1
|
Zych MG, Contreras M, Vashisth M, Mammel AE, Ha G, Hatch EM. RCC1 depletion drives protein transport defects and rupture in micronuclei. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611299. [PMID: 39282444 PMCID: PMC11398501 DOI: 10.1101/2024.09.04.611299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Micronuclei (MN) are a commonly used marker of chromosome instability that form when missegregated chromatin recruits its own nuclear envelope (NE) after mitosis. MN frequently rupture, which results in genome instability, upregulation of metastatic genes, and increased immune signaling. MN rupture is linked to NE defects, but the cause of these defects is poorly understood. Previous work from our lab found that chromosome identity correlates with rupture timing for small MN, i.e. MN containing a short chromosome, with more euchromatic chromosomes forming more stable MN with fewer nuclear lamina gaps. Here we demonstrate that histone methylation promotes rupture and nuclear lamina defects in small MN. This correlates with increased MN size, and we go on to find that all MN have a constitutive nuclear export defect that drives MN growth and nuclear lamina gap expansion, making the MN susceptible to rupture. We demonstrate that these export defects arise from decreased RCC1 levels in MN and that additional loss of RCC1 caused by low histone methylation in small euchromatic MN results in additional import defects that suppress nuclear lamina gaps and MN rupture. Through analysis of mutational signatures associated with early and late rupturing chromosomes in the Pan-Cancer Analysis of Whole Genomes (PCAWG) dataset, we identify an enrichment of APOBEC and DNA polymerase E hypermutation signatures in chromothripsis events on early and mid rupturing chromosomes, respectively, suggesting that MN rupture timing could determine the landscape of structural variation in chromothripsis. Our study defines a new model of MN rupture where increased MN growth, caused by defects in protein export, drives gaps in nuclear lamina organization that make the MN susceptible to membrane rupture with long-lasting effects on genome architecture.
Collapse
Affiliation(s)
- Molly G Zych
- Molecular and Cellular Biology PhD Program, University of Washington, Seattle, WA, USA
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Maya Contreras
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Manasvita Vashisth
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Anna E Mammel
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Gavin Ha
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Emily M Hatch
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| |
Collapse
|
2
|
Zhuang M, Li F, Liang H, Su Y, Cheng L, Lin B, Zhou J, Deng R, Chen L, Lyu P, Lu Z. Targeting RCC1 to block the human soft-tissue sarcoma by disrupting nucleo-cytoplasmic trafficking of Skp2. Cell Death Dis 2024; 15:241. [PMID: 38561375 PMCID: PMC10985091 DOI: 10.1038/s41419-024-06629-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/16/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Soft-tissue sarcomas (STS) emerges as formidable challenges in clinics due to the complex genetic heterogeneity, high rates of local recurrence and metastasis. Exploring specific targets and biomarkers would benefit the prognosis and treatment of STS. Here, we identified RCC1, a guanine-nucleotide exchange factor for Ran, as an oncogene and a potential intervention target in STS. Bioinformatics analysis indicated that RCC1 is highly expressed and correlated with poor prognosis in STS. Functional studies showed that RCC1 knockdown significantly inhibited the cell cycle transition, proliferation and migration of STS cells in vitro, and the growth of STS xenografts in mice. Mechanistically, we identified Skp2 as a downstream target of RCC1 in STS. Loss of RCC1 substantially diminished Skp2 abundance by compromising its protein stability, resulting in the upregulation of p27Kip1 and G1/S transition arrest. Specifically, RCC1 might facilitate the nucleo-cytoplasmic trafficking of Skp2 via direct interaction. As a result, the cytoplasmic retention of Skp2 would further protect it from ubiquitination and degradation. Notably, recovery of Skp2 expression largely reversed the phenotypes induced by RCC1 knockdown in STS cells. Collectively, this study unveils a novel RCC1-Skp2-p27Kip1 axis in STS oncogenesis, which holds promise for improving prognosis and treatment of this formidable malignancy.
Collapse
Affiliation(s)
- Mingzhi Zhuang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Fengyue Li
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Hong Liang
- College of Geography and Oceanography, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, Fujian, 350108, P. R. China
| | - Yongfu Su
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Lei Cheng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Bingkai Lin
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Jun Zhou
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Runzhi Deng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Linying Chen
- Department of Pathology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, P. R. China
| | - Peng Lyu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China.
| | - Zhonglei Lu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China.
| |
Collapse
|
3
|
Gopinathan G, Xu Q, Luan X, Diekwisch TGH. CFDP1 regulates the stability of pericentric heterochromatin thereby affecting RAN GTPase activity and mitotic spindle formation. PLoS Biol 2024; 22:e3002574. [PMID: 38630655 PMCID: PMC11023358 DOI: 10.1371/journal.pbio.3002574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 03/02/2024] [Indexed: 04/19/2024] Open
Abstract
The densely packed centromeric heterochromatin at minor and major satellites is comprised of H3K9me2/3 histones, the heterochromatin protein HP1α, and histone variants. In the present study, we sought to determine the mechanisms by which condensed heterochromatin at major and minor satellites stabilized by the chromatin factor CFDP1 affects the activity of the small GTPase Ran as a requirement for spindle formation. CFDP1 colocalized with heterochromatin at major and minor satellites and was essential for the structural stability of centromeric heterochromatin. Loss of CENPA, HP1α, and H2A.Z heterochromatin components resulted in decreased binding of the spindle nucleation facilitator RCC1 to minor and major satellite repeats. Decreased RanGTP levels as a result of diminished RCC1 binding interfered with chromatin-mediated microtubule nucleation at the onset of mitotic spindle formation. Rescuing chromatin H2A.Z levels in cells and mice lacking CFDP1 through knock-down of the histone chaperone ANP32E not only partially restored RCC1-dependent RanGTP levels but also alleviated CFDP1-knockout-related craniofacial defects and increased microtubule nucleation in CFDP1/ANP32E co-silenced cells. Together, these studies provide evidence for a direct link between condensed heterochromatin at major and minor satellites and microtubule nucleation through the chromatin protein CFDP1.
Collapse
Affiliation(s)
- Gokul Gopinathan
- School of Medicine and Dentistry, University of Rochester, Rochester, New York, United States of America
| | - Qian Xu
- School of Medicine and Dentistry, University of Rochester, Rochester, New York, United States of America
| | - Xianghong Luan
- School of Medicine and Dentistry, University of Rochester, Rochester, New York, United States of America
| | - Thomas G. H. Diekwisch
- School of Medicine and Dentistry, University of Rochester, Rochester, New York, United States of America
| |
Collapse
|
4
|
Wang L, Wang M, Niu H, Zhi Y, Li S, He X, Ren Z, Wen S, Wu L, Wen S, Zhang R, Wen Z, Yang J, Zhang X, Chen Y, Qian X, Shi G. Cholesterol-induced HRD1 reduction accelerates vascular smooth muscle cell senescence via stimulation of endoplasmic reticulum stress-induced reactive oxygen species. J Mol Cell Cardiol 2024; 187:51-64. [PMID: 38171043 DOI: 10.1016/j.yjmcc.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/28/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
Senescence of vascular smooth muscle cells (VSMCs) is a key contributor to plaque vulnerability in atherosclerosis (AS), which is affected by endoplasmic reticulum (ER) stress and reactive oxygen species (ROS) production. However, the crosstalk between ER stress and ROS production in the pathogenesis of VSMC senescence remains to be elucidated. ER-associated degradation (ERAD) is a complex process that clears unfolded or misfolded proteins to maintain ER homeostasis. HRD1 is the major E3 ligase in mammalian ERAD machineries that catalyzes ubiquitin conjugation to the unfolded or misfolded proteins for degradation. Our results showed that HRD1 protein levels were reduced in human AS plaques and aortic roots from ApoE-/- mice fed with high-fat diet (HFD), along with the increased ER stress response. Exposure to cholesterol in VSMCs activated inflammatory signaling and induced senescence, while reduced HRD1 protein expression. CRISPR Cas9-mediated HRD1 knockout (KO) exacerbated cholesterol- and thapsigargin-induced cell senescence. Inhibiting ER stress with 4-PBA (4-Phenylbutyric acid) partially reversed the ROS production and cell senescence induced by HRD1 deficiency in VSMCs, suggesting that ER stress alone could be sufficient to induce ROS production and senescence in VSMCs. Besides, HRD1 deficiency led to mitochondrial dysfunction, and reducing ROS production from impaired mitochondria partly reversed HRD1 deficiency-induced cell senescence. Finally, we showed that the overexpression of HDR1 reversed cholesterol-induced ER stress, ROS production, and cellular senescence in VSMCs. Our findings indicate that HRD1 protects against senescence by maintaining ER homeostasis and mitochondrial functionality. Thus, targeting HRD1 function may help to mitigate VSMC senescence and prevent vascular aging related diseases. TRIAL REGISTRATION: A real-world study based on the discussion of primary and secondary prevention strategies for coronary heart disease, URL:https://www.clinicaltrials.gov, the trial registration number is [2022]-02-121-01.
Collapse
Affiliation(s)
- Linli Wang
- Department of Cardiology, Third affiliated hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, Third affiliated hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Min Wang
- Department of Cardiology, Third affiliated hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Haiming Niu
- Department of Critical Care Medicine, Zhongshan People's Hospital, Zhongshan, Guangdong, China.
| | - Yaping Zhi
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, Third affiliated hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Shasha Li
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, Third affiliated hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Xuemin He
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, Third affiliated hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Zhitao Ren
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, Third affiliated hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Shiyi Wen
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, Third affiliated hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Lin Wu
- Department of Cardiology, Third affiliated hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Siying Wen
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, Third affiliated hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Rui Zhang
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, Third affiliated hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Zheyao Wen
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, Third affiliated hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Jing Yang
- Department of Endocrinology and Metabolism, The Eighth affiliated hospital of Sun Yat-sen University, Shenzhen, Guangdong, China.
| | - Ximei Zhang
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, Third affiliated hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Yanming Chen
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, Third affiliated hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Xiaoxian Qian
- Department of Cardiology, Third affiliated hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Guojun Shi
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, Third affiliated hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
5
|
Cisneros B, García-Aguirre I, De Ita M, Arrieta-Cruz I, Rosas-Vargas H. Hutchinson-Gilford Progeria Syndrome: Cellular Mechanisms and Therapeutic Perspectives. Arch Med Res 2023; 54:102837. [PMID: 37390702 DOI: 10.1016/j.arcmed.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/26/2023] [Accepted: 06/14/2023] [Indexed: 07/02/2023]
Abstract
In humans, aging is characterized by a gradual decline of physical and psychological functions, with the concomitant onset of chronic-degenerative diseases, which ultimately lead to death. The study of Hutchinson-Gilford progeria syndrome (HGPS), a premature aging disorder that recapitulates several features of natural aging, has provided important insights into deciphering the aging process. The genetic origin of HGPS is a de novo point mutation in the LMNA gene that drives the synthesis of progerin, mutant version of lamin A. Progerin is aberrantly anchored to the nuclear envelope disrupting a plethora of molecular processes; nonetheless, how progerin exerts a cascade of deleterious alterations at the cellular and systemic levels is not fully understood. Over the past decade, the use of different cellular and animal models for HGPS has allowed the identification of the molecular mechanisms underlying HGPS, paving the way towards the development of therapeutic treatments against the disease. In this review, we present an updated overview of the biology of HGPS, including its clinical features, description of key cellular processes affected by progerin (nuclear morphology and function, nucleolar activity, mitochondrial function, protein nucleocytoplasmic trafficking and telomere homeostasis), as well as discussion of the therapeutic strategies under development.
Collapse
Affiliation(s)
- Bulmaro Cisneros
- Genetics and Molecular Biology Department, Research and Advanced Studies Center, National Polytechnical Institute, Mexico City, Mexico
| | - Ian García-Aguirre
- Genetics and Molecular Biology Department, Research and Advanced Studies Center, National Polytechnical Institute, Mexico City, Mexico; Bioengineering Department, School of Engineering and Sciences, Tecnológico de Monterrey, Mexico City, Mexico
| | - Marlon De Ita
- Genetics and Molecular Biology Department, Research and Advanced Studies Center, National Polytechnical Institute, Mexico City, Mexico; Medical Research Unit in Human Genetics, Pediatrics Hospital, 21st Century National Medical Center, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Isabel Arrieta-Cruz
- Basic Research Department, Research Direction, National Institute of Geriatrics, Ministry of Health, Mexico City, Mexico
| | - Haydeé Rosas-Vargas
- Medical Research Unit in Human Genetics, Pediatrics Hospital, 21st Century National Medical Center, Instituto Mexicano del Seguro Social, Mexico City, Mexico.
| |
Collapse
|
6
|
Hernández‐Carralero E, Cabrera E, Rodríguez-Torres G, Hernández-Reyes Y, Singh A, Santa-María C, Fernández-Justel J, Janssens R, Marteijn J, Evert B, Mailand N, Gómez M, Ramadan K, Smits VJ, Freire R. ATXN3 controls DNA replication and transcription by regulating chromatin structure. Nucleic Acids Res 2023; 51:5396-5413. [PMID: 36971114 PMCID: PMC10287915 DOI: 10.1093/nar/gkad212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 02/10/2023] [Accepted: 03/14/2023] [Indexed: 11/18/2023] Open
Abstract
The deubiquitinating enzyme Ataxin-3 (ATXN3) contains a polyglutamine (PolyQ) region, the expansion of which causes spinocerebellar ataxia type-3 (SCA3). ATXN3 has multiple functions, such as regulating transcription or controlling genomic stability after DNA damage. Here we report the role of ATXN3 in chromatin organization during unperturbed conditions, in a catalytic-independent manner. The lack of ATXN3 leads to abnormalities in nuclear and nucleolar morphology, alters DNA replication timing and increases transcription. Additionally, indicators of more open chromatin, such as increased mobility of histone H1, changes in epigenetic marks and higher sensitivity to micrococcal nuclease digestion were detected in the absence of ATXN3. Interestingly, the effects observed in cells lacking ATXN3 are epistatic to the inhibition or lack of the histone deacetylase 3 (HDAC3), an interaction partner of ATXN3. The absence of ATXN3 decreases the recruitment of endogenous HDAC3 to the chromatin, as well as the HDAC3 nuclear/cytoplasm ratio after HDAC3 overexpression, suggesting that ATXN3 controls the subcellular localization of HDAC3. Importantly, the overexpression of a PolyQ-expanded version of ATXN3 behaves as a null mutant, altering DNA replication parameters, epigenetic marks and the subcellular distribution of HDAC3, giving new insights into the molecular basis of the disease.
Collapse
Affiliation(s)
- Esperanza Hernández‐Carralero
- Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
- Escuela de Doctorado y Estudios de Posgrado, Universidad de la Laguna, Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Facultad de Medicina, Campus Ciencias de la Salud, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Elisa Cabrera
- Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
| | - Gara Rodríguez-Torres
- Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
- Escuela de Doctorado y Estudios de Posgrado, Universidad de la Laguna, Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Facultad de Medicina, Campus Ciencias de la Salud, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Yeray Hernández-Reyes
- Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
- Escuela de Doctorado y Estudios de Posgrado, Universidad de la Laguna, Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Facultad de Medicina, Campus Ciencias de la Salud, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Abhay N Singh
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Cristina Santa-María
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid (CSIC/UAM), Madrid, Spain
| | - José Miguel Fernández-Justel
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid (CSIC/UAM), Madrid, Spain
| | - Roel C Janssens
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jurgen A Marteijn
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Bernd O Evert
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Niels Mailand
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - María Gómez
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid (CSIC/UAM), Madrid, Spain
| | - Kristijan Ramadan
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Veronique A J Smits
- Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Facultad de Medicina, Campus Ciencias de la Salud, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
- Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Raimundo Freire
- Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Facultad de Medicina, Campus Ciencias de la Salud, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
- Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
7
|
Wang J, Dong X, Li D, Fang Z, Wan X, Liu J. Fucoxanthin inhibits gastric cancer lymphangiogenesis and metastasis by regulating Ran expression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154926. [PMID: 37392675 DOI: 10.1016/j.phymed.2023.154926] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/21/2023] [Accepted: 06/06/2023] [Indexed: 07/03/2023]
Abstract
BACKGROUND Lymph node metastasis is a key mechanism in gastric cancer (GC) metastasis and lymphangiogenesis is a vital step in the process of lymph node metastasis. Currently, there are no drugs which can treat lymph node metastasis in GC. Previous studies using the drug fucoxanthin have mainly focused on cell cycle arrest, induction of apoptosis, or inhibition of angiogenesis in GC. However, the effects of fucoxanthin on lymphangiogenesis and metastasis in GC have not been studied. METHODS Cell counting kit 8 and transwell experiments were used to evaluate the inhibitory effect of fucoxanthin on cell proliferation, migration and invasion. HGC-27 and HLEC cells were co-cultured in a transwell chamber and the footpad metastasis model was established to evaluate lymphangiogenesis and lymph node metastasis. The possible regulatory targets of fucoxanthin in GC were analyzed using human tissue microarrays, bioinformatics analysis, and molecular docking. The regulatory pathway of fucoxanthin was verified using confocal laser microscopy, adenovirus transfection and western blotting. RESULTS Tissue microarray and bioinformatics analyses showed that Ran was highly expressed in metastatic lymph nodes and has some predictive value for metastasis in GC. Molecular docking results revealed that fucoxanthin interacted with Met189 and Lys167 of Ran via hydrogen bonds. Mechanistically, fucoxanthin inhibits the nuclear transport of NF-κB by downregulating protein expression of Ran and importinβ, thereby inhibiting VEGF-C secretion, and ultimately inhibiting tumor lymphangiogenesis and lymph node metastasis in vivo and in vitro. CONCLUSIONS Fucoxanthin suppressed GC-induced lymphangiogenesis and metastasis in vitro and in vivo by regulating Ran expression via the importinβ/NF-κB/VEGF-C nuclear transport signaling pathway. These novel findings provide the basis for the research and development of novel treatments using traditional Chinese medicine in treatment of lymph node metastasis, which has important theoretical significance and clinical value.
Collapse
Affiliation(s)
- Jia Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China; Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116021, China
| | - Xue Dong
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116021, China
| | - Dandan Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116021, China
| | - Zhiyao Fang
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116021, China
| | - Xianyao Wan
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116021, China.
| | - Jing Liu
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China; Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Engineering Research Center for Genetic Variation Detection of Infectious Pathogenic Microorganisms, Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning 116085, China.
| |
Collapse
|
8
|
Zhang X, Zhang C, Zhou D, Zhang T, Chen X, Ren J, He C, Meng F, Zhou Q, Yang Q, Dai C, Lin G, Zeng S, Leng L. Telomeres cooperate in zygotic genome activation by affecting DUX4/ Dux transcription. iScience 2023; 26:106158. [PMID: 36843839 PMCID: PMC9950522 DOI: 10.1016/j.isci.2023.106158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/03/2022] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Zygotic genome activation (ZGA) is initiated once the genome chromatin state is organized in the newly formed zygote. Telomeres are specialized chromatin structures at the ends of chromosomes and are reset during early embryogenesis, while the details and significance of telomere changes in preimplantation embryos remain unclear. We demonstrated that the telomere length was shortened in the minor ZGA stage and significantly elongated in the major ZGA stage of human and mouse embryos. Expression of the ZGA pioneer factor DUX4/Dux was negatively correlated with the telomere length. ATAC sequencing data revealed that the chromatin accessibility peaks on the DUX4 promoter region (i.e., the subtelomere of chromosome 4q) were transiently augmented in human minor ZGA. Reduction of telomeric heterochromatin H3K9me3 in the telomeric region also synergistically activated DUX4 expression with p53 in human embryonic stem cells. We propose herein that telomeres regulate the expression of DUX4/Dux through chromatin remodeling and are thereby involved in ZGA.
Collapse
Affiliation(s)
- Xiaorui Zhang
- Hospital of Hunan Guangxiu, Hunan Normal University, Hunan 410001, China,Reproductive and Genetic Hospital of Citic-Xiangya, Hunan 410008, China,Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, Changsha, China,Department of Reproductive Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Changquan Zhang
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Di Zhou
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China,Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, Changsha, China
| | - Tianlei Zhang
- Reproductive and Genetic Hospital of Citic-Xiangya, Hunan 410008, China
| | - Xueqin Chen
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Jinlin Ren
- Hospital of Hunan Guangxiu, Hunan Normal University, Hunan 410001, China
| | - Caixia He
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China,Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, Changsha, China
| | - Fei Meng
- Reproductive and Genetic Hospital of Citic-Xiangya, Hunan 410008, China
| | - Qinwei Zhou
- Reproductive and Genetic Hospital of Citic-Xiangya, Hunan 410008, China
| | - Qiaohui Yang
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Congling Dai
- Reproductive and Genetic Hospital of Citic-Xiangya, Hunan 410008, China,NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Ge Lin
- Reproductive and Genetic Hospital of Citic-Xiangya, Hunan 410008, China,NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China,Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, Changsha, China,Corresponding author
| | - Sicong Zeng
- Hospital of Hunan Guangxiu, Hunan Normal University, Hunan 410001, China,Reproductive and Genetic Hospital of Citic-Xiangya, Hunan 410008, China,Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, Changsha, China,Corresponding author
| | - Lizhi Leng
- Reproductive and Genetic Hospital of Citic-Xiangya, Hunan 410008, China,NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China,Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, Changsha, China,Corresponding author
| |
Collapse
|
9
|
Mattola S, Mäntylä E, Aho V, Salminen S, Leclerc S, Oittinen M, Salokas K, Järvensivu J, Hakanen S, Ihalainen TO, Viiri K, Vihinen-Ranta M. G2/M checkpoint regulation and apoptosis facilitate the nuclear egress of parvoviral capsids. Front Cell Dev Biol 2022; 10:1070599. [PMID: 36568985 PMCID: PMC9773396 DOI: 10.3389/fcell.2022.1070599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
The nuclear export factor CRM1-mediated pathway is known to be important for the nuclear egress of progeny parvovirus capsids in the host cells with virus-mediated cell cycle arrest at G2/M. However, it is still unclear whether this is the only pathway by which capsids exit the nucleus. Our studies show that the nuclear egress of DNA-containing full canine parvovirus. capsids was reduced but not fully inhibited when CRM1-mediated nuclear export was prevented by leptomycin B. This suggests that canine parvovirus capsids might use additional routes for nuclear escape. This hypothesis was further supported by our findings that nuclear envelope (NE) permeability was increased at the late stages of infection. Inhibitors of cell cycle regulatory protein cyclin-dependent kinase 1 (Cdk1) and pro-apoptotic caspase 3 prevented the NE leakage. The change in NE permeability could be explained by the regulation of the G2/M checkpoint which is accompanied by early mitotic and apoptotic events. The model of G2/M checkpoint activation was supported by infection-induced nuclear accumulation of cyclin B1 and Cdk1. Both NE permeability and nuclear egress of capsids were reduced by the inhibition of Cdk1. Additional proof of checkpoint function regulation and promotion of apoptotic events was the nucleocytoplasmic redistribution of nuclear transport factors, importins, and Ran, in late infection. Consistent with our findings, post-translational histone acetylation that promotes the regulation of several genes related to cell cycle transition and arrest was detected. In conclusion, the model we propose implies that parvoviral capsid egress partially depends on infection-induced G2/M checkpoint regulation involving early mitotic and apoptotic events.
Collapse
Affiliation(s)
- Salla Mattola
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Elina Mäntylä
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Vesa Aho
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Sami Salminen
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Simon Leclerc
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Mikko Oittinen
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University Hospital, Tampere, Finland
| | - Kari Salokas
- Institute of Biotechnology and Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Jani Järvensivu
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Satu Hakanen
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Teemu O Ihalainen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Keijo Viiri
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University Hospital, Tampere, Finland
| | - Maija Vihinen-Ranta
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland,*Correspondence: Maija Vihinen-Ranta,
| |
Collapse
|
10
|
Holzer G, Antonin W. Nup50 plays more than one instrument. Cell Cycle 2022; 21:1785-1794. [PMID: 35549614 PMCID: PMC9359400 DOI: 10.1080/15384101.2022.2074742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Nup50 is nuclear pore complex component localized to the nuclear side of the pore and in the nucleoplasm. It has been characterized as an auxiliary factor in nuclear transport reactions. Our recent work indicates that it interacts with and stimulates RCC1, the sole guanine nucleotide exchange factor for the GTPase Ran. Here, we discuss how this interaction might contribute to Nup50 function in nuclear transport but also its other functions like control of gene expression, cell cycle and DNA damage repair.
Collapse
Affiliation(s)
- Guillaume Holzer
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Wolfram Antonin
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
11
|
The intricate roles of RCC1 in normal cells and cancer cells. Biochem Soc Trans 2022; 50:83-93. [PMID: 35191966 DOI: 10.1042/bst20210861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/24/2022] [Accepted: 02/02/2022] [Indexed: 11/17/2022]
Abstract
RCC1 (regulator of chromosome condensation 1) is a highly conserved chromatin-binding protein and the only known guanine-nucleotide exchange factor of Ran (a nuclear Ras homolog). RCC1 plays an essential role in the regulation of cell cycle-related activities such as nuclear envelope formation, nuclear pore complex and spindle assembly, and nucleocytoplasmic transport. Over the last decade, increasing evidence has emerged highlighting the potential relevance of RCC1 to carcinogenesis, especially cervical, lung, and breast cancer. In this review, we briefly discuss the roles of RCC1 in both normal and tumor cells based on articles published in recent years, followed by a brief overview of future perspectives in the field.
Collapse
|
12
|
Cevik M, Caker S, Deliorman G, Cagatay P, Gunduz MK, Susleyici B. The effects of glipizide on DNA damage and nuclear transport in differentiated 3T3-L1 adipocytes. Mol Biol Rep 2022; 49:1151-1159. [PMID: 35013863 DOI: 10.1007/s11033-021-06942-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Despite commonly use for treatment of type II diabetes, possible effects of glipizide on nuclear transport and DNA damage in cells are unknown. Since clinical response of glipizide may change with aging, the aim of the study was to investigate the effect of glipizide by comparing mature and senescent adipocytes. METHODS AND RESULTS The effects of glipizide were investigated in 3T3-L1 adipocytes. Effective and lethal doses were determined by real-time monitoring iCELLigence system. Comet assay was performed to determine DNA damage and quantitative PCR was conducted to detect gene expression levels. RAN expressions were found to be up regulated in mature 180 µM glipizide treated adipocytes compared to control group (p < 0.05); whereas down regulated in senescent 180 µM glipizide treated adipocytes compared to their control adipocytes (p < 0.05). Olive Tail Moment values were significantly higher in mature 180 µM glipizide treated adipocytes (MTG) and senescent 180 µM glipizide treated adipocytes (STG) comparing their untreated controls (p < 0.001 and p < 0.001 respectively). Also class 5 comets that shows severe DNA damage were found to be higher in both MTG and STG groups than their controls (p < 0.001 and p < 0.001, respectively). OTM values were higher in STG than MTG (p < 0.001). CONCLUSIONS This is the first study that reports glipizide caused DNA damage increasing with senescence in adipocytes. As a response to glipizide treatment Ran gene expression increased in mature; and decreased in senescent adipocytes. Further studies are needed to reveal the effect of glipizide on DNA and nuclear interactions in molecular level.
Collapse
Affiliation(s)
- Mehtap Cevik
- Division of Biology, Department of Molecular Biology, Faculty of Arts and Sciences, Marmara University, Istanbul, Turkey
| | - Selen Caker
- Division of Biology, Department of Molecular Biology, Faculty of Arts and Sciences, Marmara University, Istanbul, Turkey
| | - Gokce Deliorman
- Department of Software Engineering, Faculty of Engineering and Architecture, Beykoz University, Istanbul, Turkey
| | - Penbe Cagatay
- Department of Medical Services and Technics, Vocational School of Health Service, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | | | - Belgin Susleyici
- Division of Biology, Department of Molecular Biology, Faculty of Arts and Sciences, Marmara University, Istanbul, Turkey.
| |
Collapse
|
13
|
Sikora E, Bielak-Zmijewska A, Mosieniak G. A common signature of cellular senescence; does it exist? Ageing Res Rev 2021; 71:101458. [PMID: 34500043 DOI: 10.1016/j.arr.2021.101458] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/25/2021] [Accepted: 09/01/2021] [Indexed: 02/08/2023]
Abstract
Cellular senescence is a stress response, which can be evoked in all type of somatic cells by different stimuli. Senescent cells accumulate in the body and participate in aging and aging-related diseases mainly by their secretory activity, commonly known as senescence-associated secretory phenotype-SASP. Senescence is typically described as cell cycle arrest. This definition stems from the original observation concerning limited cell division potential of human fibroblasts in vitro. At present, the process of cell senescence is attributed also to cancer cells and to non-proliferating post-mitotic cells. Many cellular signaling pathways and specific and unspecific markers contribute to the complex, dynamic and heterogeneous phenotype of senescent cells. Considering the diversity of cells that can undergo senescence upon different inducers and variety of mechanisms involved in the execution of this process, we ask if there is a common signature of cell senescence. It seems that cell cycle arrest in G0, G1 or G2 is indispensable for cell senescence; however, to ensure irreversibility of divisions, the exit from the cell cycle to the state, which we call a GS (Gero Stage), is necessary. The DNA damage, changes in nuclear architecture and chromatin rearrangement are involved in signaling pathways leading to altered gene transcription and secretion of SASP components. Thus, nuclear changes and SASP are vital features of cell senescence that, together with temporal arrest in the cell cycle (G1 or/and G2), which may be followed by polyploidisation/depolyploidisation or exit from the cell cycle leading to permanent proliferation arrest (GS), define the signature of cellular senescence.
Collapse
|
14
|
Preclinical Advances of Therapies for Laminopathies. J Clin Med 2021; 10:jcm10214834. [PMID: 34768351 PMCID: PMC8584472 DOI: 10.3390/jcm10214834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 11/29/2022] Open
Abstract
Laminopathies are a group of rare disorders due to mutation in LMNA gene. Depending on the mutation, they may affect striated muscles, adipose tissues, nerves or are multisystemic with various accelerated ageing syndromes. Although the diverse pathomechanisms responsible for laminopathies are not fully understood, several therapeutic approaches have been evaluated in patient cells or animal models, ranging from gene therapies to cell and drug therapies. This review is focused on these therapies with a strong focus on striated muscle laminopathies and premature ageing syndromes.
Collapse
|
15
|
Wu C, Duan Y, Gong S, Kallendrusch S, Schopow N, Osterhoff G. Integrative and Comprehensive Pancancer Analysis of Regulator of Chromatin Condensation 1 (RCC1). Int J Mol Sci 2021; 22:ijms22147374. [PMID: 34298996 PMCID: PMC8305170 DOI: 10.3390/ijms22147374] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/23/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
Regulator of Chromatin Condensation 1 (RCC1) is the only known guanine nucleotide exchange factor that acts on the Ras-like G protein Ran and plays a key role in cell cycle regulation. Although there is growing evidence to support the relationship between RCC1 and cancer, detailed pancancer analyses have not yet been performed. In this genome database study, based on The Cancer Genome Atlas, Genotype-Tissue Expression and Gene Expression Omnibus databases, the potential role of RCC1 in 33 tumors' entities was explored. The results show that RCC1 is highly expressed in most human malignant neoplasms in contrast to healthy tissues. RCC1 expression is closely related to the prognosis of a broad variety of tumor patients. Enrichment analysis showed that some tumor-related pathways such as "cell cycle" and "RNA transport" were involved in the functional mechanism of RCC1. In particular, the conducted analysis reveals the relation of RCC1 to multiple immune checkpoint genes and suggests that the regulation of RCC1 is closely related to tumor infiltration of cancer-associated fibroblasts and CD8+ T cells. Coherent data demonstrate the association of RCC1 with the tumor mutation burden and microsatellite instability in various tumors. These findings provide new insights into the role of RCC1 in oncogenesis and tumor immunology in various tumors and indicate its potential as marker for therapy prognosis and targeted treatment strategies.
Collapse
Affiliation(s)
- Changwu Wu
- Institute of Anatomy, University of Leipzig, Liebigstraße 13, 04103 Leipzig, Germany; (C.W.); (S.K.); (N.S.)
| | - Yingjuan Duan
- Faculty of Chemistry and Mineralogy, University of Leipzig, 04103 Leipzig, Germany;
| | - Siming Gong
- Institute of Anatomy, University of Leipzig, Liebigstraße 13, 04103 Leipzig, Germany; (C.W.); (S.K.); (N.S.)
- Correspondence:
| | - Sonja Kallendrusch
- Institute of Anatomy, University of Leipzig, Liebigstraße 13, 04103 Leipzig, Germany; (C.W.); (S.K.); (N.S.)
| | - Nikolas Schopow
- Institute of Anatomy, University of Leipzig, Liebigstraße 13, 04103 Leipzig, Germany; (C.W.); (S.K.); (N.S.)
- Sarcoma Center, Department of Orthopedics, Trauma and Plastic Surgery, University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Georg Osterhoff
- Sarcoma Center, Department of Orthopedics, Trauma and Plastic Surgery, University Hospital Leipzig, 04103 Leipzig, Germany;
| |
Collapse
|
16
|
Lee J, Park J, Kim JH, Lee G, Park TE, Yoon KJ, Kim YK, Lim C. LSM12-EPAC1 defines a neuroprotective pathway that sustains the nucleocytoplasmic RAN gradient. PLoS Biol 2020; 18:e3001002. [PMID: 33362237 PMCID: PMC7757817 DOI: 10.1371/journal.pbio.3001002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
Nucleocytoplasmic transport (NCT) defects have been implicated in neurodegenerative diseases such as C9ORF72-associated amyotrophic lateral sclerosis and frontotemporal dementia (C9-ALS/FTD). Here, we identify a neuroprotective pathway of like-Sm protein 12 (LSM12) and exchange protein directly activated by cyclic AMP 1 (EPAC1) that sustains the nucleocytoplasmic RAN gradient and thereby suppresses NCT dysfunction by the C9ORF72-derived poly(glycine-arginine) protein. LSM12 depletion in human neuroblastoma cells aggravated poly(GR)-induced impairment of NCT and nuclear integrity while promoting the nuclear accumulation of poly(GR) granules. In fact, LSM12 posttranscriptionally up-regulated EPAC1 expression, whereas EPAC1 overexpression rescued the RAN gradient and NCT defects in LSM12-deleted cells. C9-ALS patient-derived neurons differentiated from induced pluripotent stem cells (C9-ALS iPSNs) displayed low expression of LSM12 and EPAC1. Lentiviral overexpression of LSM12 or EPAC1 indeed restored the RAN gradient, mitigated the pathogenic mislocalization of TDP-43, and suppressed caspase-3 activation for apoptosis in C9-ALS iPSNs. EPAC1 depletion biochemically dissociated RAN-importin β1 from the cytoplasmic nuclear pore complex, thereby dissipating the nucleocytoplasmic RAN gradient essential for NCT. These findings define the LSM12-EPAC1 pathway as an important suppressor of the NCT-related pathologies in C9-ALS/FTD. A post-transcriptional circuit comprising LSM12 and EPAC1 suppresses neurodegenerative pathologies in C9ORF72-associated amyotrophic lateral sclerosis by establishing the RAN gradient and sustaining nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Jongbo Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Jumin Park
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Ji-hyung Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Giwook Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Tae-Eun Park
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Ki-Jun Yoon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Yoon Ki Kim
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul, Republic of Korea
- Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Chunghun Lim
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
- * E-mail:
| |
Collapse
|
17
|
Sandy Z, da Costa IC, Schmidt CK. More than Meets the ISG15: Emerging Roles in the DNA Damage Response and Beyond. Biomolecules 2020; 10:E1557. [PMID: 33203188 PMCID: PMC7698331 DOI: 10.3390/biom10111557] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
Maintenance of genome stability is a crucial priority for any organism. To meet this priority, robust signalling networks exist to facilitate error-free DNA replication and repair. These signalling cascades are subject to various regulatory post-translational modifications that range from simple additions of chemical moieties to the conjugation of ubiquitin-like proteins (UBLs). Interferon Stimulated Gene 15 (ISG15) is one such UBL. While classically thought of as a component of antiviral immunity, ISG15 has recently emerged as a regulator of genome stability, with key roles in the DNA damage response (DDR) to modulate p53 signalling and error-free DNA replication. Additional proteomic analyses and cancer-focused studies hint at wider-reaching, uncharacterised functions for ISG15 in genome stability. We review these recent discoveries and highlight future perspectives to increase our understanding of this multifaceted UBL in health and disease.
Collapse
Affiliation(s)
| | | | - Christine K. Schmidt
- Manchester Cancer Research Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M20 4GJ, UK; (Z.S.); (I.C.d.C.)
| |
Collapse
|
18
|
Cho UH, Hetzer MW. Nuclear Periphery Takes Center Stage: The Role of Nuclear Pore Complexes in Cell Identity and Aging. Neuron 2020; 106:899-911. [PMID: 32553207 DOI: 10.1016/j.neuron.2020.05.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 12/27/2022]
Abstract
In recent years, the nuclear pore complex (NPC) has emerged as a key player in genome regulation and cellular homeostasis. New discoveries have revealed that the NPC has multiple cellular functions besides mediating the molecular exchange between the nucleus and the cytoplasm. In this review, we discuss non-transport aspects of the NPC focusing on the NPC-genome interaction, the extreme longevity of the NPC proteins, and NPC dysfunction in age-related diseases. The examples summarized herein demonstrate that the NPC, which first evolved to enable the biochemical communication between the nucleus and the cytoplasm, now doubles as the gatekeeper of cellular identity and aging.
Collapse
Affiliation(s)
- Ukrae H Cho
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Martin W Hetzer
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
19
|
Ren X, Jiang K, Zhang F. The Multifaceted Roles of RCC1 in Tumorigenesis. Front Mol Biosci 2020; 7:225. [PMID: 33102517 PMCID: PMC7522611 DOI: 10.3389/fmolb.2020.00225] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/11/2020] [Indexed: 01/31/2023] Open
Abstract
RCC1 (regulator of chromosome condensation 1) is the only known guanine nucleotide exchange factor of Ran, a nuclear Ras-like G protein. RCC1 combines with chromatin and Ran to establish a concentration gradient of RanGTP, thereby participating in a series of cell physiological activities. In this review, we discuss the structure of RCC1 and describe how RCC1 affects the formation and function of the nuclear envelope, spindle formation, and nuclear transport. We mainly focus on the effect of RCC1 on the cell cycle during tumorigenesis and the recent research progress that has been made in relation to different tumor types.
Collapse
Affiliation(s)
- Xuanqi Ren
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Kai Jiang
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Feng Zhang
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
20
|
Bitetto G, Di Fonzo A. Nucleo-cytoplasmic transport defects and protein aggregates in neurodegeneration. Transl Neurodegener 2020; 9:25. [PMID: 32616075 PMCID: PMC7333321 DOI: 10.1186/s40035-020-00205-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
In the ongoing process of uncovering molecular abnormalities in neurodegenerative diseases characterized by toxic protein aggregates, nucleo-cytoplasmic transport defects have an emerging role. Several pieces of evidence suggest a link between neuronal protein inclusions and nuclear pore complex (NPC) damage. These processes lead to oxidative stress, inefficient transcription, and aberrant DNA/RNA maintenance. The clinical and neuropathological spectrum of NPC defects is broad, ranging from physiological aging to a suite of neurodegenerative diseases. A better understanding of the shared pathways among these conditions may represent a significant step toward dissecting their underlying molecular mechanisms, opening the way to a real possibility of identifying common therapeutic targets.
Collapse
Affiliation(s)
- Giacomo Bitetto
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Alessio Di Fonzo
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy.
| |
Collapse
|
21
|
Boudhraa Z, Carmona E, Provencher D, Mes-Masson AM. Ran GTPase: A Key Player in Tumor Progression and Metastasis. Front Cell Dev Biol 2020; 8:345. [PMID: 32528950 PMCID: PMC7264121 DOI: 10.3389/fcell.2020.00345] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/20/2020] [Indexed: 12/14/2022] Open
Abstract
Ran (Ras-related nuclear protein) GTPase is a member of the Ras superfamily. Like all the GTPases, Ran cycles between an active (GTP-bound) and inactive (GDP-bound) state. However, Ran lacks the CAAX motif at its C-terminus, a feature of other small GTPases that ensures a plasma membrane localization, and largely traffics between the nucleus and the cytoplasm. Ran regulates nucleo-cytoplasmic transport of molecules through the nuclear pore complex and controls cell cycle progression through the regulation of microtubule polymerization and mitotic spindle formation. The disruption of Ran expression has been linked to cancer at different levels - from cancer initiation to metastasis. In the present review, we discuss the contribution of Ran in the acquisition of three hallmarks of cancer, namely, proliferative signaling, resistance to apoptosis, and invasion/metastasis, and highlight its prognostic value in cancer patients. In addition, we discuss the use of this GTPase as a therapeutic target in cancer.
Collapse
Affiliation(s)
- Zied Boudhraa
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.,Institut du Cancer de Montréal (ICM), Montreal, QC, Canada
| | - Euridice Carmona
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.,Institut du Cancer de Montréal (ICM), Montreal, QC, Canada
| | - Diane Provencher
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.,Institut du Cancer de Montréal (ICM), Montreal, QC, Canada.,Division of Gynecologic Oncology, Université de Montréal, Montreal, QC, Canada
| | - Anne-Marie Mes-Masson
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.,Institut du Cancer de Montréal (ICM), Montreal, QC, Canada.,Department of Medicine, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
22
|
Tatehana M, Kimura R, Mochizuki K, Inada H, Osumi N. Comprehensive histochemical profiles of histone modification in male germline cells during meiosis and spermiogenesis: Comparison of young and aged testes in mice. PLoS One 2020; 15:e0230930. [PMID: 32267870 PMCID: PMC7141650 DOI: 10.1371/journal.pone.0230930] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 03/12/2020] [Indexed: 12/11/2022] Open
Abstract
Human epidemiological studies have shown that paternal aging as one of the risk factors for neurodevelopmental disorders, such as autism, in offspring. A recent study has suggested that factors other than de novo mutations due to aging can influence the biology of offspring. Here, we focused on epigenetic alterations in sperm that can influence developmental programs in offspring. In this study, we qualitatively and semiquantitatively evaluated histone modification patterns in male germline cells throughout spermatogenesis based on immunostaining of testes taken from young (3 months old) and aged (12 months old) mice. Although localization patterns were not obviously changed between young and aged testes, some histone modification showed differences in their intensity. Among histone modifications that repress gene expression, histone H3 lysine 9 trimethylation (H3K9me3) was decreased in the male germline cells of the aged testis, while H3K27me2/3 was increased. The intensity of H3K27 acetylation (ac), an active mark, was lower/higher depending on the stages in the aged testis. Interestingly, H3K27ac was detected on the putative sex chromosomes of round spermatids, while other chromosomes were occupied by a repressive mark, H3K27me3. Among other histone modifications that activate gene expression, H3K4me2 was drastically decreased in the male germline cells of the aged testis. In contrast, H3K79me3 was increased in M-phase spermatocytes, where it accumulates on the sex chromosomes. Therefore, aging induced alterations in the amount of histone modifications and in the differences of patterns for each modification. Moreover, histone modifications on the sex chromosomes and on other chromosomes seems to be differentially regulated by aging. These findings will help elucidate the epigenetic mechanisms underlying the influence of paternal aging on offspring development.
Collapse
Affiliation(s)
- Misako Tatehana
- Department of Developmental Neuroscience, Center for Advanced Research and Translational Medicine (ART), Tohoku University School of Medicine, Sendai, Japan
| | - Ryuichi Kimura
- Department of Developmental Neuroscience, Center for Advanced Research and Translational Medicine (ART), Tohoku University School of Medicine, Sendai, Japan
| | - Kentaro Mochizuki
- Department of Developmental Neuroscience, Center for Advanced Research and Translational Medicine (ART), Tohoku University School of Medicine, Sendai, Japan
- Department of Medical Genetics, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Hitoshi Inada
- Department of Developmental Neuroscience, Center for Advanced Research and Translational Medicine (ART), Tohoku University School of Medicine, Sendai, Japan
| | - Noriko Osumi
- Department of Developmental Neuroscience, Center for Advanced Research and Translational Medicine (ART), Tohoku University School of Medicine, Sendai, Japan
- * E-mail:
| |
Collapse
|
23
|
Hutten S, Dormann D. Nucleocytoplasmic transport defects in neurodegeneration — Cause or consequence? Semin Cell Dev Biol 2020; 99:151-162. [DOI: 10.1016/j.semcdb.2019.05.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 12/12/2022]
|
24
|
Wang D, Liu S, Xu S. Identification of hub genes, key pathways, and therapeutic agents in Hutchinson-Gilford Progeria syndrome using bioinformatics analysis. Medicine (Baltimore) 2020; 99:e19022. [PMID: 32049798 PMCID: PMC7035007 DOI: 10.1097/md.0000000000019022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Hutchinson-Gilford Progeria syndrome (HGPS) is a rare lethal premature and accelerated aging disease caused by mutations in the lamin A/C gene. Nevertheless, the mechanisms of cellular damage, senescence, and accelerated aging in HGPS are not fully understood. Therefore, we aimed to screen potential key genes, pathways, and therapeutic agents of HGPS by using bioinformatics methods in this study. METHODS The gene expression profile of GSE113648 and GSE41751 were retrieved from the gene expression omnibus database and analyzed to identify the differentially expressed genes (DEGs) between HGPS and normal controls. Then, gene ontology and the Kyoto encyclopedia of genes and genomes pathway enrichment analysis were carried out. To construct the protein-protein interaction (PPI) network, we used STRING and Cytoscape to make module analysis of these DEGs. Besides, the connectivity map (cMAP) tool was used as well to predict potential drugs. RESULTS As a result, 180 upregulated DEGs and 345 downregulated DEGs were identified, which were significantly enriched in pathways in cancer and PI3K-Akt signaling pathway. The top centrality hub genes fibroblast growth factor 2, decorin, matrix metallopeptidase2, and Fos proto-oncogene, AP-1 transcription factor subunit were screened out as the critical genes among the DEGs from the PPI network. Dexibuprofen and parthenolide were predicted to be the possible agents for the treatment of HGPS by cMAP analysis. CONCLUSION This study identified key genes, signal pathways and therapeutic agents, which might help us improve our understanding of the mechanisms of HGPS and identify some new therapeutic agents for HGPS.
Collapse
Affiliation(s)
- Dengchuan Wang
- Office of Medical Ethics, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong
| | - Shengshuo Liu
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Shi Xu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
25
|
García-Aguirre I, Alamillo-Iniesta A, Rodríguez-Pérez R, Vélez-Aguilera G, Amaro-Encarnación E, Jiménez-Gutiérrez E, Vásquez-Limeta A, Samuel Laredo-Cisneros M, Morales-Lázaro SL, Tiburcio-Félix R, Ortega A, Magaña JJ, Winder SJ, Cisneros B. Enhanced nuclear protein export in premature aging and rescue of the progeria phenotype by modulation of CRM1 activity. Aging Cell 2019; 18:e13002. [PMID: 31305018 PMCID: PMC6718587 DOI: 10.1111/acel.13002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 06/12/2019] [Accepted: 06/22/2019] [Indexed: 12/11/2022] Open
Abstract
The study of Hutchinson-Gilford progeria syndrome (HGPS) has provided important clues to decipher mechanisms underlying aging. Progerin, a mutant lamin A, disrupts nuclear envelope structure/function, with further impairment of multiple processes that culminate in senescence. Here, we demonstrate that the nuclear protein export pathway is exacerbated in HGPS, due to progerin-driven overexpression of CRM1, thereby disturbing nucleocytoplasmic partitioning of CRM1-target proteins. Enhanced nuclear export is central in HGPS, since pharmacological inhibition of CRM1 alleviates all aging hallmarks analyzed, including senescent cellular morphology, lamin B1 downregulation, loss of heterochromatin, nuclear morphology defects, and expanded nucleoli. Exogenous overexpression of CRM1 on the other hand recapitulates the HGPS cellular phenotype in normal fibroblasts. CRM1 levels/activity increases with age in fibroblasts from healthy donors, indicating that altered nuclear export is a common hallmark of pathological and physiological aging. Collectively, our findings provide novel insights into HGPS pathophysiology, identifying CRM1 as potential therapeutic target in HGPS.
Collapse
Affiliation(s)
- Ian García-Aguirre
- Department of Genetics and Molecular Biology, Center of Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Alma Alamillo-Iniesta
- Department of Genetics and Molecular Biology, Center of Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Ruth Rodríguez-Pérez
- Department of Genetics and Molecular Biology, Center of Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Griselda Vélez-Aguilera
- Department of Genetics and Molecular Biology, Center of Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Elianeth Amaro-Encarnación
- Department of Genetics and Molecular Biology, Center of Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Elizabeth Jiménez-Gutiérrez
- Department of Genetics and Molecular Biology, Center of Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Alejandra Vásquez-Limeta
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research-Frederick, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Marco Samuel Laredo-Cisneros
- Department of Genetics and Molecular Biology, Center of Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Sara L Morales-Lázaro
- Department of Cognitive Neuroscience, Institute of Cellular Physiology, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Reynaldo Tiburcio-Félix
- Department of Toxicology, Center of Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Arturo Ortega
- Department of Toxicology, Center of Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Jonathan J Magaña
- Laboratory of Genomic Medicine, Department of Genetics, National Rehabilitation Institute, "Luis Guillermo Ibarra Ibarra", Mexico City, Mexico
| | - Steve J Winder
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Bulmaro Cisneros
- Department of Genetics and Molecular Biology, Center of Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| |
Collapse
|
26
|
Prieto-Dominguez N, Parnell C, Teng Y. Drugging the Small GTPase Pathways in Cancer Treatment: Promises and Challenges. Cells 2019; 8:E255. [PMID: 30884855 PMCID: PMC6468615 DOI: 10.3390/cells8030255] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/08/2019] [Accepted: 03/13/2019] [Indexed: 02/07/2023] Open
Abstract
Small GTPases are a family of low molecular weight GTP-hydrolyzing enzymes that cycle between an inactive state when bound to GDP and an active state when associated to GTP. Small GTPases regulate key cellular processes (e.g., cell differentiation, proliferation, and motility) as well as subcellular events (e.g., vesicle trafficking), making them key participants in a great array of pathophysiological processes. Indeed, the dysfunction and deregulation of certain small GTPases, such as the members of the Ras and Arf subfamilies, have been related with the promotion and progression of cancer. Therefore, the development of inhibitors that target dysfunctional small GTPases could represent a potential therapeutic strategy for cancer treatment. This review covers the basic biochemical mechanisms and the diverse functions of small GTPases in cancer. We also discuss the strategies and challenges of inhibiting the activity of these enzymes and delve into new approaches that offer opportunities to target them in cancer therapy.
Collapse
Affiliation(s)
- Néstor Prieto-Dominguez
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA.
- Institute of Biomedicine (IBIOMED), University of León, León 24010, Spain.
| | | | - Yong Teng
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA.
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
- Department of Medical laboratory, Imaging and Radiologic Sciences, College of Allied Health, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
27
|
Dworak N, Makosa D, Chatterjee M, Jividen K, Yang CS, Snow C, Simke WC, Johnson IG, Kelley JB, Paschal BM. A nuclear lamina-chromatin-Ran GTPase axis modulates nuclear import and DNA damage signaling. Aging Cell 2019; 18:e12851. [PMID: 30565836 PMCID: PMC6351833 DOI: 10.1111/acel.12851] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 08/16/2018] [Accepted: 09/09/2018] [Indexed: 12/25/2022] Open
Abstract
The Ran GTPase regulates nuclear import and export by controlling the assembly state of transport complexes. This involves the direct action of RanGTP, which is generated in the nucleus by the chromatin‐associated nucleotide exchange factor, RCC1. Ran interactions with RCC1 contribute to formation of a nuclear:cytoplasmic (N:C) Ran protein gradient in interphase cells. In previous work, we showed that the Ran protein gradient is disrupted in fibroblasts from Hutchinson–Gilford progeria syndrome (HGPS) patients. The Ran gradient disruption in these cells is caused by nuclear membrane association of a mutant form of Lamin A, which induces a global reduction in heterochromatin marked with Histone H3K9me3 and Histone H3K27me3. Here, we have tested the hypothesis that heterochromatin controls the Ran gradient. Chemical inhibition and depletion of the histone methyltransferases (HMTs) G9a and GLP in normal human fibroblasts reduced heterochromatin levels and caused disruption of the Ran gradient, comparable to that observed previously in HGPS fibroblasts. HMT inhibition caused a defect in nuclear localization of TPR, a high molecular weight protein that, owing to its large size, displays a Ran‐dependent import defect in HGPS. We reasoned that pathways dependent on nuclear import of large proteins might be compromised in HGPS. We found that nuclear import of ATM requires the Ran gradient, and disruption of the Ran gradient in HGPS causes a defect in generating nuclear γ‐H2AX in response to ionizing radiation. Our data suggest a lamina–chromatin–Ran axis is important for nuclear transport regulation and contributes to the DNA damage response.
Collapse
Affiliation(s)
- Natalia Dworak
- Center for Cell Signaling; University of Virginia; Charlottesville Virginia
| | - Dawid Makosa
- Center for Cell Signaling; University of Virginia; Charlottesville Virginia
| | - Mandovi Chatterjee
- Center for Cell Signaling; University of Virginia; Charlottesville Virginia
| | - Kasey Jividen
- Center for Cell Signaling; University of Virginia; Charlottesville Virginia
| | - Chun-Song Yang
- Center for Cell Signaling; University of Virginia; Charlottesville Virginia
| | - Chelsi Snow
- Center for Cell Signaling; University of Virginia; Charlottesville Virginia
- Department of Biochemistry and Molecular Genetics; University of Virginia; Charlottesville Virginia
| | - William C. Simke
- Department of Molecular and Biomedical Sciences; University of Maine; Orono Maine
| | - Isaac G. Johnson
- Department of Molecular and Biomedical Sciences; University of Maine; Orono Maine
| | - Joshua B. Kelley
- Department of Molecular and Biomedical Sciences; University of Maine; Orono Maine
| | - Bryce M. Paschal
- Center for Cell Signaling; University of Virginia; Charlottesville Virginia
- Department of Biochemistry and Molecular Genetics; University of Virginia; Charlottesville Virginia
| |
Collapse
|