1
|
E M, Zhang Z, Ji P, Liu Q, Qi H, Hou T, Su H, Wang Z, Li X. A novel mechanism of major ginsenosides from Panax ginseng against multiple organ aging in middle-aged mice: Phosphatidylcholine-myo-inositol metabolism based on metabolomic analysis. Biochem Biophys Res Commun 2024; 719:150027. [PMID: 38749089 DOI: 10.1016/j.bbrc.2024.150027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 06/05/2024]
Abstract
Aging is a complex, degenerative process associated with various metabolic abnormalities. Ginsenosides (GS) is the main active components of Panax ginseng, which has anti-aging effects and improves metabolism. However, the anti-aging effect and the mechanism of GS in middle-aged mice has not been elucidated. In this study, GS after 3-month treatment significantly improved the grip strength, fatigue resistance, cognitive indices, and cardiac function of 15-month-old mice. Meanwhile, GS treatment reduced the fat content and obviously inhibited histone H2AX phosphorylation at Ser 139 (γ-H2AX), a marker of DNA damage in major organs, especially in the heart and liver. Further, the correlation analysis of serum metabolomics combined with aging phenotype suggested that myo-inositol (MI) upregulated by GS was positively correlated with left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS), the main indicators of cardiac function. More importantly, liver tissue metabolomic analysis showed that GS increased MI content by promoting the synthesis pathway from phosphatidylcholine (PC) to MI for the inhibition of liver aging. Finally, we proved that MI reduced the percentage of senescence-associated β-galactosidase staining, γ-H2AX immunofluorescence staining, p21 expression, and the production of reactive oxygen species in H2O2-induced cardiomyocytes. These results suggest that GS can enhance multiple organ functions, especially cardiac function for promoting the healthspan of aging mice, which is mediated by the conversion of PC to MI in the liver and the increase of MI level in the serum. Our study might provide new insights into the potential mechanisms of ginsenosides for prolonging the healthspan of natural aging mice.
Collapse
Affiliation(s)
- Mingyao E
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China.
| | - Zepeng Zhang
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China
| | - Peng Ji
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Qing Liu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Hongyu Qi
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Tong Hou
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Hang Su
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Zeyu Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China.
| | - Xiangyan Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China.
| |
Collapse
|
2
|
Ziegler DV, Czarnecka-Herok J, Vernier M, Scholtes C, Camprubi C, Huna A, Massemin A, Griveau A, Machon C, Guitton J, Rieusset J, Vigneron AM, Giguère V, Martin N, Bernard D. Cholesterol biosynthetic pathway induces cellular senescence through ERRα. NPJ AGING 2024; 10:5. [PMID: 38216569 PMCID: PMC10786911 DOI: 10.1038/s41514-023-00128-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/30/2023] [Indexed: 01/14/2024]
Abstract
Cellular senescence is a cell program induced by various stresses that leads to a stable proliferation arrest and to a senescence-associated secretory phenotype. Accumulation of senescent cells during age-related diseases participates in these pathologies and regulates healthy lifespan. Recent evidences point out a global dysregulated intracellular metabolism associated to senescence phenotype. Nonetheless, the functional contribution of metabolic homeostasis in regulating senescence is barely understood. In this work, we describe how the mevalonate pathway, an anabolic pathway leading to the endogenous biosynthesis of poly-isoprenoids, such as cholesterol, acts as a positive regulator of cellular senescence in normal human cells. Mechanistically, this mevalonate pathway-induced senescence is partly mediated by the downstream cholesterol biosynthetic pathway. This pathway promotes the transcriptional activity of ERRα that could lead to dysfunctional mitochondria, ROS production, DNA damage and a p53-dependent senescence. Supporting the relevance of these observations, increase of senescence in liver due to a high-fat diet regimen is abrogated in ERRα knockout mouse. Overall, this work unravels the role of cholesterol biosynthesis or level in the induction of an ERRα-dependent mitochondrial program leading to cellular senescence and related pathological alterations.
Collapse
Affiliation(s)
- Dorian V Ziegler
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Joanna Czarnecka-Herok
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France
- Equipe Labellisée la Ligue Contre le Cancer, Lyon, France
| | - Mathieu Vernier
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France
- Equipe Labellisée la Ligue Contre le Cancer, Lyon, France
- Goodman Cancer Research Centre, McGill University, Quebec, Montreal, Canada
| | - Charlotte Scholtes
- Goodman Cancer Research Centre, McGill University, Quebec, Montreal, Canada
| | - Clara Camprubi
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Anda Huna
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France
- Equipe Labellisée la Ligue Contre le Cancer, Lyon, France
| | - Amélie Massemin
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France
- Equipe Labellisée la Ligue Contre le Cancer, Lyon, France
| | - Audrey Griveau
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Christelle Machon
- Biochemistry and Pharmacology-Toxicology Laboratory, Lyon-Sud Hospital, Hospices Civils de Lyon, F-69495, Pierre Bénite, France
| | - Jérôme Guitton
- Biochemistry and Pharmacology-Toxicology Laboratory, Lyon-Sud Hospital, Hospices Civils de Lyon, F-69495, Pierre Bénite, France
| | | | - Arnaud M Vigneron
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Vincent Giguère
- Goodman Cancer Research Centre, McGill University, Quebec, Montreal, Canada
- Departments of Biochemistry, Medicine and Oncology, McGill University, Montreal, Quebec, Montreal, Canada
| | - Nadine Martin
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France.
- Equipe Labellisée la Ligue Contre le Cancer, Lyon, France.
| | - David Bernard
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France.
- Equipe Labellisée la Ligue Contre le Cancer, Lyon, France.
| |
Collapse
|
3
|
Ye Q, Xu G, Yuan H, Mi J, Xie Y, Li H, Li Z, Huang G, Chen X, Li W, Yang R. Urinary PART1 and PLA2R1 Could Potentially Serve as Diagnostic Markers for Diabetic Kidney Disease Patients. Diabetes Metab Syndr Obes 2023; 16:4215-4231. [PMID: 38162802 PMCID: PMC10757812 DOI: 10.2147/dmso.s445341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024] Open
Abstract
Background Diabetic kidney disease (DKD) is a chronic renal disease which could eventually develop into renal failure. Though albuminuria and estimated glomerular filtration rate (eGFR) are helpful for the diagnosis of DKD, the lack of specific biomarkers reduces the efficiency of therapeutic interventions. Methods Based on bulk-seq of 56 urine samples collected at different time points (including 11 acquired from DKD patients and 11 from healthy controls), in corporation of scRNA-seq data of urine samples and snRNA-seq data of renal punctures from DKD patients (retrieved from NCBI GEO Omnibus), urine-kidney specific genes were identified by Multiple Biological Information methods. Results Forty urine-kidney specific genes/differentially expressed genes (DEGs) were identified to be highly related to kidney injury and proteinuria for the DKD patients. Most of these genes participate in regulating glucagon and apoptosis, among which, urinary PART1 (mainly derived from distal tubular cells) and PLA2R1 (podocyte cell surface marker) could be used together for the early diagnosis of DKD. Moreover, urinary PART1 was significantly associated with multiple clinical indicators, and remained stable over time in urine. Conclusion Urinary PART1 and PLA2R1 could be shed lights on the discovery and development of non-invasive diagnostic method for DKD, especially in early stages.
Collapse
Affiliation(s)
- Qinglin Ye
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530005, People’s Republic of China
| | - Guiling Xu
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530005, People’s Republic of China
| | - Hao Yuan
- Centre for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Junhao Mi
- Centre for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Yuli Xie
- Centre for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Haoyu Li
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530005, People’s Republic of China
| | - Zhejun Li
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530005, People’s Republic of China
| | - Guanwen Huang
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530005, People’s Republic of China
| | - Xuesong Chen
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530005, People’s Republic of China
| | - Wei Li
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530005, People’s Republic of China
| | - Rirong Yang
- Centre for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, People’s Republic of China
| |
Collapse
|
4
|
Sun S, Meng Y, Li M, Tang X, Hu W, Wu W, Li G, Pang Q, Wang W, Liu B. CD133 + endothelial-like stem cells restore neovascularization and promote longevity in progeroid and naturally aged mice. NATURE AGING 2023; 3:1401-1414. [PMID: 37946040 PMCID: PMC10645602 DOI: 10.1038/s43587-023-00512-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/27/2023] [Indexed: 11/12/2023]
Abstract
The stem cell theory of aging dictates that a decline in the number and/or function of stem cells causes tissue degeneration and aging; however, it still lacks unequivocal experimental support. Here, using lineage tracing and single-cell transcriptomics, we identify a population of CD133+ bone marrow-derived endothelial-like cells (ELCs) as potential endothelial progenitor cells, which contribute to tubular structures in vitro and neovascularization in vivo. We demonstrate that supplementation with wild-type and young ELCs respectively restores neovascularization and extends lifespan in progeric and naturally aged mice. Mechanistically, we identify an upregulation of farnesyl diphosphate synthase (FDPS) in aged CD133+ ELCs-a key enzyme in isoprenoid biosynthesis. Overexpression of FDPS compromises the neovascularization capacity of CD133+ ELCs, whereas FDPS inhibition by pamidronate enhances neovascularization, improves health measures and extends lifespan in aged mice. These findings highlight stem cell-based strategies for the treatment of progeria and age-related pathologies.
Collapse
Affiliation(s)
- Shimin Sun
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), Guangdong Key Laboratory of Genome Stability and Human Disease Prevention; International Cancer Center, School of Basic Medical Sciences, Shenzhen University, Shenzhen, China
- Friedrich Schiller University, Jena, Germany
| | | | - Mingying Li
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), Guangdong Key Laboratory of Genome Stability and Human Disease Prevention; International Cancer Center, School of Basic Medical Sciences, Shenzhen University, Shenzhen, China
| | - Xiaolong Tang
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), Guangdong Key Laboratory of Genome Stability and Human Disease Prevention; International Cancer Center, School of Basic Medical Sciences, Shenzhen University, Shenzhen, China
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Wenjing Hu
- Friedrich Schiller University, Jena, Germany
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Weiwei Wu
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Guo Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiuxiang Pang
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Wengong Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Baohua Liu
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), Guangdong Key Laboratory of Genome Stability and Human Disease Prevention; International Cancer Center, School of Basic Medical Sciences, Shenzhen University, Shenzhen, China.
| |
Collapse
|
5
|
Massemin A, Goehrig D, Flaman J, Jaber S, Griveau A, Djebali S, Marcos E, Payen L, Marvel J, Parent R, Adnot S, Bertolino P, Rieusset J, Tortereau A, Vindrieux D, Bernard D. Loss of Pla2r1 decreases cellular senescence and age-related alterations caused by aging and Western diets. Aging Cell 2023; 22:e13971. [PMID: 37667516 PMCID: PMC10652324 DOI: 10.1111/acel.13971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 06/21/2023] [Accepted: 08/04/2023] [Indexed: 09/06/2023] Open
Abstract
Cellular senescence is induced by many stresses including telomere shortening, DNA damage, oxidative, or metabolic stresses. Senescent cells are stably cell cycle arrested and they secrete many factors including cytokines and chemokines. Accumulation of senescent cells promotes many age-related alterations and diseases. In this study, we investigated the role of the pro-senescent phospholipase A2 receptor 1 (PLA2R1) in regulating some age-related alterations in old mice and in mice subjected to a Western diet, whereas aged wild-type mice displayed a decreased ability to regulate their glycemia during glucose and insulin tolerance tests, aged Pla2r1 knockout (KO) mice efficiently regulated their glycemia and displayed fewer signs of aging. Loss of Pla2r1 was also found protective against the deleterious effects of a Western diet. Moreover, these Pla2r1 KO mice were partially protected from diet-induced senescent cell accumulation, steatosis, and fibrosis. Together these results support that Pla2r1 drives several age-related alterations, especially in the liver, arising during aging or through a Western diet.
Collapse
Affiliation(s)
- Amélie Massemin
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon BérardUniversité de LyonLyonFrance
- Equipe Labellisée la Ligue Contre le CancerLyonFrance
| | - Delphine Goehrig
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon BérardUniversité de LyonLyonFrance
- Equipe Labellisée la Ligue Contre le CancerLyonFrance
| | - Jean‐Michel Flaman
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon BérardUniversité de LyonLyonFrance
- Equipe Labellisée la Ligue Contre le CancerLyonFrance
| | - Sara Jaber
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon BérardUniversité de LyonLyonFrance
| | - Audrey Griveau
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon BérardUniversité de LyonLyonFrance
| | - Sophia Djebali
- Centre International de Recherche en Infectiologie, Inserm U1111, CNRS UMR5308, École Normale Supérieure de LyonUniversité de Lyon, Université Claude Bernard Lyon 1LyonFrance
| | - Elisabeth Marcos
- INSERM U955, Département de Physiologie ‐ Explorations fonctionnelles, Hôpital Henri MondorAP‐HP, FHU SENECCréteilFrance
| | - Léa Payen
- Laboratoire de Biochimie et Biologie Moléculaire, Centre Hospitalier Lyon SudHospices Civils de LyonPierre BéniteFrance
| | - Jacqueline Marvel
- Centre International de Recherche en Infectiologie, Inserm U1111, CNRS UMR5308, École Normale Supérieure de LyonUniversité de Lyon, Université Claude Bernard Lyon 1LyonFrance
| | - Romain Parent
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon BérardUniversité de LyonLyonFrance
| | - Serge Adnot
- INSERM U955, Département de Physiologie ‐ Explorations fonctionnelles, Hôpital Henri MondorAP‐HP, FHU SENECCréteilFrance
| | - Philippe Bertolino
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon BérardUniversité de LyonLyonFrance
- Equipe Labellisée la Ligue Contre le CancerLyonFrance
| | - Jennifer Rieusset
- CarMeN Laboratory, UMR INSERM U1060/INRA U1397Lyon 1 UniversityPierre béniteFrance
| | - Antonin Tortereau
- VetAgro Sup, Interactions Cellules Environnement (ICE)Université de LyonMarcy l'EtoileFrance
| | - David Vindrieux
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon BérardUniversité de LyonLyonFrance
- Equipe Labellisée la Ligue Contre le CancerLyonFrance
| | - David Bernard
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon BérardUniversité de LyonLyonFrance
- Equipe Labellisée la Ligue Contre le CancerLyonFrance
| |
Collapse
|
6
|
Sharma R, Diwan B. Lipids and the hallmarks of ageing: From pathology to interventions. Mech Ageing Dev 2023; 215:111858. [PMID: 37652278 DOI: 10.1016/j.mad.2023.111858] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Lipids are critical structural and functional architects of cellular homeostasis. Change in systemic lipid profile is a clinical indicator of underlying metabolic pathologies, and emerging evidence is now defining novel roles of lipids in modulating organismal ageing. Characteristic alterations in lipid metabolism correlate with age, and impaired systemic lipid profile can also accelerate the development of ageing phenotype. The present work provides a comprehensive review of the extent of lipids as regulators of the modern hallmarks of ageing viz., cellular senescence, chronic inflammation, gut dysbiosis, telomere attrition, genome instability, proteostasis and autophagy, epigenetic alterations, and stem cells dysfunctions. Current evidence on the modulation of each of these hallmarks has been discussed with emphasis on inherent age-dependent deficiencies in lipid metabolism as well as exogenous lipid changes. There appears to be sufficient evidence to consider impaired lipid metabolism as key driver of the ageing process although much of knowledge is yet fragmented. Considering dietary lipids, the type and quantity of lipids in the diet is a significant, but often overlooked determinant that governs the effects of lipids on ageing. Further research using integrative approaches amidst the known aging hallmarks is highly desirable for understanding the therapeutics of lipids associated with ageing.
Collapse
Affiliation(s)
- Rohit Sharma
- Nutrigerontology Laboratory, Faculty of Applied Sciences & Biotechnology, Shoolini University, Solan 173229, India.
| | - Bhawna Diwan
- Nutrigerontology Laboratory, Faculty of Applied Sciences & Biotechnology, Shoolini University, Solan 173229, India
| |
Collapse
|
7
|
Murakami M, Sato H, Taketomi Y. Modulation of immunity by the secreted phospholipase A 2 family. Immunol Rev 2023; 317:42-70. [PMID: 37035998 DOI: 10.1111/imr.13205] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/11/2023]
Abstract
Among the phospholipase A2 (PLA2 ) superfamily, which typically catalyzes the sn-2 hydrolysis of phospholipids to yield fatty acids and lysophospholipids, the secreted PLA2 (sPLA2 ) family contains 11 isoforms in mammals. Individual sPLA2 s have unique enzymatic specificity toward fatty acids and polar heads of phospholipid substrates and display distinct tissue/cellular distributions, suggesting their distinct physiological functions. Recent studies using knockout and/or transgenic mice for a full set of sPLA2 s have revealed their roles in modulation of immunity and related disorders. Application of mass spectrometric lipidomics to these mice has enabled to identify target substrates and products of individual sPLA2 s in given tissue microenvironments. sPLA2 s hydrolyze not only phospholipids in the plasma membrane of activated, damaged or dying mammalian cells, but also extracellular phospholipids such as those in extracellular vesicles, microbe membranes, lipoproteins, surfactants, and dietary phospholipids, thereby exacerbating or ameliorating various diseases. The actions of sPLA2 s are dependent on, or independent of, the generation of fatty acid- or lysophospholipid-derived lipid mediators according to the pathophysiological contexts. In this review, we make an overview of our current understanding of the roles of individual sPLA2 s in various immune responses and associated diseases.
Collapse
Affiliation(s)
- Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Hiroyasu Sato
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshitaka Taketomi
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
Treaster S, Deelen J, Daane JM, Murabito J, Karasik D, Harris MP. Convergent genomics of longevity in rockfishes highlights the genetics of human life span variation. SCIENCE ADVANCES 2023; 9:eadd2743. [PMID: 36630509 PMCID: PMC9833670 DOI: 10.1126/sciadv.add2743] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 12/09/2022] [Indexed: 05/16/2023]
Abstract
Longevity is a defining, heritable trait that varies dramatically between species. To resolve the genetic regulation of this trait, we have mined genomic variation in rockfishes, which range in longevity from 11 to over 205 years. Multiple shifts in rockfish longevity have occurred independently and in a short evolutionary time frame, thus empowering convergence analyses. Our analyses reveal a common network of genes under convergent evolution, encompassing established aging regulators such as insulin signaling, yet also identify flavonoid (aryl-hydrocarbon) metabolism as a pathway modulating longevity. The selective pressures on these pathways indicate the ancestral state of rockfishes was long lived and that the changes in short-lived lineages are adaptive. These pathways were also used to explore genome-wide association studies of human longevity, identifying the aryl-hydrocarbon metabolism pathway to be significantly associated with human survival to the 99th percentile. This evolutionary intersection defines and cross-validates a previously unappreciated genetic architecture that associates with the evolution of longevity across vertebrates.
Collapse
Affiliation(s)
- Stephen Treaster
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Joris Deelen
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, D-50931 Köln, Germany
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, Netherlands
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Jacob M. Daane
- Department of Biology and Biochemistry, University of Houston, Houston TX, USA
| | - Joanne Murabito
- Section of General Internal Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
| | - David Karasik
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Marcus Institute for Aging Research, Hebrew Senior Life, Boston, MA, USA
| | - Matthew P. Harris
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Dong Z, Geng Y, Zhang P, Tang J, Cao Z, Zheng H, Guo J, Zhang C, Liu B, Liu WJ. Identification of molecular mechanism and key biomarkers in membranous nephropathy by bioinformatics analysis. Am J Transl Res 2022; 14:5833-5847. [PMID: 36105034 PMCID: PMC9452341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES Membranous nephropathy (MN) is an autoimmune nephropathy. The incidence of MN is increasing gradually in recent years. Previous studies focused on antibody production, complement activation and podocyte injury in MN. However, the etiology and underlying mechanism of MN remain to be further studied. METHODS GSE104948 and GSE108109 of glomerular expression profile were downloaded from Gene Expression Omnibus (GEO) database, GSE47184, GSE99325, GSE104954, GSE108112, GSE133288 of renal tubule expression profile, and GSE73953 of peripheral blood mononuclear cells (PBMCs) expression profile. After data integration by Networkanalyst, differentially expressed genes (DEGs) between MN and healthy samples were obtained. DEGs were enriched in gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG), and protein-protein interaction (PPI) networks of these genes were constructed through Metascape, etc. We further understood the function of hub genes through gene set enrichment analysis (GSEA). The diagnostic value of DEGs in MN was evaluated by receiver operating characteristic (ROC) analysis. RESULTS A total of 3 genes (TP53, HDAC5, and SLC2A3) were screened out. Among them, the up-regulated TP53 expression may be closely related to MN renal pathological changes. However, the expression of MN podocyte target antigen was not significantly different from that of healthy controls. In addition, the changes of Wnt signaling pathway in PBMCs and the effects of SLC2A3 on the differentiation of M2 monocyte need further study. CONCLUSION It is difficult to unify a specific mechanism for the changes of glomerulus, renal tubules and PBMCs in MN patients. This may be related to the pathogenesis, pathology and immune characteristics of MN. MN podocyte target antigen may not be the root cause of the disease, but a stage result in the pathogenesis process.
Collapse
Affiliation(s)
- Zhaocheng Dong
- Dongzhimen Hospital, Beijing University of Chinese MedicineBeijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese MedicineBeijing, China
| | - Yunling Geng
- Dongzhimen Hospital, Beijing University of Chinese MedicineBeijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese MedicineBeijing, China
| | - Pingna Zhang
- Dongzhimen Hospital, Beijing University of Chinese MedicineBeijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese MedicineBeijing, China
| | - Jingyi Tang
- Dongzhimen Hospital, Beijing University of Chinese MedicineBeijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese MedicineBeijing, China
| | - Zijing Cao
- Dongzhimen Hospital, Beijing University of Chinese MedicineBeijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese MedicineBeijing, China
| | - Huijuan Zheng
- Dongzhimen Hospital, Beijing University of Chinese MedicineBeijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese MedicineBeijing, China
| | - Jing Guo
- Dongzhimen Hospital, Beijing University of Chinese MedicineBeijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese MedicineBeijing, China
| | - Chao Zhang
- Dongzhimen Hospital, Beijing University of Chinese MedicineBeijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese MedicineBeijing, China
| | - Baoli Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical UniversityBeijing, China
| | - Wei Jing Liu
- Dongzhimen Hospital, Beijing University of Chinese MedicineBeijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese MedicineBeijing, China
| |
Collapse
|
10
|
Rebustini IT, Crawford SE, Becerra SP. PEDF Deletion Induces Senescence and Defects in Phagocytosis in the RPE. Int J Mol Sci 2022; 23:7745. [PMID: 35887093 PMCID: PMC9316002 DOI: 10.3390/ijms23147745] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/05/2022] [Accepted: 07/09/2022] [Indexed: 02/01/2023] Open
Abstract
The retinal pigment epithelium (RPE) expresses the Serpinf1 gene to produce pigment epithelium-derived factor (PEDF), a retinoprotective protein that is downregulated with cell senescence, aging and retinal degenerations. We determined the expression of senescence-associated genes in the RPE of 3-month-old mice that lack the Serpinf1 gene and found that Serpinf1 deletion induced H2ax for histone H2AX protein, Cdkn1a for p21 protein, and Glb1 gene for β-galactosidase. Senescence-associated β-galactosidase activity increased in the Serpinf1 null RPE when compared with wild-type RPE. We evaluated the subcellular morphology of the RPE and found that ablation of Serpinf1 increased the volume of the nuclei and the nucleoli number of RPE cells, implying chromatin reorganization. Given that the RPE phagocytic function declines with aging, we assessed the expression of the Pnpla2 gene, which is required for the degradation of photoreceptor outer segments by the RPE. We found that both the Pnpla2 gene and its protein PEDF-R declined with the Serpinf1 gene ablation. Moreover, we determined the levels of phagocytosed rhodopsin and lipids in the RPE of the Serpinf1 null mice. The RPE of the Serpinf1 null mice accumulated rhodopsin and lipids compared to littermate controls, implying an association of PEDF deficiency with RPE phagocytosis dysfunction. Our findings establish PEDF loss as a cause of senescence-like changes in the RPE, highlighting PEDF as both a retinoprotective and a regulatory protein of aging-like changes associated with defective degradation of the photoreceptor outer segment in the RPE.
Collapse
Affiliation(s)
- Ivan T. Rebustini
- Section of Protein Structure and Function, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Susan E. Crawford
- Department of Surgery, North Shore University Research Institute, University of Chicago Pritzker School of Medicine, Chicago, IL 60201, USA;
| | - S. Patricia Becerra
- Section of Protein Structure and Function, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| |
Collapse
|
11
|
Dong Z, Dai H, Liu W, Jiang H, Feng Z, Liu F, Zhao Q, Rui H, Liu WJ, Liu B. Exploring the Differences in Molecular Mechanisms and Key Biomarkers Between Membranous Nephropathy and Lupus Nephritis Using Integrated Bioinformatics Analysis. Front Genet 2022; 12:770902. [PMID: 35047003 PMCID: PMC8762271 DOI: 10.3389/fgene.2021.770902] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 12/06/2021] [Indexed: 01/16/2023] Open
Abstract
Background: Both membranous nephropathy (MN) and lupus nephritis (LN) are autoimmune kidney disease. In recent years, with the deepening of research, some similarities have been found in the pathogenesis of these two diseases. However, the mechanism of their interrelationship is not clear. The purpose of this study was to investigate the differences in molecular mechanisms and key biomarkers between MN and LN. Method: The expression profiles of GSE99325, GSE99339, GSE104948 and GSE104954 were downloaded from GEO database, and the differentially expressed genes (DEGs) of MN and LN samples were obtained. We used Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) for enrichment analysis of DEGs. A protein-protein interaction (PPI) network of DEGs was constructed using Metascape. We filtered DEGs with NetworkAnalyst. Finally, we used receiver operating characteristic (ROC) analysis to identify the most significant DEGs for MN and LN. Result: Compared with LN in the glomerulus, 14 DEGs were up-regulated and 77 DEGs were down-regulated in MN. Compared with LN in renal tubules, 21 DEGs were down-regulated, but no up-regulated genes were found in MN. According to the result of GO and KEGG enrichment, PPI network and Networkanalyst, we screened out six genes (IFI6, MX1, XAF1, HERC6, IFI44L, IFI44). Interestingly, among PLA2R, THSD7A and NELL1, which are the target antigens of podocyte in MN, the expression level of NELL1 in MN glomerulus is significantly higher than that of LN, while there is no significant difference in the expression level of PLA2R and THSD7A. Conclusion: Our study provides new insights into the pathogenesis of MN and LN by analyzing the differences in gene expression levels between MN and LN kidney samples, and is expected to be used to prepare an animal model of MN that is more similar to human.
Collapse
Affiliation(s)
- Zhaocheng Dong
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Renal Research Institution of Beijing University of Chinese Medicine, and Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Haoran Dai
- Shunyi Branch, Beijing Traditional Chinese Medicine Hospital, Beijing, China
| | - Wenbin Liu
- Beijing University of Chinese Medicine, Beijing, China
| | - Hanxue Jiang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Zhendong Feng
- Beijing Chinese Medicine Hospital Pinggu Hospital, Beijing, China
| | - Fei Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Qihan Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Capital Medical University, Beijing, China
| | - Hongliang Rui
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Wei Jing Liu
- Renal Research Institution of Beijing University of Chinese Medicine, and Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Baoli Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Shunyi Branch, Beijing Traditional Chinese Medicine Hospital, Beijing, China
| |
Collapse
|
12
|
Beaulieu D, Attwe A, Breau M, Lipskaia L, Marcos E, Born E, Huang J, Abid S, Derumeaux G, Houssaini A, Maitre B, Lefevre M, Vienney N, Bertolino P, Jaber S, Noureddine H, Goehrig D, Vindrieux D, Bernard D, Adnot S. Phospholipase A2 receptor 1 promotes lung cell senescence and emphysema in obstructive lung disease. Eur Respir J 2021; 58:13993003.00752-2020. [PMID: 33509955 DOI: 10.1183/13993003.00752-2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 12/28/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Cell senescence is a key process in age-associated dysfunction and diseases, notably chronic obstructive pulmonary disease (COPD). We previously identified phospholipase A2 receptor 1 (PLA2R1) as a positive regulator of cell senescence acting via Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signalling. Its role in pathology, however, remains unknown. Here, we assessed PLA2R1-induced senescence in COPD and lung emphysema pathogenesis. METHODS We assessed cell senescence in lungs and cultured lung cells from patients with COPD and controls subjected to PLA2R1 knockdown, PLA2R1 gene transduction and treatment with the JAK1/2 inhibitor ruxolitinib. To assess whether PLA2R1 upregulation caused lung lesions, we developed transgenic mice overexpressing PLA2R1 (PLA2R1-TG) and intratracheally injected wild-type mice with a lentiviral vector carrying the Pla2r1 gene (LV-PLA2R1 mice). RESULTS We found that PLA2R1 was overexpressed in various cell types exhibiting senescence characteristics in COPD lungs. PLA2R1 knockdown extended the population doubling capacity of these cells and inhibited their pro-inflammatory senescence-associated secretory phenotype (SASP). PLA2R1-mediated cell senescence in COPD was largely reversed by treatment with the potent JAK1/2 inhibitor ruxolitinib. Five-month-old PLA2R1-TG mice exhibited lung cell senescence, and developed lung emphysema and lung fibrosis together with pulmonary hypertension. Treatment with ruxolitinib induced reversal of lung emphysema and fibrosis. LV-PLA2R1-treated mice developed lung emphysema within 4 weeks and this was markedly attenuated by concomitant ruxolitinib treatment. CONCLUSIONS Our data support a major role for PLA2R1 activation in driving lung cell senescence and lung alterations in COPD. Targeting JAK1/2 may represent a promising therapeutic approach for COPD.
Collapse
Affiliation(s)
- Delphine Beaulieu
- INSERM U955, Département de Physiologie-Explorations Fonctionnelles and DHU A-TVB Hôpital Henri Mondor, AP-HP, Créteil, France.,These two authors contributed equally
| | - Aya Attwe
- INSERM U955, Département de Physiologie-Explorations Fonctionnelles and DHU A-TVB Hôpital Henri Mondor, AP-HP, Créteil, France.,Environmental Health Research Laboratory (EHRL), Faculty of Sciences V, Lebanese University, Nabatieh, Lebanon.,These two authors contributed equally
| | - Marielle Breau
- INSERM U955, Département de Physiologie-Explorations Fonctionnelles and DHU A-TVB Hôpital Henri Mondor, AP-HP, Créteil, France
| | - Larissa Lipskaia
- INSERM U955, Département de Physiologie-Explorations Fonctionnelles and DHU A-TVB Hôpital Henri Mondor, AP-HP, Créteil, France
| | - Elisabeth Marcos
- INSERM U955, Département de Physiologie-Explorations Fonctionnelles and DHU A-TVB Hôpital Henri Mondor, AP-HP, Créteil, France
| | - Emmanuelle Born
- INSERM U955, Département de Physiologie-Explorations Fonctionnelles and DHU A-TVB Hôpital Henri Mondor, AP-HP, Créteil, France
| | - Jin Huang
- INSERM U955, Département de Physiologie-Explorations Fonctionnelles and DHU A-TVB Hôpital Henri Mondor, AP-HP, Créteil, France
| | - Shariq Abid
- INSERM U955, Département de Physiologie-Explorations Fonctionnelles and DHU A-TVB Hôpital Henri Mondor, AP-HP, Créteil, France
| | - Geneviève Derumeaux
- INSERM U955, Département de Physiologie-Explorations Fonctionnelles and DHU A-TVB Hôpital Henri Mondor, AP-HP, Créteil, France
| | - Amal Houssaini
- INSERM U955, Département de Physiologie-Explorations Fonctionnelles and DHU A-TVB Hôpital Henri Mondor, AP-HP, Créteil, France
| | - Bernard Maitre
- INSERM U955, Département de Physiologie-Explorations Fonctionnelles and DHU A-TVB Hôpital Henri Mondor, AP-HP, Créteil, France
| | - Marine Lefevre
- Département Anatomopathologie, Institut Mutualiste Montsouris, Paris, France
| | - Nora Vienney
- INSERM U955, Département de Physiologie-Explorations Fonctionnelles and DHU A-TVB Hôpital Henri Mondor, AP-HP, Créteil, France
| | - Philippe Bertolino
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM U1052/CNRS 5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Sara Jaber
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM U1052/CNRS 5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Hiba Noureddine
- Environmental Health Research Laboratory (EHRL), Faculty of Sciences V, Lebanese University, Nabatieh, Lebanon
| | - Delphine Goehrig
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM U1052/CNRS 5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - David Vindrieux
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM U1052/CNRS 5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - David Bernard
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM U1052/CNRS 5286, Université de Lyon, Centre Léon Bérard, Lyon, France.,These two authors are joint senior authors
| | - Serge Adnot
- INSERM U955, Département de Physiologie-Explorations Fonctionnelles and DHU A-TVB Hôpital Henri Mondor, AP-HP, Créteil, France .,Institute for Lung Health, University of Giessen, Giessen, Germany.,These two authors are joint senior authors
| |
Collapse
|
13
|
Gupta A, Singh AK, Kumar R, Jamieson S, Pandey AK, Bishayee A. Neuroprotective Potential of Ellagic Acid: A Critical Review. Adv Nutr 2021; 12:1211-1238. [PMID: 33693510 PMCID: PMC8321875 DOI: 10.1093/advances/nmab007] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/02/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
Ellagic acid (EA) is a dietary polyphenol present in various fruits, vegetables, herbs, and nuts. It exists either independently or as part of complex structures, such as ellagitannins, which release EA and several other metabolites including urolithins following absorption. During the past few decades, EA has drawn considerable attention because of its vast range of biological activities as well as its numerous molecular targets. Several studies have reported that the oxidative stress-lowering potential of EA accounts for its broad-spectrum pharmacological attributes. At the biochemical level, several mechanisms have also been associated with its therapeutic action, including its efficacy in normalizing lipid metabolism and lipidemic profile, regulating proinflammatory mediators, such as IL-6, IL-1β, and TNF-α, upregulating nuclear factor erythroid 2-related factor 2 and inhibiting NF-κB action. EA exerts appreciable neuroprotective activity by its free radical-scavenging action, iron chelation, initiation of several cell signaling pathways, and alleviation of mitochondrial dysfunction. Numerous in vivo studies have also explored the neuroprotective attribute of EA against various neurotoxins in animal models. Despite the increasing number of publications with experimental evidence, a critical analysis of available literature to understand the full neuroprotective potential of EA has not been performed. The present review provides up-to-date, comprehensive, and critical information regarding the natural sources of EA, its bioavailability, metabolism, neuroprotective activities, and underlying mechanisms of action in order to encourage further studies to define the clinical usefulness of EA for the management of neurological disorders.
Collapse
Affiliation(s)
- Ashutosh Gupta
- Department of Biochemistry, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Amit Kumar Singh
- Department of Biochemistry, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Ramesh Kumar
- Department of Biochemistry, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Sarah Jamieson
- Lake Erie College of Osteopathic Medicine, Bradenton, FL, USA
| | - Abhay Kumar Pandey
- Department of Biochemistry, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL, USA
| |
Collapse
|
14
|
Devyatkin VA, Redina OE, Kolosova NG, Muraleva NA. Single-Nucleotide Polymorphisms Associated with the Senescence-Accelerated Phenotype of OXYS Rats: A Focus on Alzheimer's Disease-Like and Age-Related-Macular-Degeneration-Like Pathologies. J Alzheimers Dis 2021; 73:1167-1183. [PMID: 31929160 DOI: 10.3233/jad-190956] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Alzheimer's disease (AD) and age-related macular degeneration (AMD) are two complex incurable neurodegenerative disorders the common pathogenesis of which is actively discussed. There are overlapping risk factors and molecular mechanisms of the two diseases; at the same time, there are arguments in favor of the notion that susceptibility to each of these diseases is associated with a distinct genetic background. Here we identified single-nucleotide polymorphisms (SNPs) that are specific for senescence-accelerated OXYS rats, which simulate key characteristics of both sporadic AD and AMD. Transcriptomes of the hippocampus, prefrontal cortex, and retina (data of RNA-Seq) were analyzed. We detected SNPs in genes Rims2, AABR07072639.2, Lemd2, and AABR07045405.1, which thus can express significantly truncated proteins lacking functionally important domains. Additionally, 33 mutations in genes-which are related to various metabolic and signaling pathways-cause nonsynonymous amino acid substitutions presumably leading to disturbances in protein structure or functions. Some of the genes carrying these SNPs are associated with aging, neurodegenerative, and mental diseases. Thus, we revealed the SNPs can lead to abnormalities in protein structure or functions and affect the development of the senescence-accelerated phenotype of OXYS rats. Our data are consistent with the latest results of genome-wide association studies that highlight the importance of multiple pathways for the pathogenesis of AD and AMD. Identified SNPs can serve as promising research objects for further studies on the molecular mechanisms underlying this particular rat model as well as for the prediction of potential biomarkers of AD and AMD.
Collapse
Affiliation(s)
- Vasiliy A Devyatkin
- Institute of Cytology and Genetics, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Olga E Redina
- Institute of Cytology and Genetics, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | | | | |
Collapse
|
15
|
Chung KW. Advances in Understanding of the Role of Lipid Metabolism in Aging. Cells 2021; 10:cells10040880. [PMID: 33924316 PMCID: PMC8068994 DOI: 10.3390/cells10040880] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023] Open
Abstract
During aging, body adiposity increases with changes in the metabolism of lipids and their metabolite levels. Considering lipid metabolism, excess adiposity with increased lipotoxicity leads to various age-related diseases, including cardiovascular disease, cancer, arthritis, type 2 diabetes, and Alzheimer's disease. However, the multifaceted nature and complexities of lipid metabolism make it difficult to delineate its exact mechanism and role during aging. With advances in genetic engineering techniques, recent studies have demonstrated that changes in lipid metabolism are associated with aging and age-related diseases. Lipid accumulation and impaired fatty acid utilization in organs are associated with pathophysiological phenotypes of aging. Changes in adipokine levels contribute to aging by modulating changes in systemic metabolism and inflammation. Advances in lipidomic techniques have identified changes in lipid profiles that are associated with aging. Although it remains unclear how lipid metabolism is regulated during aging, or how lipid metabolites impact aging, evidence suggests a dynamic role for lipid metabolism and its metabolites as active participants of signaling pathways and regulators of gene expression. This review describes recent advances in our understanding of lipid metabolism in aging, including established findings and recent approaches.
Collapse
Affiliation(s)
- Ki Wung Chung
- College of Pharmacy, Pusan National University, Busan 46214, Korea
| |
Collapse
|
16
|
Huna A, Griveau A, Vindrieux D, Jaber S, Flaman JM, Goehrig D, Azzi L, Médard JJ, Djebali S, Hernandez-Vargas H, Dante R, Payen L, Marvel J, Bertolino P, Aubert S, Dubus P, Bernard D. PLA2R1 promotes DNA damage and inhibits spontaneous tumor formation during aging. Cell Death Dis 2021; 12:190. [PMID: 33594040 PMCID: PMC7887270 DOI: 10.1038/s41419-021-03468-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 01/16/2021] [Accepted: 01/21/2021] [Indexed: 02/07/2023]
Abstract
Although aging is a major risk factor for most types of cancers, it is barely studied in this context. The transmembrane protein PLA2R1 (phospholipase A2 receptor) promotes cellular senescence, which can inhibit oncogene-induced tumor initiation. Functions and mechanisms of action of PLA2R1 during aging are largely unknown. In this study, we observed that old Pla2r1 knockout mice were more prone to spontaneously develop a wide spectrum of tumors compared to control littermates. Consistently, these knockout mice displayed increased Parp1, a master regulator of DNA damage repair, and decreased DNA damage, correlating with large human dataset analysis. Forced PLA2R1 expression in normal human cells decreased PARP1 expression, induced DNA damage and subsequent senescence, while the constitutive expression of PARP1 rescued cells from these PLA2R1-induced effects. Mechanistically, PARP1 expression is repressed by a ROS (reactive oxygen species)-Rb-dependent mechanism upon PLA2R1 expression. In conclusion, our results suggest that PLA2R1 suppresses aging-induced tumors by repressing PARP1, via a ROS-Rb signaling axis, and inducing DNA damage and its tumor suppressive responses.
Collapse
Affiliation(s)
- Anda Huna
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Audrey Griveau
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - David Vindrieux
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Sara Jaber
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Jean-Michel Flaman
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Delphine Goehrig
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Lamia Azzi
- INSERM U1053 Bordeaux Research in Translational Oncology, University of Bordeaux, Bordeaux Cedex, France
| | - Jean-Jacques Médard
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Sophia Djebali
- Centre International de Recherche en Infectiologie, Inserm U1111, CNRS, UMR5308, École Normale Supérieure de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Hector Hernandez-Vargas
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Robert Dante
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Léa Payen
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Jacqueline Marvel
- Centre International de Recherche en Infectiologie, Inserm U1111, CNRS, UMR5308, École Normale Supérieure de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Philippe Bertolino
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Sébastien Aubert
- Institut de Pathologie, Centre de Biologie Pathologie, CHRU de Lille, Faculté de Médecine, Université de Lille, Lille Cedex, France
| | - Pierre Dubus
- INSERM U1053 Bordeaux Research in Translational Oncology, University of Bordeaux, Bordeaux Cedex, France
- Plateau cellules tissus, CHU de Bordeaux, Pessac, France
| | - David Bernard
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France.
| |
Collapse
|
17
|
Dong Z, Liu Z, Dai H, Liu W, Feng Z, Zhao Q, Gao Y, Liu F, Zhang N, Dong X, Zhou X, Du J, Huang G, Tian X, Liu B. The Potential Role of Regulatory B Cells in Idiopathic Membranous Nephropathy. J Immunol Res 2020; 2020:7638365. [PMID: 33426094 PMCID: PMC7772048 DOI: 10.1155/2020/7638365] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/22/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
Regulatory B cells (Breg) are widely regarded as immunomodulatory cells which play an immunosuppressive role. Breg inhibits pathological autoimmune response by secreting interleukin-10 (IL-10), transforming growth factor-β (TGF-β), and adenosine and through other ways to prevent T cells and other immune cells from expanding. Recent studies have shown that different inflammatory environments induce different types of Breg cells, and these different Breg cells have different functions. For example, Br1 cells can secrete IgG4 to block autoantigens. Idiopathic membranous nephropathy (IMN) is an autoimmune disease in which the humoral immune response is dominant and the cellular immune response is impaired. However, only a handful of studies have been done on the role of Bregs in this regard. In this review, we provide a brief overview of the types and functions of Breg found in human body, as well as the abnormal pathological and immunological phenomena in IMN, and propose the hypothesis that Breg is activated in IMN patients and the proportion of Br1 can be increased. Our review aims at highlighting the correlation between Breg and IMN and proposes potential mechanisms, which can provide a new direction for the discovery of the pathogenesis of IMN, thus providing a new strategy for the prevention and early treatment of IMN.
Collapse
Affiliation(s)
- Zhaocheng Dong
- Beijing University of Chinese Medicine, No. 11, North Third Ring Road, Chaoyang District, Beijing 100029, China
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, No. 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Zhiyuan Liu
- Shandong First Medical University, No. 619 Changcheng Road, Tai'an City, Shandong 271016, China
| | - Haoran Dai
- Shunyi Branch, Beijing Traditional Chinese Medicine Hospital, Station East 5, Shunyi District, Beijing 101300, China
| | - Wenbin Liu
- Beijing University of Chinese Medicine, No. 11, North Third Ring Road, Chaoyang District, Beijing 100029, China
| | - Zhendong Feng
- Beijing Chinese Medicine Hospital Pinggu Hospital, No. 6, Pingxiang Road, Pinggu District, Beijing 101200, China
| | - Qihan Zhao
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, No. 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
- Capital Medical University, No. 10, Xitoutiao, You'anmenwai, Fengtai District, Beijing 100069, China
| | - Yu Gao
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, No. 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
- Capital Medical University, No. 10, Xitoutiao, You'anmenwai, Fengtai District, Beijing 100069, China
| | - Fei Liu
- Beijing University of Chinese Medicine, No. 11, North Third Ring Road, Chaoyang District, Beijing 100029, China
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, No. 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Na Zhang
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, No. 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
- Capital Medical University, No. 10, Xitoutiao, You'anmenwai, Fengtai District, Beijing 100069, China
| | - Xuan Dong
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, No. 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
- Capital Medical University, No. 10, Xitoutiao, You'anmenwai, Fengtai District, Beijing 100069, China
| | - Xiaoshan Zhou
- Beijing University of Chinese Medicine, No. 11, North Third Ring Road, Chaoyang District, Beijing 100029, China
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, No. 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Jieli Du
- Beijing University of Chinese Medicine, No. 11, North Third Ring Road, Chaoyang District, Beijing 100029, China
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, No. 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| | - Guangrui Huang
- Beijing University of Chinese Medicine, No. 11, North Third Ring Road, Chaoyang District, Beijing 100029, China
| | - Xuefei Tian
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Baoli Liu
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, No. 23 Meishuguanhou Street, Dongcheng District, Beijing 100010, China
| |
Collapse
|
18
|
Johnson AA, Shokhirev MN, Wyss-Coray T, Lehallier B. Systematic review and analysis of human proteomics aging studies unveils a novel proteomic aging clock and identifies key processes that change with age. Ageing Res Rev 2020; 60:101070. [PMID: 32311500 DOI: 10.1016/j.arr.2020.101070] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/23/2020] [Accepted: 04/07/2020] [Indexed: 12/14/2022]
Abstract
The development of clinical interventions that significantly improve human healthspan requires robust markers of biological age as well as thoughtful therapeutic targets. To promote these goals, we performed a systematic review and analysis of human aging and proteomics studies. The systematic review includes 36 different proteomics analyses, each of which identified proteins that significantly changed with age. We discovered 1,128 proteins that had been reported by at least two or more analyses and 32 proteins that had been reported by five or more analyses. Each of these 32 proteins has known connections relevant to aging and age-related disease. GDF15, for example, extends both lifespan and healthspan when overexpressed in mice and is additionally required for the anti-diabetic drug metformin to exert beneficial effects on body weight and energy balance. Bioinformatic enrichment analyses of our 1,128 commonly identified proteins heavily implicated processes relevant to inflammation, the extracellular matrix, and gene regulation. We additionally propose a novel proteomic aging clock comprised of proteins that were reported to change with age in plasma in three or more different studies. Using a large patient cohort comprised of 3,301 subjects (aged 18-76 years), we demonstrate that this clock is able to accurately predict human age.
Collapse
|
19
|
Lai W, Wong W. Progress and trends in the development of therapies for Hutchinson-Gilford progeria syndrome. Aging Cell 2020; 19:e13175. [PMID: 32596971 PMCID: PMC7370734 DOI: 10.1111/acel.13175] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/28/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is an autosomal-dominant genetic disease that leads to accelerated aging and often premature death caused by cardiovascular complications. Till now clinical management of HGPS has largely relied on the treatment of manifestations and on the prevention of secondary complications, cure for the disease has not yet been established. Addressing this need cannot only benefit progeria patients but may also provide insights into intervention design for combating physiological aging. By using the systematic review approach, this article revisits the overall progress in the development of strategies for HGPS treatment over the last ten years, from 2010 to 2019. In total, 1,906 articles have been retrieved, of which 56 studies have been included for further analysis. Based on the articles analyzed, the trends in the use of different HGPS models, along with the prevalence, efficiency, and limitations of different reported treatment strategies, have been examined. Emerging strategies for preclinical studies, and possible targets for intervention development, have also been presented as avenues for future research.
Collapse
Affiliation(s)
- Wing‐Fu Lai
- School of Life and Health Sciences The Chinese University of Hong Kong (Shenzhen) Shenzhen China
- Department of Applied Biology and Chemical Technology Hong Kong Polytechnic University Hong Kong Special Administrative Region China
| | - Wing‐Tak Wong
- Department of Applied Biology and Chemical Technology Hong Kong Polytechnic University Hong Kong Special Administrative Region China
| |
Collapse
|
20
|
Ma J, Liu M, Wang Y, Xin C, Zhang H, Chen S, Zheng X, Zhang X, Xiao F, Yang S. Quantitative proteomics analysis of young and elderly skin with DIA mass spectrometry reveals new skin aging-related proteins. Aging (Albany NY) 2020; 12:13529-13554. [PMID: 32602849 PMCID: PMC7377841 DOI: 10.18632/aging.103461] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/27/2020] [Indexed: 12/16/2022]
Abstract
Skin aging is a specific manifestation of the physiological aging process that occurs in virtually all organisms. In this study, we used data independent acquisition mass spectrometry to perform a comparative analysis of protein expression in volar forearm skin samples from of 20 healthy young and elderly Chinese individuals. Our quantitative proteomic analysis identified a total of 95 differentially expressed proteins (DEPs) in aged skin compared to young skin. Enrichment analyses of these DEPs (57 upregulated and 38 downregulated proteins) based on the GO, KEGG, and KOG databases revealed functional clusters associated with immunity and inflammation, oxidative stress, biosynthesis and metabolism, proteases, cell proliferation, cell differentiation, and apoptosis. We also found that GAPDH, which was downregulated in aged skin samples, was the top hub gene in a protein-protein interaction network analysis. Some of the DEPs identified herein had been previously correlated with aging of the skin and other organs, while others may represent novel age-related entities. Our non-invasive proteomics analysis of human epidermal proteins may guide future research on skin aging to help develop treatments for age-related skin conditions and rejuvenation.
Collapse
Affiliation(s)
- Jing Ma
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Mengting Liu
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Yaochi Wang
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Cong Xin
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Hui Zhang
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Shirui Chen
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Xiaodong Zheng
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Xuejun Zhang
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Fengli Xiao
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China.,The Center for Scientific Research of Anhui Medical University, Hefei, Anhui, China
| | - Sen Yang
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| |
Collapse
|
21
|
Cai R, Dong X, Yu K, He X, Liu X, Wang Y. Chemical Proteomic Profiling of the Interacting Proteins of Isoprenoid Pyrophosphates. Anal Chem 2020; 92:8031-8036. [PMID: 32420730 DOI: 10.1021/acs.analchem.0c01676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Isoprenoid pyrophosphates are involved in protein prenylation and assume regulatory roles in cells; however, little is known about the cellular proteins that can interact with isoprenoid pyrophosphates. Here, we devised a chemical proteomic strategy, capitalizing on the use of a desthiobiotin-geranyl pyrophosphate (GPP) acyl phosphate probe for the enrichment and subsequent identification of GPP-binding proteins using liquid chromatography-tandem mass spectrometry (LC-MS/MS). By combining stable isotope labeling by amino acids in cell culture (SILAC) and competitive labeling with low vs high concentrations of GPP probe, with ATP vs GPP acyl phosphate probes, or with the GPP probe in the presence of different concentrations of free GPP, we uncovered a number of candidate GPP-binding proteins. We also discovered, for the first time, histone deacetylase 1 (HDAC1) as a GPP-binding protein. Furthermore, we found that the enzymatic activity of HDAC1 could be modulated by isoprenoid pyrophosphates. Together, we developed a novel chemical proteomic method for the proteome-wide discovery of GPP-binding proteins, which sets the stage for a better understanding about the biological functions of isoprenoids.
Collapse
Affiliation(s)
- Rong Cai
- Department of Chemistry, University of California Riverside, Riverside, California 92521-0403, United States.,School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Xuejiao Dong
- Department of Chemistry, University of California Riverside, Riverside, California 92521-0403, United States
| | - Kailin Yu
- Department of Chemistry, University of California Riverside, Riverside, California 92521-0403, United States
| | - Xiaomei He
- Department of Chemistry, University of California Riverside, Riverside, California 92521-0403, United States
| | - Xiaochuan Liu
- Department of Chemistry, University of California Riverside, Riverside, California 92521-0403, United States
| | - Yinsheng Wang
- Department of Chemistry, University of California Riverside, Riverside, California 92521-0403, United States
| |
Collapse
|
22
|
Generation of a conditional transgenic mouse model expressing human Phospholipase A2 Receptor 1. Sci Rep 2020; 10:8190. [PMID: 32424163 PMCID: PMC7235081 DOI: 10.1038/s41598-020-64863-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 04/22/2020] [Indexed: 11/09/2022] Open
Abstract
The Phospholipase A2 Receptor 1 (PLA2R1) was first identified for its ability to bind some secreted PLA2s (sPLA2s). It belongs to the C-type lectin superfamily and it binds different types of proteins. It is likely a multifunctional protein that plays a role i) in inflammation and inflammatory diseases, ii) in cellular senescence, a mechanism participating in aging and age-related diseases including cancer, and iii) in membranous nephropathy (MN), a rare autoimmune kidney disease where PLA2R1 is the major autoantigen. To help study the role of PLA2R1 in these pathophysiological conditions, we have generated a versatile NeoR-hPLA2R1 conditional transgenic mice which will allow the specific expression of human PLA2R1 (hPLA2R1) in relevant organs and cells following Cre recombinase-driven excision of the NeoR-stop cassette flanked by LoxP sites. Proof-of-concept breeding of NeoR-hPLA2R1 mice with the ubiquitous adenoviral EIIa promoter-driven Cre mouse line resulted in the expected excision of the NeoR-stop cassette and the expression of hPLA2R1 in all tested tissues. These Tg-hPLA2R1 animals breed normally, with no reproduction or apparent growth defect. These models, especially the NeoR-hPLA2R1 conditional transgenic mouse line, will facilitate the future investigation of PLA2R1 functions in relevant pathophysiological contexts, including inflammatory diseases, age-related diseases and MN.
Collapse
|
23
|
Devyatkin VA, Redina OE, Muraleva NA, Kolosova NG. Single-Nucleotide Polymorphisms (SNPs) Both Associated with Hypertension and Contributing to Accelerated-Senescence Traits in OXYS Rats. Int J Mol Sci 2020; 21:ijms21103542. [PMID: 32429546 PMCID: PMC7279015 DOI: 10.3390/ijms21103542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 01/26/2023] Open
Abstract
Aging is a major risk factor of numerous human diseases. Adverse genetic variants may contribute to multiple manifestations of aging and increase the number of comorbid conditions. There is evidence of links between hypertension and age-related diseases, although the genetic relationships are insufficiently studied. Here, we investigated the contribution of hypertension to the development of accelerated-senescence syndrome in OXYS rats. We compared transcriptome sequences of the prefrontal cortex, hippocampus, and retina of OXYS rats with the genotypes of 45 rat strains and substrains (which include models with hypertension) to find single-nucleotide polymorphisms (SNPs) both associated with hypertension and possibly contributing to the development of age-related diseases. A total of 725 polymorphisms were common between OXYS rats and one or more hypertensive rat strains/substrains being analyzed. Multidimensional scaling detected significant similarities between OXYS and ISIAH rat genotypes and significant differences between these strains and the other hypertensive rat strains/substrains. Nonetheless, similar sets of SNPs produce a different phenotype in OXYS and ISIAH rats depending on hypertension severity. We identified 13 SNPs causing nonsynonymous amino-acid substitutions having a deleterious effect on the structure or function of the corresponding proteins and four SNPs leading to functionally significant structural rearrangements of transcripts in OXYS rats. Among them, SNPs in genes Ephx1, Pla2r1, and Ccdc28b were identified as candidates responsible for the concomitant manifestation of hypertension and signs of accelerated aging in OXYS rats.
Collapse
Affiliation(s)
- Vasiliy A. Devyatkin
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Lavrentyeva Ave., Novosibirsk 630090, Russia; (V.A.D.); (O.E.R.); (N.G.K.)
- Novosibirsk State University, 2 Pirogova Str., Novosibirsk 630090, Russia
| | - Olga E. Redina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Lavrentyeva Ave., Novosibirsk 630090, Russia; (V.A.D.); (O.E.R.); (N.G.K.)
| | - Natalia A. Muraleva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Lavrentyeva Ave., Novosibirsk 630090, Russia; (V.A.D.); (O.E.R.); (N.G.K.)
- Correspondence: ; Tel.: +7-(383)-363-4980; Fax: +7-(383)-333-1278
| | - Nataliya G. Kolosova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Lavrentyeva Ave., Novosibirsk 630090, Russia; (V.A.D.); (O.E.R.); (N.G.K.)
| |
Collapse
|
24
|
Saxena S, Kumar S. Pharmacotherapy to gene editing: potential therapeutic approaches for Hutchinson-Gilford progeria syndrome. GeroScience 2020; 42:467-494. [PMID: 32048129 PMCID: PMC7205988 DOI: 10.1007/s11357-020-00167-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS), commonly called progeria, is an extremely rare disorder that affects only one child per four million births. It is characterized by accelerated aging in affected individuals leading to premature death at an average age of 14.5 years due to cardiovascular complications. The main cause of HGPS is a sporadic autosomal dominant point mutation in LMNA gene resulting in differently spliced lamin A protein known as progerin. Accumulation of progerin under nuclear lamina and activation of its downstream effectors cause perturbation in cellular morphology and physiology which leads to a systemic disorder that mainly impairs the cardiovascular system, bones, skin, and overall growth. Till now, no cure has been found for this catastrophic disorder; however, several therapeutic strategies are under development. The current review focuses on the overall progress in the field of therapeutic approaches for the management/cure of HGPS. We have also discussed the new disease models that have been developed for the study of this rare disorder. Moreover, we have highlighted the therapeutic application of extracellular vesicles derived from stem cells against aging and aging-related disorders and, therefore, suggest the same for the treatment of HGPS.
Collapse
Affiliation(s)
- Saurabh Saxena
- Department of Medical Laboratory Sciences, Lovely Professional University, Jalandhar - Delhi G.T. Road, Phagwara, Punjab, 144411, India.
| | - Sanjeev Kumar
- Faculty of Technology and Sciences, Lovely Professional University, Jalandhar - Delhi G.T. Road, Phagwara, Punjab, 144411, India
| |
Collapse
|
25
|
Griveau A, Wiel C, Ziegler DV, Bergo MO, Bernard D. The JAK1/2 inhibitor ruxolitinib delays premature aging phenotypes. Aging Cell 2020; 19:e13122. [PMID: 32196928 PMCID: PMC7189991 DOI: 10.1111/acel.13122] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/16/2020] [Accepted: 01/26/2020] [Indexed: 12/17/2022] Open
Abstract
Hutchinson–Gilford progeria syndrome (HGPS) is caused by an LMNA mutation that results in the production of the abnormal progerin protein. Children with HGPS display phenotypes of premature aging and have an average lifespan of 13 years. We found earlier that the targeting of the transmembrane protein PLA2R1 overcomes senescence and improves phenotypes in a mouse model of progeria. PLA2R1 is regulating the JAK/STAT signaling, but we do not yet know whether targeting this pathway directly would influence cellular and in vivo progeria phenotypes. Here, we show that JAK1/2 inhibition with ruxolitinib rescues progerin‐induced cell cycle arrest, cellular senescence, and misshapen nuclei in human normal fibroblasts expressing progerin. Moreover, ruxolitinib administration reduces several premature aging phenotypes: bone fractures, bone mineral content, grip strength, and a trend to increase survival in a mouse model of progeria. Thus, we propose that ruxolitinib, an FDA‐approved drug, should be further evaluated as a drug candidate in HGPS therapy.
Collapse
Affiliation(s)
- Audrey Griveau
- Centre de Recherche en Cancérologie de Lyon Inserm U1052 CNRS UMR 5286 Centre Léon Bérard Université de Lyon Lyon France
| | - Clotilde Wiel
- Department of Biosciences and Nutrition Karolinska Institutet Huddinge Sweden
| | - Dorian V. Ziegler
- Centre de Recherche en Cancérologie de Lyon Inserm U1052 CNRS UMR 5286 Centre Léon Bérard Université de Lyon Lyon France
| | - Martin O. Bergo
- Department of Biosciences and Nutrition Karolinska Institutet Huddinge Sweden
| | - David Bernard
- Centre de Recherche en Cancérologie de Lyon Inserm U1052 CNRS UMR 5286 Centre Léon Bérard Université de Lyon Lyon France
| |
Collapse
|
26
|
Johnson AA, Stolzing A. The role of lipid metabolism in aging, lifespan regulation, and age-related disease. Aging Cell 2019; 18:e13048. [PMID: 31560163 PMCID: PMC6826135 DOI: 10.1111/acel.13048] [Citation(s) in RCA: 237] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/11/2019] [Accepted: 09/04/2019] [Indexed: 12/18/2022] Open
Abstract
An emerging body of data suggests that lipid metabolism has an important role to play in the aging process. Indeed, a plethora of dietary, pharmacological, genetic, and surgical lipid‐related interventions extend lifespan in nematodes, fruit flies, mice, and rats. For example, the impairment of genes involved in ceramide and sphingolipid synthesis extends lifespan in both worms and flies. The overexpression of fatty acid amide hydrolase or lysosomal lipase prolongs life in Caenorhabditis elegans, while the overexpression of diacylglycerol lipase enhances longevity in both C. elegans and Drosophila melanogaster. The surgical removal of adipose tissue extends lifespan in rats, and increased expression of apolipoprotein D enhances survival in both flies and mice. Mouse lifespan can be additionally extended by the genetic deletion of diacylglycerol acyltransferase 1, treatment with the steroid 17‐α‐estradiol, or a ketogenic diet. Moreover, deletion of the phospholipase A2 receptor improves various healthspan parameters in a progeria mouse model. Genome‐wide association studies have found several lipid‐related variants to be associated with human aging. For example, the epsilon 2 and epsilon 4 alleles of apolipoprotein E are associated with extreme longevity and late‐onset neurodegenerative disease, respectively. In humans, blood triglyceride levels tend to increase, while blood lysophosphatidylcholine levels tend to decrease with age. Specific sphingolipid and phospholipid blood profiles have also been shown to change with age and are associated with exceptional human longevity. These data suggest that lipid‐related interventions may improve human healthspan and that blood lipids likely represent a rich source of human aging biomarkers.
Collapse
|
27
|
A Potential Role of Phospholipase 2 Group IIA (PLA 2-IIA) in P. gingivalis-Induced Oral Dysbiosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019. [PMID: 31732936 DOI: 10.1007/978-3-030-28524-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Porphyromonas gingivalis is an oral pathogen with the ability to induce oral dysbiosis and periodontal disease. Nevertheless, the mechanisms by which P. gingivalis could abrogate the host-microbe symbiotic relationship leading to oral dysbiosis remain unclear. We have recently demonstrated that P. gingivalis specifically increased the antimicrobial properties of oral epithelial cells, through a strong induction of the expression of PLA2-IIA in a mechanism that involves activation of the Notch-1 receptor. Moreover, gingival expression of PLA2-IIA was significantly increased during initiation and progression of periodontal disease in non-human primates and interestingly, those PLA2-IIA expression changes were concurrent with oral dysbiosis. In this chapter, we present an innovative hypothesis of a potential mechanism involved in P. gingivalis-induced oral dysbiosis and inflammation based on our previous observations and a robust body of literature that supports the antimicrobial and proinflammatory properties of PLA2-IIA as well as its role in other chronic inflammatory diseases.
Collapse
|
28
|
Johnson AA. Lipid Hydrolase Enzymes: Pragmatic Prolongevity Targets for Improved Human Healthspan? Rejuvenation Res 2019; 23:107-121. [PMID: 31426688 DOI: 10.1089/rej.2019.2211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Compelling evidence suggests that lipid metabolism, which plays critical roles in fat storage, cell membrane maintenance, and cell signaling, is intricately linked to aging. Lipid hydrolases are important enzymes that catalyze the hydrolysis of more complex lipids into simpler lipids. Diverse interventions targeting lipid hydrolases can prolong or shorten life in model organisms. For example, the genetic removal of or RNAi knockdown against a phospholipase can reduce lifespan in Caenorhabditis elegans, Drosophila melanogaster, and Mus musculus. The removal of lysosomal acid lipase results in premature death in mice, while its overexpression in nematodes generates lean, long-lived individuals. The overexpression or inhibition of diacylglycerol lipase leads to enhanced or reduced longevity, respectively, in both worms and flies. Lifespan can also be extended by knocking down triacylglycerol lipases in yeast, overexpressing fatty acid amide hydrolase in worms, or removing hepatic lipase in a mouse model of coronary disease. Conversely, flies lacking the triacylglycerol lipase Brummer are obese and short lived. Linking sphingolipids and aging, removing the sphingomyelinase inositol phosphosphingolipid phospholipase shortens chronological lifespan in Saccharomyces cerevisiae, while inhibiting an acid sphingomyelinase in worms or inactivating alkaline ceramidase in flies extends lifespan. The clinical potential of manipulating these enzymes is highlighted by the FDA-approved obesity drug orlistat, which is an inhibitor of pancreatic and hepatic lipases that induces weight loss and improves insulin/glucose homeostasis. Additional research is warranted to better understand how these lipid hydrolases impact aging and to determine if clinical interventions targeting them are capable of improving human healthspan.
Collapse
|
29
|
Griveau A, Wiel C, Le Calvé B, Ziegler DV, Djebali S, Warnier M, Martin N, Marvel J, Vindrieux D, Bergo MO, Bernard D. Targeting the phospholipase A2 receptor ameliorates premature aging phenotypes. Aging Cell 2018; 17:e12835. [PMID: 30216637 PMCID: PMC6260922 DOI: 10.1111/acel.12835] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/13/2018] [Accepted: 07/29/2018] [Indexed: 11/26/2022] Open
Abstract
Hutchinson–Gilford progeria syndrome (HGPS) is a lethal premature aging that recapitulates many normal aging characteristics. This disorder is caused by mutation in the LMNA gene leading to the production of progerin which induces misshapen nuclei, cellular senescence, and aging. We previously showed that the phospholipase A2 receptor (PLA2R1) promotes senescence induced by replicative, oxidative, and oncogenic stress but its role during progerin‐induced senescence and in progeria is currently unknown. Here, we show that knockdown of PLA2R1 prevented senescence induced by progerin expression in human fibroblasts and markedly delayed senescence of HGPS patient‐derived fibroblasts. Whole‐body knockout of Pla2r1 in a mouse model of progeria decreased some premature aging phenotypes, such as rib fracture and decreased bone content, together with decreased senescence marker. Progerin‐expressing human fibroblasts exhibited a high frequency of misshapen nuclei and increased farnesyl diphosphate synthase (FDPS) expression compared to controls; knockdown of PLA2R1 reduced the frequency of misshapen nuclei and normalized FDPS expression. Pamidronate, a FDPS inhibitor, also reduced senescence and misshapen nuclei. Downstream of PLA2R1, we found that p53 mediated the progerin‐induced increase in FDPS expression and in misshapen nuclei. These results suggest that PLA2R1 mediates key premature aging phenotypes through a p53/FDPS pathway and might be a new therapeutic target.
Collapse
Affiliation(s)
- Audrey Griveau
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard; Université de Lyon; Lyon France
| | - Clotilde Wiel
- Department of Biosciences and Nutrition; Karolinska Institutet; Huddinge Sweden
| | - Benjamin Le Calvé
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard; Université de Lyon; Lyon France
| | - Dorian V. Ziegler
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard; Université de Lyon; Lyon France
| | - Sophia Djebali
- Centre International de Recherche en Infectiologie, Inserm U1111, CNRS, UMR5308, École Normale Supérieure de Lyon; Université de Lyon; Université Claude Bernard Lyon 1; Lyon France
| | - Marine Warnier
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard; Université de Lyon; Lyon France
| | - Nadine Martin
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard; Université de Lyon; Lyon France
| | - Jacqueline Marvel
- Centre International de Recherche en Infectiologie, Inserm U1111, CNRS, UMR5308, École Normale Supérieure de Lyon; Université de Lyon; Université Claude Bernard Lyon 1; Lyon France
| | - David Vindrieux
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard; Université de Lyon; Lyon France
| | - Martin O. Bergo
- Department of Biosciences and Nutrition; Karolinska Institutet; Huddinge Sweden
| | - David Bernard
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard; Université de Lyon; Lyon France
| |
Collapse
|
30
|
Rahimi VB, Askari VR, Mousavi SH. Ellagic acid reveals promising anti-aging effects against d-galactose-induced aging on human neuroblastoma cell line, SH-SY5Y: A mechanistic study. Biomed Pharmacother 2018; 108:1712-1724. [DOI: 10.1016/j.biopha.2018.10.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/28/2018] [Accepted: 10/04/2018] [Indexed: 01/05/2023] Open
|