a complex containing SUZ12, EED, RBAP46/48 and the methyl transferases EZH1 or EZH2). This second set of CBX proteins resides in PRC1, which has many subunits including other polycomb group factors (PCGF1, PCGF2, PCGF3, PCGF4, PCGF5, PCGF6), human polyhomeotic homologs (HPH1, HPH2, HPH3) and E3-ubiquitin ligases (RING1 or RING2). The latter enzymes catalyze the subsequent mono-ubiquitination of lysine 119 in H2A (H2AK119ub). We discuss biological, cellular and molecular functions of CBX proteins and their physiological and pathological activities in non-skeletal cells and tissues in anticipation of new discoveries on novel roles for CBX proteins in bone formation and skeletal development.
Collapse
Affiliation(s)
- Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, United States of America.
| | - Leila Bagheri
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America.
| | - Amr A Badreldin
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America.
| | - A Noelle Larson
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America.
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America.
| | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America.
| | - Christopher R Paradise
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, United States of America; Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States of America
| | - Zhong Wu
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America
| |
Collapse
|
15
|
Auzmendi-Iriarte J, Matheu A. Impact of Chaperone-Mediated Autophagy in Brain Aging: Neurodegenerative Diseases and Glioblastoma. Front Aging Neurosci 2021; 12:630743. [PMID: 33633561 PMCID: PMC7901968 DOI: 10.3389/fnagi.2020.630743] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022] Open
Abstract
Brain aging is characterized by a time-dependent decline of tissue integrity and function, and it is a major risk for neurodegenerative diseases and brain cancer. Chaperone-mediated autophagy (CMA) is a selective form of autophagy specialized in protein degradation, which is based on the individual translocation of a cargo protein through the lysosomal membrane. Regulation of processes such as proteostasis, cellular energetics, or immune system activity has been associated with CMA, indicating its pivotal role in tissue homeostasis. Since first studies associating Parkinson’s disease (PD) to CMA dysfunction, increasing evidence points out that CMA is altered in both physiological and pathological brain aging. In this review article, we summarize the current knowledge regarding the impact of CMA during aging in brain physiopathology, highlighting the role of CMA in neurodegenerative diseases and glioblastoma, the most common and aggressive brain tumor in adults.
Collapse
Affiliation(s)
| | - Ander Matheu
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain.,CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes), Madrid, Spain.,IKERBASQUE, Basque Foundation, Bilbao, Spain
| |
Collapse
|
16
|
Lan Y, Dong M, Li Y, Diao Y, Chen Z, Li Y. SIRT1-induced deacetylation of Akt expedites platelet phagocytosis and delays HEMEC aging. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 23:1323-1333. [PMID: 33717652 PMCID: PMC7920857 DOI: 10.1016/j.omtn.2021.01.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 01/20/2021] [Indexed: 12/25/2022]
Abstract
Maintaining the health of the endothelium is of critical importance to prevention against cell aging. The current study was performed to clarify the role of sirtuin1 (SIRT1) in platelet phagocytosis in cell aging and identified its downstream molecular mechanism. Platelet phagocytosis by human endometrial microvascular endothelial cells (HEMECs) was characterized by transmission electron and fluorescence microscopy. Functional experiments were conducted to examine platelet phagocytosis and cell aging using the overexpression or knockdown plasmids of SIRT1 and G alpha-interacting, vesicle-associated protein (GIRDIN) as well as Akt inhibitor and activator. It was found that SIRT1 facilitated platelet phagocytosis by HEMECs, contributing to inhibition of cell aging. Akt activation facilitated platelet phagocytosis and repressed cell aging. GIRDIN overexpression accelerated platelet phagocytosis by HEMECs, leading to a delay in cell aging. GIRDIN phosphorylation at Ser1417 was induced by Akt activation, while activation of Akt was induced by SIRT1-mediated deacetylation, consequently augmenting platelet phagocytosis and delaying cell aging. Taken together, SIRT1 delayed aging of HEMECs by deacetylating Akt, phosphorylating GIRDIN, and inducing platelet phagocytosis. The study highlights a possible target for the prevention of HEMEC aging.
Collapse
Affiliation(s)
- Yong Lan
- Department of Vascular Surgery, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, Beijing 100730, P.R. China
| | - Min Dong
- Department of Cardiology, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, Beijing 100730, P.R. China
| | - Yongjun Li
- Department of Vascular Surgery, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, Beijing 100730, P.R. China
| | - Yongpeng Diao
- Department of Vascular Surgery, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, Beijing 100730, P.R. China
| | - Zuoguang Chen
- Department of Vascular Surgery, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, Beijing 100730, P.R. China
| | - Yangfang Li
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, P.R. China
| |
Collapse
|
17
|
Non-Canonical Functions of the ARF Tumor Suppressor in Development and Tumorigenesis. Biomolecules 2021; 11:biom11010086. [PMID: 33445626 PMCID: PMC7827855 DOI: 10.3390/biom11010086] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
P14ARF (ARF; Alternative Reading Frame) is an extensively characterized tumor suppressor which, in response to oncogenic stimuli, mediates cell cycle arrest and apoptosis via p53-dependent and independent routes. ARF has been shown to be frequently lost through CpG island promoter methylation in a wide spectrum of human malignancies, such as colorectal, prostate, breast, and gastric cancers, while point mutations and deletions in the p14ARF locus have been linked with various forms of melanomas and glioblastomas. Although ARF has been mostly studied in the context of tumorigenesis, it has been also implicated in purely developmental processes, such as spermatogenesis, and mammary gland and ocular development, while it has been additionally involved in the regulation of angiogenesis. Moreover, ARF has been found to hold important roles in stem cell self-renewal and differentiation. As is often the case with tumor suppressors, ARF functions as a pleiotropic protein regulating a number of different mechanisms at the crossroad of development and tumorigenesis. Here, we provide an overview of the non-canonical functions of ARF in cancer and developmental biology, by dissecting the crosstalk of ARF signaling with key oncogenic and developmental pathways.
Collapse
|
18
|
Lahalle A, Lacroix M, De Blasio C, Cissé MY, Linares LK, Le Cam L. The p53 Pathway and Metabolism: The Tree That Hides the Forest. Cancers (Basel) 2021; 13:cancers13010133. [PMID: 33406607 PMCID: PMC7796211 DOI: 10.3390/cancers13010133] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 12/18/2022] Open
Abstract
Simple Summary The p53 pathway is a major tumor suppressor pathway that prevents the propagation of abnormal cells by regulating DNA repair, cell cycle progression, cell death, or senescence. The multiple cellular processes regulated by p53 were more recently extended to the control of metabolism, and many studies support the notion that perturbations of p53-associated metabolic activities are linked to cancer development. Converging lines of evidence support the notion that, in addition to p53, other key components of this molecular cascade are also important regulators of metabolism. Here, we illustrate the underestimated complexity of the metabolic network controlled by the p53 pathway and show how its perturbation contributes to human diseases including cancer, aging, and metabolic diseases. Abstract The p53 pathway is functionally inactivated in most, if not all, human cancers. The p53 protein is a central effector of numerous stress-related molecular cascades. p53 controls a safeguard mechanism that prevents accumulation of abnormal cells and their transformation by regulating DNA repair, cell cycle progression, cell death, or senescence. The multiple cellular processes regulated by p53 were more recently extended to the control of metabolism and many studies support the notion that perturbations of p53-associated metabolic activities are linked to cancer development, as well as to other pathophysiological conditions including aging, type II diabetes, and liver disease. Although much less documented than p53 metabolic activities, converging lines of evidence indicate that other key components of this tumor suppressor pathway are also involved in cellular metabolism through p53-dependent as well as p53-independent mechanisms. Thus, at least from a metabolic standpoint, the p53 pathway must be considered as a non-linear pathway, but the complex metabolic network controlled by these p53 regulators and the mechanisms by which their activities are coordinated with p53 metabolic functions remain poorly understood. In this review, we highlight some of the metabolic pathways controlled by several central components of the p53 pathway and their role in tissue homeostasis, metabolic diseases, and cancer.
Collapse
Affiliation(s)
- Airelle Lahalle
- Université de Montpellier, F-34090 Montpellier, France; (A.L.); (M.L.); (C.D.B.); (L.K.L.)
- IRCM, Institut de Recherche en Cancérologie de Montpellier, F-34298 Montpellier, France
- ICM, Institut Régional du Cancer de Montpellier, F-34298 Montpellier, France
- INSERM, Institut National de la Santé et de la Recherche Médicale, U1194, F-24298 Montpellier, France
- Equipe Labellisée Ligue Contre le Cancer, F-75013 Paris, France
| | - Matthieu Lacroix
- Université de Montpellier, F-34090 Montpellier, France; (A.L.); (M.L.); (C.D.B.); (L.K.L.)
- IRCM, Institut de Recherche en Cancérologie de Montpellier, F-34298 Montpellier, France
- ICM, Institut Régional du Cancer de Montpellier, F-34298 Montpellier, France
- INSERM, Institut National de la Santé et de la Recherche Médicale, U1194, F-24298 Montpellier, France
- Equipe Labellisée Ligue Contre le Cancer, F-75013 Paris, France
| | - Carlo De Blasio
- Université de Montpellier, F-34090 Montpellier, France; (A.L.); (M.L.); (C.D.B.); (L.K.L.)
- IRCM, Institut de Recherche en Cancérologie de Montpellier, F-34298 Montpellier, France
- ICM, Institut Régional du Cancer de Montpellier, F-34298 Montpellier, France
- INSERM, Institut National de la Santé et de la Recherche Médicale, U1194, F-24298 Montpellier, France
- Equipe Labellisée Ligue Contre le Cancer, F-75013 Paris, France
| | - Madi Y. Cissé
- Department of Molecular Metabolism, Harvard, T.H Chan School of Public Health, Boston, MA 02115, USA;
| | - Laetitia K. Linares
- Université de Montpellier, F-34090 Montpellier, France; (A.L.); (M.L.); (C.D.B.); (L.K.L.)
- IRCM, Institut de Recherche en Cancérologie de Montpellier, F-34298 Montpellier, France
- ICM, Institut Régional du Cancer de Montpellier, F-34298 Montpellier, France
- INSERM, Institut National de la Santé et de la Recherche Médicale, U1194, F-24298 Montpellier, France
| | - Laurent Le Cam
- Université de Montpellier, F-34090 Montpellier, France; (A.L.); (M.L.); (C.D.B.); (L.K.L.)
- IRCM, Institut de Recherche en Cancérologie de Montpellier, F-34298 Montpellier, France
- ICM, Institut Régional du Cancer de Montpellier, F-34298 Montpellier, France
- INSERM, Institut National de la Santé et de la Recherche Médicale, U1194, F-24298 Montpellier, France
- Equipe Labellisée Ligue Contre le Cancer, F-75013 Paris, France
- Correspondence:
| |
Collapse
|
19
|
Fry EA, Niehans GE, Kratzke RA, Kai F, Inoue K. Survival of Lung Cancer Patients Dependent on the LOH Status for DMP1, ARF, and p53. Int J Mol Sci 2020; 21:E7971. [PMID: 33120969 PMCID: PMC7662351 DOI: 10.3390/ijms21217971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/13/2020] [Accepted: 10/19/2020] [Indexed: 12/20/2022] Open
Abstract
Lung cancer is the leading cause of cancer deaths in the world, and accounts for more solid tumor deaths than any other carcinomas. The prognostic values of DMP1, ARF, and p53-loss are unknown in lung cancer. We have conducted survival analyses of non-small cell lung cancer (NSCLC) patients from the University of Minnesota VA hospital and those from the Wake Forest University Hospital. Loss of Heterozygosity (LOH) for hDMP1 was found in 26 of 70 cases (37.1%), that of the ARF/INK4a locus was found in 33 of 70 (47.1%), and that of the p53 locus in 43 cases (61.4%) in the University of Minnesota samples. LOH for hDMP1 was associated with favorable prognosis while that of p53 predicted worse prognosis. The survival was much shorter for ARF-loss than INK4a-loss, emphasizing the importance of ARF in human NSCLC. The adverse effect of p53 LOH on NSCLC patients' survival was neutralized by simultaneous loss of the hDMP1 locus in NSCLC and breast cancer, suggesting the possible therapy of epithelial cancers with metastatic ability.
Collapse
Affiliation(s)
- Elizabeth A. Fry
- Dept. of Pathology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA; (E.A.F.); (F.K.)
| | | | - Robert A. Kratzke
- Dept. of Medicine, University of Minnesota Medical Center, Masonic Cancer Institute, Minneapolis, MN 55455, USA;
| | - Fumitake Kai
- Dept. of Pathology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA; (E.A.F.); (F.K.)
| | - Kazushi Inoue
- Dept. of Pathology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA; (E.A.F.); (F.K.)
| |
Collapse
|
20
|
Vadlakonda L, Indracanti M, Kalangi SK, Gayatri BM, Naidu NG, Reddy ABM. The Role of Pi, Glutamine and the Essential Amino Acids in Modulating the Metabolism in Diabetes and Cancer. J Diabetes Metab Disord 2020; 19:1731-1775. [PMID: 33520860 DOI: 10.1007/s40200-020-00566-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
Abstract
Purpose Re-examine the current metabolic models. Methods Review of literature and gene networks. Results Insulin activates Pi uptake, glutamine metabolism to stabilise lipid membranes. Tissue turnover maintains the metabolic health. Current model of intermediary metabolism (IM) suggests glucose is the source of energy, and anaplerotic entry of fatty acids and amino acids into mitochondria increases the oxidative capacity of the TCA cycle to produce the energy (ATP). The reduced cofactors, NADH and FADH2, have different roles in regulating the oxidation of nutrients, membrane potentials and biosynthesis. Trans-hydrogenation of NADH to NADPH activates the biosynthesis. FADH2 sustains the membrane potential during the cell transformations. Glycolytic enzymes assume the non-canonical moonlighting functions, enter the nucleus to remodel the genetic programmes to affect the tissue turnover for efficient use of nutrients. Glycosylation of the CD98 (4F2HC) stabilises the nutrient transporters and regulates the entry of cysteine, glutamine and BCAA into the cells. A reciprocal relationship between the leucine and glutamine entry into cells regulates the cholesterol and fatty acid synthesis and homeostasis in cells. Insulin promotes the Pi transport from the blood to tissues, activates the mitochondrial respiratory activity, and glutamine metabolism, which activates the synthesis of cholesterol and the de novo fatty acids for reorganising and stabilising the lipid membranes for nutrient transport and signal transduction in response to fluctuations in the microenvironmental cues. Fatty acids provide the lipid metabolites, activate the second messengers and protein kinases. Insulin resistance suppresses the lipid raft formation and the mitotic slippage activates the fibrosis and slow death pathways.
Collapse
Affiliation(s)
| | - Meera Indracanti
- Institute of Biotechnology, University of Gondar, Gondar, Ethiopia
| | - Suresh K Kalangi
- Amity Stem Cell Institute, Amity University Haryana, Amity Education Valley Pachgaon, Manesar, Gurugram, HR 122413 India
| | - B Meher Gayatri
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 India
| | - Navya G Naidu
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 India
| | - Aramati B M Reddy
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 India
| |
Collapse
|
21
|
Fan Z, Li L, Li X, Zhang M, Dou M, Zhao J, Cao J, Deng X, Zhang M, Li H, Suo Z. Anti-senescence role of heterozygous fumarate hydratase gene knockout in rat lung fibroblasts in vitro. Aging (Albany NY) 2020; 11:573-589. [PMID: 30668541 PMCID: PMC6366963 DOI: 10.18632/aging.101761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/05/2019] [Indexed: 12/21/2022]
Abstract
Abnormalities in tricarboxylic acid (TCA) cycle function were related to a variety of pathological processes. Fumarate hydratase (FH) is a required enzyme in the TCA cycle. To explore the general influence of FH knockout, we isolated FH+/- rat and normal rat lung fibroblasts and cultured these cells in vitro. The isolated fibroblasts with the current method were rather homogeneous and were confirmed spindle in morphology, positive for vimentin and negative for α-SMA (α-smooth muscle actin). Sequencing of the PCR (polymerase chain reaction) products flanking the FH gene mutation verified the FH+/- status, and the FH gene and protein expression were confirmed to be reduced in the FH+/- cells. No sign of ageing for the FH+/- cells after 61 passages was observed, but the controls died out at this stage. Flow cytometry revealed increased S-phase and decreased G1/G0 proportions with significantly less early apoptosis in FH+/- cells compared to that in control cells. At the same time, increased glucose consumption, intracellular fumarate production and extracellular lactate secretion were verified in the FH+/- cells. Correspondingly, FH+/- cells showed a lower basal oxygen consumption rate (OCR) but a higher level of reactive oxygen species (ROS) production. Single cell cloning and cell line establishment were successfully performed with the FH+/- cells at the 84th passage. All the above results indicate an important role for FH+/- in the longevity or immortality of the FH+/- cells, in which increased p53 and TERT (telomerase reverse transcriptase) protein expression, decreased p21 and p16 protein expression and negative SA-β-Gal (senescence-associated beta-galactosidase) were verified along with metabolic reprogramming.
Collapse
Affiliation(s)
- Zhirui Fan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Lifeng Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xiaoli Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Meng Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Mengmeng Dou
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jing Zhao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jing Cao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.,Department of Pathology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xiaoming Deng
- Department of Chinese and Western Integrative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Huixiang Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Zhenhe Suo
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.,Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Montebello, Oslo, Norway
| |
Collapse
|
22
|
C. elegans protein interaction network analysis probes RNAi validated pro-longevity effect of nhr-6, a human homolog of tumor suppressor Nr4a1. Sci Rep 2019; 9:15711. [PMID: 31673088 PMCID: PMC6823380 DOI: 10.1038/s41598-019-51649-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/30/2019] [Indexed: 02/07/2023] Open
Abstract
Protein-protein interaction (PPI) studies are gaining momentum these days due to the plethora of various high-throughput experimental methods available for detecting PPIs. Proteins create complexes and networks by functioning in harmony with other proteins and here in silico network biology hold the promise to reveal new functionality of genes as it is very difficult and laborious to carry out experimental high-throughput genetic screens in living organisms. We demonstrate this approach by computationally screening C. elegans conserved homologs of already reported human tumor suppressor and aging associated genes. We select by this nhr-6, vab-3 and gst-23 as predicted longevity genes for RNAi screen. The RNAi results demonstrated the pro-longevity effect of these genes. Nuclear hormone receptor nhr-6 RNAi inhibition resulted in a C. elegans phenotype of 23.46% lifespan reduction. Moreover, we show that nhr-6 regulates oxidative stress resistance in worms and does not affect the feeding behavior of worms. These findings imply the potential of nhr-6 as a common therapeutic target for aging and cancer ailments, stressing the power of in silico PPI network analysis coupled with RNAi screens to describe gene function.
Collapse
|
23
|
Álvarez-Satta M, Moreno-Cugnon L, Matheu A. Primary cilium and brain aging: role in neural stem cells, neurodegenerative diseases and glioblastoma. Ageing Res Rev 2019; 52:53-63. [PMID: 31004829 DOI: 10.1016/j.arr.2019.04.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/14/2019] [Accepted: 04/15/2019] [Indexed: 01/28/2023]
Abstract
Brain aging is characterized by a progressive loss of tissue integrity and function as a consequence of impaired homeostasis and regeneration capacities. The primary cilium is a highly conserved organelle that projects from the cell surface in a single copy in virtually all mammalian cell types including neural stem/progenitors cells and neurons. Increasing evidence in the last decade points out that primary cilium could be a relevant mediator of neural stem cell activity, neurogenesis, neuronal maturation and maintenance, and brain tumorigenesis. In this review, we summarize the current knowledge about primary cilia roles in these processes. There is currently sufficient background to propose that defective primary cilia contribute to age-related cognitive decline and brain tumor development due to their critical roles in cell cycle control and signaling transduction. This might have potential applications on therapy against age-associated brain diseases.
Collapse
|
24
|
Bie YN, Gu P, Chen YT, Zhou XX, Tian YG, Yang Q, Li HY, Lin X, Guan YH, Lin TY, Lu X, Shen HF, Fang TX, Liu YM, Xiao D, Gu WW. TZAP plays an inhibitory role in the self-renewal of porcine mesenchymal stromal cells and is implicated the regulation of premature senescence via the p53 pathway. J Transl Med 2019; 17:72. [PMID: 30845965 PMCID: PMC6404308 DOI: 10.1186/s12967-019-1820-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 02/21/2019] [Indexed: 01/01/2023] Open
Abstract
Background Mesenchymal stromal cells (MSCs) were originally characterized by the ability to differentiate into different mesenchymal lineages in vitro, and their immunomodulatory and trophic functions have recently aroused significant interest in the application of MSCs in cell-based regenerative medicine. However, a major problem in clinical practice is the replicative senescence of MSCs, which limits the cell proliferation potential of MSCs after large-scale expansion. Telomeric zinc finger-associated protein (TZAP), a novel specific telomere-binding protein, was recently found to stimulate telomere trimming and prevent excessive telomere elongation. The aim of this study was to elucidate the role of TZAP in regulating MSCs senescence, differentiation and proliferation. Method Primary porcine mesenchymal stromal cells (pMSCs) were isolated from the bone marrow of Tibet minipigs by a noninvasive method in combination with frequent medium changes (FMCs). The deterioration of the pMSCs’ proliferation capacity and their resultant entry into senescence were analyzed by using CCK8 and EdU incorporation assays, SA-β-gal staining and comparisons of the expression levels of cellular senescence markers (p16INK14 and p21) in pMSC cell lines with TZAP overexpression or knockout. The effects of TZAP overexpression or knockout on the differentiation potential of pMSCs were assessed by alizarin red S staining after osteogenic induction or by oil red O staining after adipogenic induction. The effect of TZAP overexpression and the involvement of the p53 signaling pathway were evaluated by detecting changes in ARF, MDM2, P53 and P21 protein levels in pMSCs. Results TZAP levels were significantly elevated in late-passage pMSCs compared to those in early-passage pMSCs. We also observed significantly increased levels of the senescence markers p16INK4A and p21. Overexpression of TZAP reduced the differentiation potential of the cells, leading to premature senescence in early-passage pMSCs, while knockout of TZAP led to the opposite phenotype in late-passage pMSCs. Furthermore, overexpression of TZAP activated the P53 pathway (ARF-MDM2-P53-P21WAF/CDKN1A) in vitro. TZAP also downregulated the expression levels of PPARγ and Cebpα, two key modulators of adipogenesis. Conclusions This study demonstrates that the level of TZAP is closely related to differentiation potential in pMSCs and affects cellular senescence outcomes via the p53 pathway. Therefore, attenuation of intracellular TZAP levels could be a new strategy for improving the efficiency of pMSCs in cell therapy and tissue engineering applications. Electronic supplementary material The online version of this article (10.1186/s12967-019-1820-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ya-Nan Bie
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou, China.,Songshan Lake Pearl Laboratory Animal Sci & Tech. Co., Ltd., Dongguan, China
| | - Peng Gu
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou, China.,Songshan Lake Pearl Laboratory Animal Sci & Tech. Co., Ltd., Dongguan, China
| | - Yu-Ting Chen
- Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiao-Xu Zhou
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou, China.,Songshan Lake Pearl Laboratory Animal Sci & Tech. Co., Ltd., Dongguan, China
| | - Yu-Guang Tian
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou, China
| | - Qin Yang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hai-Yan Li
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou, China
| | - Xia Lin
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou, China
| | - Yan-Hong Guan
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou, China
| | - Tao-Yan Lin
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou, China
| | - Xun Lu
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou, China
| | - Hong-Fen Shen
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou, China
| | - Ting-Xiao Fang
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou, China
| | - Yu-Min Liu
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou, China
| | - Dong Xiao
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou, China.
| | - Wei-Wang Gu
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou, China. .,Songshan Lake Pearl Laboratory Animal Sci & Tech. Co., Ltd., Dongguan, China.
| |
Collapse
|
25
|
Alameda JP, Ramírez Á, García-Fernández RA, Navarro M, Page A, Segovia JC, Sanchez R, Suárez-Cabrera C, Paramio JM, Bravo A, Fernández-Aceñero MJ, Casanova ML. Premature aging and cancer development in transgenic mice lacking functional CYLD. Aging (Albany NY) 2019; 11:127-159. [PMID: 30631004 PMCID: PMC6339805 DOI: 10.18632/aging.101732] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/17/2018] [Indexed: 12/19/2022]
Abstract
CYLD is a deubiquitinating enzyme known for its role as a tumor suppressor whose mutation leads to skin appendages tumors and other cancers. In this manuscript we report that the tumor suppressor CYLD, similarly to other renowned tumor suppressor genes, protects from premature aging and cancer. We have generated transgenic mice expressing the mutant CYLDC/S protein, lacking its deubiquitinase function, under the control of the keratin 5 promoter, the K5-CYLDC/S mice. These mice express the transgene in different organs, including those considered to be more susceptible to aging, such as skin and thymus. Our results show that K5-CYLDC/S mice exhibit epidermal, hair follicle, and sebaceous gland alterations; and, importantly, they show signs of premature aging from an early age. Typically, 3-month-old K5-CYLDC/S mice exhibit a phenotype characterized by alopecia and kyphosis, and, the histological examination reveals that transgenic mice show signs of accelerated aging in numerous organs such as skin, thymus, pancreas, liver and lung. Additionally, they spontaneously develop tumors of diverse origin. Over-activation of the NF-κB pathway, along with hyperactivation of Akt, JNK and c-Myc, and chronic inflammation, appear as the mechanisms responsible for the premature aging of the K5-CYLDC/S mice.
Collapse
Affiliation(s)
- Josefa P. Alameda
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT)/CIBERONC, 28040 Madrid, Spain
- Biomedical Research Institute I+12, 12 de Octubre University Hospital, 28040 Madrid, Spain
| | - Ángel Ramírez
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT)/CIBERONC, 28040 Madrid, Spain
- Biomedical Research Institute I+12, 12 de Octubre University Hospital, 28040 Madrid, Spain
| | | | - Manuel Navarro
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT)/CIBERONC, 28040 Madrid, Spain
- Biomedical Research Institute I+12, 12 de Octubre University Hospital, 28040 Madrid, Spain
| | - Angustias Page
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT)/CIBERONC, 28040 Madrid, Spain
- Biomedical Research Institute I+12, 12 de Octubre University Hospital, 28040 Madrid, Spain
| | - José C. Segovia
- Division of Hematopoietic Innovative Therapies, CIEMAT/CIBERER/II-FJD, 28040 Madrid, Spain
| | - Rebeca Sanchez
- Division of Hematopoietic Innovative Therapies, CIEMAT/CIBERER/II-FJD, 28040 Madrid, Spain
| | - Cristian Suárez-Cabrera
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT)/CIBERONC, 28040 Madrid, Spain
- Biomedical Research Institute I+12, 12 de Octubre University Hospital, 28040 Madrid, Spain
| | - Jesús M. Paramio
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT)/CIBERONC, 28040 Madrid, Spain
- Biomedical Research Institute I+12, 12 de Octubre University Hospital, 28040 Madrid, Spain
| | - Ana Bravo
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Faculty of Veterinary Medicine, University of Santiago de Compostela, Lugo, Spain
| | - M. Jesús Fernández-Aceñero
- Servicio de Anatomía Patológica Hospital Clínico San Carlos, Departamento de Anatomía Patológica, Facultad de Medicina, UCM, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC),
28040 Madrid, España
| | - M. Llanos Casanova
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT)/CIBERONC, 28040 Madrid, Spain
- Biomedical Research Institute I+12, 12 de Octubre University Hospital, 28040 Madrid, Spain
| |
Collapse
|
26
|
Ezh2 programs T FH differentiation by integrating phosphorylation-dependent activation of Bcl6 and polycomb-dependent repression of p19Arf. Nat Commun 2018; 9:5452. [PMID: 30575739 PMCID: PMC6303346 DOI: 10.1038/s41467-018-07853-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 11/28/2018] [Indexed: 02/02/2023] Open
Abstract
Ezh2 is an histone methyltransferase (HMT) that catalyzes H3K27me3 and functions in TH1, TH2, and Treg cells primarily via HMT activity. Here we show that Ezh2 ablation impairs T follicular helper (TFH) cell differentiation and activation of the TFH transcription program. In TFH cells, most Ezh2-occupied genomic sites, including the Bcl6 promoter, are associated with H3K27ac rather than H3K27me3. Mechanistically, Ezh2 is recruited by Tcf1 to directly activate Bcl6 transcription, with this function requiring Ezh2 phosphorylation at Ser21. Meanwhile, Ezh2 deploys H3K27me3 to repress Cdkn2a expression in TFH cells, where aberrantly upregulated p19Arf, a Cdkn2a protein product, triggers TFH cell apoptosis and antagonizes Bcl6 function via protein-protein interaction. Either forced expression of Bcl6 or genetic ablation of p19Arf in Ezh2-deficient cells improves TFH cell differentiation and helper function. Thus, Ezh2 orchestrates TFH-lineage specification and function maturation by integrating phosphorylation-dependent transcriptional activation and HMT-dependent gene repression. Ezh2 is an histone methyltransferase that catalyzes H3K27me3. Here the authors show that Ezh2 promotes T follicular helper (TFH) differentiation and helper activity, by cooperating with Tcf1 to activate Bcl6 transcription and epigenetically repressing p19Arf, an antagonist of Bcl6 function and TFH cell survival.
Collapse
|
27
|
Apelin/APJ system: A novel promising target for anti-aging intervention. Clin Chim Acta 2018; 487:233-240. [PMID: 30296443 DOI: 10.1016/j.cca.2018.10.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/04/2018] [Accepted: 10/04/2018] [Indexed: 12/16/2022]
Abstract
Apelin, an endogenous ligand for the G protein-coupled receptor APJ, is widely expressed in various organs. Recent research has indicated that the Apelin/APJ system plays an important role in aging. Apelin and APJ receptor expression are down-regulated with increasing age. In murine models, Apelin and APJ knockouts exhibit accelerated senescence whereas Apelin-restoration results in enhanced vigor and rejuvenated behavioral and circadian phenotypes. Furthermore, aged Apelin knockout mice develop progressive impairment of cardiac contractility associated with systolic dysfunction. Apelin is crucial to maintain cardiac contractility in aging. Moreover, the Apelin/APJ system appears to be involved in regulation of renin-angiotensin-aldosterone system (RAAS), apoptosis, inflammation and oxidative stress which promotes aging. Likewise, the Apelin/APJ system regulates autophagy, stem cells and the sirtuin family thus contributing to anti-aging. In this review, we describe the relationship between Apelin/APJ system and aging. We elaborate on the role of the Apelin/APJ system in aging stimulators, aging inhibitors and age-related diseases such as obesity, diabetes and cardiovascular disease. We conclude that Apelin/APJ system might become a novel promising therapeutic target for anti-aging.
Collapse
|
28
|
ECRG4: a new potential target in precision medicine. Front Med 2018; 13:540-546. [PMID: 30003403 DOI: 10.1007/s11684-018-0637-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 01/27/2018] [Indexed: 12/28/2022]
Abstract
Given the rapid development in precision medicine, tremendous efforts have been devoted to discovering new biomarkers for disease diagnosis and treatment. Esophageal cancer-related gene-4 (ECRG4), which is initially known as a new candidate tumor suppressor gene, is emerging as a sentinel molecule for gauging tissue homeostasis. ECRG4 is unique in its cytokine-like functional pattern and epigenetically-regulated gene expression pattern. The gene can be released from the cell membrane upon activation and detected in liquid biopsy, thus offering considerable potential in precision medicine. This review provides an updated summary on the biology of ECRG4, with emphasis on its important roles in cancer diagnosis and therapy. The future perspectives of ECRG4 as a potential molecular marker in precision medicine are also discussed in detail.
Collapse
|
29
|
Activating the PGC-1 α/TERT Pathway by Catalpol Ameliorates Atherosclerosis via Modulating ROS Production, DNA Damage, and Telomere Function: Implications on Mitochondria and Telomere Link. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2876350. [PMID: 30046372 PMCID: PMC6036816 DOI: 10.1155/2018/2876350] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 03/15/2018] [Indexed: 12/17/2022]
Abstract
Catalpol, an iridoid glucoside, has been found present in large quantities in the root of Rehmannia glutinosa L. and showed a strong antioxidant capacity in the previous study. In the present work, the protective effect of catalpol against AS via inhibiting oxidative stress, DNA damage, and telomere shortening was found in LDLr-/- mice. This study also shows that activation of the peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α)/telomerase reverse transcriptase (TERT) pathway, which is the new link between mitochondria and telomere, was involved in the protective effects of catalpol. Further, by using PGC-1α or TERT siRNA in oxLDL-treated macrophages, it is proved that catalpol reduced oxidative stress, telomere function, and related DNA damage at least partly through activating the PGC-1α/TERT pathway. Moreover, dual luciferase activity assay-validated catalpol directly enhanced PGC-1α promoter activity. In conclusion, our study revealed that the PGC-1α/TERT pathway might be a possible therapeutic target in AS and catalpol has highly favorable characteristics for the treatment of AS via modulating this pathway.
Collapse
|
30
|
Abstract
Purpose of Review Functional decline of hematopoiesis that occurs in the elderly, or in patients who receive therapies that trigger cellular senescence effects, results in a progressive reduction in the immune response and an increased incidence of myeloid malignancy. Intracellular signals in hematopoietic stem cells and progenitors (HSC/P) mediate systemic, microenvironment, and cell-intrinsic effector aging signals that induce their decline. This review intends to summarize and critically review our advances in the understanding of the intracellular signaling pathways responsible for HSC decline during aging and opportunities for intervention. Recent Findings For a long time, aging of HSC has been thought to be an irreversible process imprinted in stem cells due to the cell intrinsic nature of aging. However, recent murine models and human correlative studies provide evidence that aging is associated with molecular signaling pathways, including oxidative stress, metabolic dysfunction, loss of polarity and an altered epigenome. These signaling pathways provide potential targets for prevention or reversal of age-related changes. Summary Here we review our current understanding of the signalling pathways that are differentially activated or repressed during HSC/P aging, focusing on the oxidative, metabolic, biochemical and structural consequences downstream, and cell-intrinsic, systemic, and environmental influences.
Collapse
|
31
|
Inoue K, Fry EA. Aberrant Expression of p14 ARF in Human Cancers: A New Biomarker? TUMOR & MICROENVIRONMENT 2018; 1:37-44. [PMID: 30740529 PMCID: PMC6364748 DOI: 10.4103/tme.tme_24_17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The ARF and INK4a genes are located on the CDKN2a locus, both showing tumor suppressive activity. ARF has been shown to monitor potentially harmful oncogenic signalings, making early stage cancer cells undergo senescence or programmed cell death to prevent cancer. Conversely, INK4a detects both aging and incipient cancer cell signals, and thus these two gene functions are different. The efficiency of detection of oncogenic signals is more efficient for the for the former than the latter in the mouse system. Both ARF and INK4a genes are inactivated by gene deletion, promoter methylation, frame shift, aberrant splicing although point mutations for the coding region affect only the latter. Recent studies show the splicing alterations that affect only ARF or both ARF and INK4a genes suggesting that ARF is inactivated in human tumors more frequently than what was previously thought. The ARF gene is activated by E2Fs and Dmp1 transcription factors while it is repressed by Bmi1, Tbx2/3, Twist1, and Pokemon nuclear proteins. It is also regulated at protein levels by Arf ubiquitin ligase named ULF, MKRN1, and Siva1. The prognostic value of ARF overexpression is controversial since it is induced in early stage cancer cells to eliminate pre-malignant cells (better prognosis); however, it may also indicate that the tumor cells have mutant p53 associated with worse prognosis. The ARF tumor suppressive protein can be used as a biomarker to detect early stage cancer cells as well as advanced stage tumors with p53 inactivation.
Collapse
Affiliation(s)
- Kazushi Inoue
- The Department of Pathology, Wake Forest University Health Sciences, Winston-Salem, NC 27157
| | - Elizabeth A. Fry
- The Department of Pathology, Wake Forest University Health Sciences, Winston-Salem, NC 27157
| |
Collapse
|
32
|
Akhoon BA, Rathor L, Pandey R. Withanolide A extends the lifespan in human EGFR-driven cancerous Caenorhabditis elegans. Exp Gerontol 2018; 104:113-117. [DOI: 10.1016/j.exger.2018.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/31/2018] [Accepted: 02/04/2018] [Indexed: 12/17/2022]
|
33
|
Al-Gebaly AS. Ameliorating role of whey syrup against ageing-related damage of myocardial muscle of Wistar Albino rats. Saudi J Biol Sci 2018; 26:950-956. [PMID: 31303824 PMCID: PMC6600591 DOI: 10.1016/j.sjbs.2018.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/23/2018] [Accepted: 03/25/2018] [Indexed: 11/10/2022] Open
Abstract
Age-ing is involved in gradual breakdown of biological structure and function of body organs. The heart represents the main organ responsible for pumping the main issues of life which involving oxygen, nutrients and bioactive molecules necessary for maintaining the body functions. The present study has been conducted to assess the anti-aging properties of whey syrup collected from fermented milk in 4, 18 and 30-months-old rats. The histopathological and histochemical changes of carbohydrates and proteins were investigated. Immunohistochemical expression of smooth muscle actin and P53 was performed to assess the function of cardiomyocytes. Furthermore, Annexin v and biochemical changes of different cardio-biomarkers were carried out to evaluate the effects of aging. The present result of 30 months-old rats revealed myocardial infarction assessed by widening of myocardial fibers, diffused with numerous blood capillaries and dense leukocytic infiltration. The assessed biochemical markers confirmed myocardial damage. Whey supplementation improved the myocardial structure, but less improvement was observed for the 30-months-old rats. The author recommended supplementation with whey is beneficial in giving a body the demand for amino acids and minerals essential for supporting the myocardium and also provides protection against age-ing.
Collapse
Affiliation(s)
- Asma S Al-Gebaly
- Department of Biology, Faculty of Sciences, Princess Nourah Bint Abdulrahman, University, 11474 Riyadh, Saudi Arabia
| |
Collapse
|