1
|
Huang X, Jannu AJ, Song Z, Jury-Garfe N, Lasagna-Reeves CA, Johnson TS, Huang K, Zhang J. Predicting Alzheimer's disease subtypes and understanding their molecular characteristics in living patients with transcriptomic trajectory profiling. Alzheimers Dement 2025:e14241. [PMID: 39812331 DOI: 10.1002/alz.14241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/18/2024] [Accepted: 08/02/2024] [Indexed: 01/16/2025]
Abstract
INTRODUCTION Deciphering the diverse molecular mechanisms in living Alzheimer's disease (AD) patients is a big challenge but is pivotal for disease prognosis and precision medicine development. METHODS Utilizing an optimal transport approach, we conducted graph-based mapping of transcriptomic profiles to transfer AD subtype labels from ROSMAP monocyte samples to ADNI and ANMerge peripheral blood mononuclear cells. Subsequently, differential expression followed by comparative pathway and diffusion pseudotime analysis were applied to each cohort to infer the progression trajectories. Survival analysis with real follow-up time was used to obtain potential biomarkers for AD prognosis. RESULTS AD subtype labels were accurately transferred onto the blood samples of ADNI and ANMerge living patients. Pathways and associated genes in neutrophil degranulation-like immune process, immune acute phase response, and IL-6 signaling were significantly associated with AD progression. DISCUSSION The work enhanced our understanding of AD progression in different subtypes, offering insights into potential biomarkers and personalized interventions for improved patient care. HIGHLIGHTS We applied an innovative optimal transport-based approach to map transcriptomic data from different Alzheimer's disease (AD) cohort studies and transfer known AD subtype labels from ROSMAP monocyte samples to peripheral blood mononuclear cell (PBMC) samples within ADNI and ANMerge cohorts. Through comprehensive trajectory and comparative analysis, we investigated the molecular mechanisms underlying different disease progression trajectories in AD. We validated the accuracy of our AD subtype label transfer and identified prognostic genetic markers associated with disease progression, facilitating personalized treatment strategies. By identifying and predicting distinctive AD subtypes and their associated pathways, our study contributes to a deeper understanding of AD heterogeneity.
Collapse
Affiliation(s)
- Xiaoqing Huang
- Department of Biostatistics & Health Data Science, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Asha Jacob Jannu
- Department of Biohealth Informatics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ziyan Song
- Department of Biostatistics & Health Data Science, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nur Jury-Garfe
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Cristian A Lasagna-Reeves
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Travis S Johnson
- Department of Biostatistics & Health Data Science, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kun Huang
- Department of Biostatistics & Health Data Science, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jie Zhang
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
2
|
Gurinovich A, Song Z, Bae H, Leshchyk A, Li M, Lords H, Andersen SL, Nygaard M, Christensen K, Daw EW, Arbeev KG, Brent MR, Perls TT, Sebastiani P. SNP rs6543176 is associated with extreme human longevity but increased risk for cancer. GeroScience 2025:10.1007/s11357-024-01478-5. [PMID: 39751714 DOI: 10.1007/s11357-024-01478-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/14/2024] [Indexed: 01/04/2025] Open
Abstract
Using whole-genome sequencing (WGS) might offer insights into rare genetic variants associated with healthy aging and extreme longevity (EL), potentially pointing to useful therapeutic targets. In this study, we conducted a genome-wide association study using WGS data from the Long Life Family Study and identified a novel longevity-associated variant rs6543176 in the SLC9A2 gene. This SNP also showed a significant association with reduced hypertension risk and an increased, though not statistically significant, cancer risk. The association with cancer risk was replicated in the UK Biobank and FinnGen. Metabolomic analyses linked the rs6543176 longevity allele to higher serine levels, potentially associated with delayed mortality. Our findings warrant further investigation of SLC9A2's role in both longevity and cancer susceptibility, and they highlight the need for careful evaluation in developing anti-aging therapies based on EL-associated alleles.
Collapse
Affiliation(s)
- Anastasia Gurinovich
- Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA, 02111, USA.
- Department of Medicine, Tufts University, Boston, MA, 02111, USA.
| | - Zeyuan Song
- Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA, 02111, USA
- Department of Medicine, Tufts University, Boston, MA, 02111, USA
| | - Harold Bae
- Biostatistics Program, College of Health, Oregon State University, Corvallis, OR, 97331, USA
| | - Anastasia Leshchyk
- Bioinformatics Program, Faculty of Computing & Data Sciences, Boston University, Boston, MA, 02215, USA
- Department of Medicine, Computational Biomedicine Section, School of Medicine, Boston University, Chobanian & Avedisian, Boston, MA, 02118, USA
| | - Mengze Li
- Bioinformatics Program, Faculty of Computing & Data Sciences, Boston University, Boston, MA, 02215, USA
- Department of Medicine, Computational Biomedicine Section, School of Medicine, Boston University, Chobanian & Avedisian, Boston, MA, 02118, USA
| | - Hannah Lords
- Bioinformatics Program, Faculty of Computing & Data Sciences, Boston University, Boston, MA, 02215, USA
- Department of Medicine, Computational Biomedicine Section, School of Medicine, Boston University, Chobanian & Avedisian, Boston, MA, 02118, USA
| | - Stacy L Andersen
- Department of Medicine, Section of Geriatrics, School of Medicine, Boston University, Chobanian & Avedisian, Boston, MA, 02118, USA
| | - Marianne Nygaard
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Kaare Christensen
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - E Warwick Daw
- Division of Statistical Genomics, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Konstantin G Arbeev
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, 27708, USA
| | - Michael R Brent
- Division of Computational and Data Sciences, Center for Genome Sciences and Systems Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Thomas T Perls
- Department of Medicine, Section of Geriatrics, School of Medicine, Boston University, Chobanian & Avedisian, Boston, MA, 02118, USA
| | - Paola Sebastiani
- Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA, 02111, USA
- Department of Medicine, Tufts University, Boston, MA, 02111, USA
- Data Intensive Study Center, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
3
|
Ying K, Castro JP, Shindyapina AV, Tyshkovskiy A, Moqri M, Goeminne LJE, Milman S, Zhang ZD, Barzilai N, Gladyshev VN. Depletion of loss-of-function germline mutations in centenarians reveals longevity genes. Nat Commun 2024; 15:9030. [PMID: 39424787 PMCID: PMC11489729 DOI: 10.1038/s41467-024-52967-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/27/2024] [Indexed: 10/21/2024] Open
Abstract
While previous studies identified common genetic variants associated with longevity in centenarians, the role of the rare loss-of-function (LOF) mutation burden remains largely unexplored. Here, we investigated the burden of rare LOF mutations in Ashkenazi Jewish individuals from the Longevity Genes Project and LonGenity study cohorts using whole-exome sequencing data. We found that centenarians had a significantly lower burden (11-22%) of LOF mutations compared to controls. Similar effects were also observed in their offspring. Gene-level burden analysis identified 35 genes with depleted LOF mutations in centenarians, with 14 of these validated in the UK Biobank. Mendelian randomization and multi-omic analyses on these genes identified RGP1, PCNX2, and ANO9 as longevity genes with consistent causal effects on multiple aging-related traits and altered expression during aging. Our findings suggest that a protective genetic background, characterized by a reduced burden of damaging variants, contributes to exceptional longevity, likely acting in concert with specific protective variants to promote healthy aging.
Collapse
Affiliation(s)
- Kejun Ying
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
- T. H. Chan School of Public Health, Harvard University, Boston, USA
| | - José P Castro
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto and Aging and Aneuploidy Laboratory, IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Anastasia V Shindyapina
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
- Retro Biosciences, Redwood City, USA
| | - Alexander Tyshkovskiy
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | - Mahdi Moqri
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | - Ludger J E Goeminne
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | - Sofiya Milman
- Department of Genetics, Albert Einstein College of Medicine, Bronx, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, USA
| | - Zhengdong D Zhang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, USA
| | - Nir Barzilai
- Department of Genetics, Albert Einstein College of Medicine, Bronx, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, USA
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA.
| |
Collapse
|
4
|
Wang H, Xiao F, Gao Z, Guo L, Yang L, Li G, Kong Q. Methylation entropy landscape of Chinese long-lived individuals reveals lower epigenetic noise related to human healthy aging. Aging Cell 2024; 23:e14163. [PMID: 38566438 PMCID: PMC11258444 DOI: 10.1111/acel.14163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
The transition from ordered to noisy is a significant epigenetic signature of aging and age-related disease. As a paradigm of healthy human aging and longevity, long-lived individuals (LLI, >90 years old) may possess characteristic strategies in coping with the disordered epigenetic regulation. In this study, we constructed high-resolution blood epigenetic noise landscapes for this cohort by a methylation entropy (ME) method using whole genome bisulfite sequencing (WGBS). Although a universal increase in global ME occurred with chronological age in general control samples, this trend was suppressed in LLIs. Importantly, we identified 38,923 genomic regions with LLI-specific lower ME (LLI-specific lower entropy regions, for short, LLI-specific LERs). These regions were overrepresented in promoters, which likely function in transcriptional noise suppression. Genes associated with LLI-specific LERs have a considerable impact on SNP-based heritability of some aging-related disorders (e.g., asthma and stroke). Furthermore, neutrophil was identified as the primary cell type sustaining LLI-specific LERs. Our results highlight the stability of epigenetic order in promoters of genes involved with aging and age-related disorders within LLI epigenomes. This unique epigenetic feature reveals a previously unknown role of epigenetic order maintenance in specific genomic regions of LLIs, which helps open a new avenue on the epigenetic regulation mechanism in human healthy aging and longevity.
Collapse
Affiliation(s)
- Hao‐Tian Wang
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging StudyKIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Fu‐Hui Xiao
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging StudyKIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Zong‐Liang Gao
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging StudyKIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Li‐Yun Guo
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging StudyKIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Li‐Qin Yang
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging StudyKIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Gong‐Hua Li
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging StudyKIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Qing‐Peng Kong
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging StudyKIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- CAS Center for Excellence in Animal Evolution and GeneticsChinese Academy of SciencesKunmingChina
| |
Collapse
|
5
|
Zhuang X, Xia Y, Liu Y, Guo T, Xia Z, Wang Z, Zhang G. SCG5 and MITF may be novel markers of copper metabolism immunorelevance in Alzheimer's disease. Sci Rep 2024; 14:13619. [PMID: 38871989 DOI: 10.1038/s41598-024-64599-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024] Open
Abstract
The slow-developing neurological disorder Alzheimer's disease (AD) has no recognized etiology. A bioinformatics investigation verified copper metabolism indicators for AD development. GEO contributed AD-related datasets GSE1297 and GSE5281. Differential expression analysis and WGCNA confirmed biomarker candidate genes. Each immune cell type in AD and control samples was scored using single sample gene set enrichment analysis. Receiver Operating Characteristic (ROC) analysis, short Time-series Expression Miner (STEM) grouping, and expression analysis between control and AD samples discovered copper metabolism indicators that impacted AD progression. We test clinical samples and cellular function to ensure study correctness. Biomarker-targeting miRNAs and lncRNAs were predicted by starBase. Trust website anticipated biomarker-targeting transcription factors. In the end, Cytoscape constructed the TF/miRNA-mRNA and lncRNA-miRNA networks. The DGIdb database predicted biomarker-targeted drugs. We identified 57 differentially expressed copper metabolism-related genes (DE-CMRGs). Next, fourteen copper metabolism indicators impacting AD progression were identified: CCK, ATP6V1E1, SYT1, LDHA, PAM, HPRT1, SCG5, ATP6V1D, GOT1, NFKBIA, SPHK1, MITF, BRCA1, and CD38. A TF/miRNA-mRNA regulation network was then established with two miRNAs (hsa-miR-34a-5p and 34c-5p), six TFs (NFKB1, RELA, MYC, HIF1A, JUN, and SP1), and four biomarkers. The DGIdb database contained 171 drugs targeting ten copper metabolism-relevant biomarkers (BRCA1, MITF, NFKBIA, CD38, CCK2, HPRT1, SPHK1, LDHA, SCG5, and SYT1). Copper metabolism biomarkers CCK, ATP6V1E1, SYT1, LDHA, PAM, HPRT1, SCG5, ATP6V1D, GOT1, NFKBIA, SPHK1, MITF, BRCA1, and CD38 alter AD progression, laying the groundwork for disease pathophysiology and novel AD diagnostic and treatment.
Collapse
Affiliation(s)
- Xianbo Zhuang
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital affiliated to Shandong First Medical University, Liaocheng, China
| | - Yitong Xia
- School of Rehabilitation Medicine, Jining Medical University, Jining, China
| | - Yingli Liu
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital affiliated to Shandong First Medical University, Liaocheng, China
| | - Tingting Guo
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital affiliated to Shandong First Medical University, Liaocheng, China
| | - Zhangyong Xia
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital affiliated to Shandong First Medical University, Liaocheng, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Shandong Sub-Centre, Liaocheng, China
- Department of Neurology, the Second People's Hospital of Liaocheng, Liaocheng, China
| | - Zheng Wang
- Department of Neurosurgery, Liaocheng Traditional Chinese Medicine Hospital, Liaocheng, China.
| | - Guifeng Zhang
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital affiliated to Shandong First Medical University, Liaocheng, China.
| |
Collapse
|
6
|
Smulders L, Deelen J. Genetics of human longevity: From variants to genes to pathways. J Intern Med 2024; 295:416-435. [PMID: 37941149 DOI: 10.1111/joim.13740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The current increase in lifespan without an equivalent increase in healthspan poses a grave challenge to the healthcare system and a severe burden on society. However, some individuals seem to be able to live a long and healthy life without the occurrence of major debilitating chronic diseases, and part of this trait seems to be hidden in their genome. In this review, we discuss the findings from studies on the genetic component of human longevity and the main challenges accompanying these studies. We subsequently focus on results from genetic studies in model organisms and comparative genomic approaches to highlight the most important conserved longevity-associated pathways. By combining the results from studies using these different approaches, we conclude that only five main pathways have been consistently linked to longevity, namely (1) insulin/insulin-like growth factor 1 signalling, (2) DNA-damage response and repair, (3) immune function, (4) cholesterol metabolism and (5) telomere maintenance. As our current approaches to study the relevance of these pathways in humans are limited, we suggest that future studies on the genetics of human longevity should focus on the identification and functional characterization of rare genetic variants in genes involved in these pathways.
Collapse
Affiliation(s)
- Larissa Smulders
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Joris Deelen
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
7
|
Chen M, Wang F, Lei H, Yang Z, Li C. In Silico Insights into Micro-Mechanism Understanding of Extracts of Taxus Chinensis Fruits Against Alzheimer's Disease. J Alzheimers Dis 2024; 97:727-740. [PMID: 38217605 DOI: 10.3233/jad-231066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
BACKGROUND The taxus chinensis fruit (TCF) shows promises in treatment of aging-related diseases such as Alzheimer's disease (AD). However, its related constituents and targets against AD have not been deciphered. OBJECTIVE This study was to uncover constituents and targets of TCF extracts against AD. METHODS An integrated approach including ultrasound extractions and constituent identification of TCF by UPLC-QE-MS/MS, target identification of constituents and AD by R data-mining from Pubchem, Drugbank and GEO databases, network construction, molecular docking and the ROC curve analysis was carried out. RESULTS We identified 250 compounds in TCF extracts, and obtained 3,231 known constituent targets and 5,326 differential expression genes of AD, and 988 intersection genes. Through the network construction and KEGG pathway analysis, 19 chemicals, 31 targets, and 11 biological pathways were obtained as core compounds, targets and pathways of TCF extracts against AD. Among these constituents, luteolin, oleic acid, gallic acid, baicalein, naringenin, lovastatin and rutin had obvious anti-AD effect. Molecular docking results further confirmed above results. The ROC AUC values of about 87% of these core targets of TCF extracts was greater than 0.5 in the two GEO chips of AD, especially 10 targets with ROC AUC values greater than 0.7, such as BCL2, CASP7, NFKBIA, HMOX1, CDK2, LDLR, RELA, and CCL2, which mainly referred to neuron apoptosis, response to oxidative stress and inflammation, fibroblast proliferation, etc.Conclusions:The TCF extracts have diverse active compounds that can act on the diagnostic genes of AD, which deserve further in-depth study.
Collapse
Affiliation(s)
- Meimei Chen
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Fengzhen Wang
- Certification Center for Chinese Physicians, State Administration of Traditional Chinese Medicine, Beijing, Beijing, China
| | - Huangwei Lei
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Zhaoyang Yang
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Candong Li
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of TCM Health Status Identification, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| |
Collapse
|
8
|
Olivieri F, Prattichizzo F, Lattanzio F, Bonfigli AR, Spazzafumo L. Antifragility and antiinflammaging: Can they play a role for a healthy longevity? Ageing Res Rev 2023; 84:101836. [PMID: 36574863 DOI: 10.1016/j.arr.2022.101836] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
One of the most exciting challenges of the research on aging is to explain how the environmental factors interact with the genetic background to modulate the chances to reach the extreme limit of human life in healthy conditions. The complex epigenetic mechanisms can explain both the interaction between DNA and environmental factors, and the long-distance persistence of lifestyle effects, due to the so called "epigenetic memory". One of the most extensively investigated theories on aging focuses on the inflammatory responses, suggesting that the age-related progression of low-grade and therefore for long time subclinical, chronic, systemic, inflammatory process, named "inflammaging", could be the most relevant risk factor for the development and progression of the most common age-related diseases and ultimately of death. The results of many studies on long-lived people, especially on centenarians, suggested that healthy old people can cope with inflammaging upregulating the antiinflammaging responses. Overall, a genetic make-up coding for a strong antiinflammaging response and an age-related ability to remodel key metabolic pathways to cope with a plethora of antigens and stressors seem to be the best ways for reach the extreme limit of human lifespan in health status. In this scenario, we wondered if the antifragility concept, recently developed in the framework of business and risk analysis, could add some information to disentangle the heterogeneous nature of the aging process in human. The antifragility is the property of the complex systems to increase their performances because of high stress. Based on this theory we were wondering if some subjects could be able to modulate faster than others their epigenome to cope with a plethora of stressors during life, probably modulating the inflammatory and anti-inflammatory responses. In this framework, antifragility could share some common mechanisms with anti-inflammaging, modulating the ability to restrain the inflammatory responses, so that antifragility and antiinflammaging could be viewed as different pieces of the same puzzle, both impinging upon the chances to travel along the healthy aging trajectory.
Collapse
Affiliation(s)
- Fabiola Olivieri
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica Delle Marche, Ancona, Italy; Clinica di Medicina di Laboratorio e di Precisione, IRCCS INRCA, Ancona, Italy.
| | | | | | | | | |
Collapse
|
9
|
Gonzalez B, Tare A, Ryu S, Johnson SC, Atzmon G, Barzilai N, Kaeberlein M, Suh Y. High-throughput sequencing analysis of nuclear-encoded mitochondrial genes reveals a genetic signature of human longevity. GeroScience 2023; 45:311-330. [PMID: 35948858 PMCID: PMC9886794 DOI: 10.1007/s11357-022-00634-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/28/2022] [Indexed: 02/03/2023] Open
Abstract
Mitochondrial dysfunction is a well-known contributor to aging and age-related diseases. The precise mechanisms through which mitochondria impact human lifespan, however, remain unclear. We hypothesize that humans with exceptional longevity harbor rare variants in nuclear-encoded mitochondrial genes (mitonuclear genes) that confer resistance against age-related mitochondrial dysfunction. Here we report an integrated functional genomics study to identify rare functional variants in ~ 660 mitonuclear candidate genes discovered by target capture sequencing analysis of 496 centenarians and 572 controls of Ashkenazi Jewish descent. We identify and prioritize longevity-associated variants, genes, and mitochondrial pathways that are enriched with rare variants. We provide functional gene variants such as those in MTOR (Y2396Lfs*29), CPS1 (T1406N), and MFN2 (G548*) as well as LRPPRC (S1378G) that is predicted to affect mitochondrial translation. Taken together, our results suggest a functional role for specific mitonuclear genes and pathways in human longevity.
Collapse
Affiliation(s)
- Brenda Gonzalez
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Archana Tare
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Seungjin Ryu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon, Gangwon, 24252, Republic of Korea
| | - Simon C Johnson
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Gil Atzmon
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Nir Barzilai
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Yousin Suh
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Departments of Obstetrics and Gynecology, and Genetics and Development, Columbia University, 630 West 168th Street, New York, NY, 10032, USA.
| |
Collapse
|
10
|
Raghavachari N, Wilmot B, Dutta C. Optimizing Translational Research for Exceptional Health and Life Span: A Systematic Narrative of Studies to Identify Translatable Therapeutic Target(s) for Exceptional Health Span in Humans. J Gerontol A Biol Sci Med Sci 2022; 77:2272-2280. [PMID: 35279027 PMCID: PMC9678194 DOI: 10.1093/gerona/glac065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Exceptional longevity as manifested by the lower incidence and delayed onset of age-related disabilities/diseases that include cardiovascular disease, Alzheimer's disease, cancer is believed to be influenced by inherent protective molecular factors in exceptionally long-lived individuals. Unraveling these protective factors could lead to the discovery of therapeutic target(s) and interventions to promote healthy aging. METHODS In this context, the National Institute on Aging has established a collection of translational longevity research projects (ie, the Long-Life Family Study, the Longevity Consortium, Longevity Genomics, and the Integrative Longevity Omics) which are generating large omics data sets spanning the human genome to phenome and have embarked on cross-species multiomic data analyses integrating human and nonhuman species that display wide variation in their life spans. RESULTS It is expected that these studies will discover key signaling pathways that influence exceptional health span and identify therapeutic targets for translation to enhance health and life span. Other efforts related to translational longevity research include the "Comprehensive Evaluation of Aging-Related Clinical Outcomes and Geroproteins study," which focuses on potential effects in humans of polypeptides/proteins whose circulating levels change with age, and for which experimental evidence indicates reversal or acceleration of aging changes. The "Predictive Human Mechanistic Markers Network" is devoted to the development of predictive markers of aging, for target engagement when testing novel interventions for healthy aging. CONCLUSION We describe here the significance, the unique study design, categories of data sets, analytical strategies, and a data portal to facilitate open science and sharing of resources from these longevity studies to identify and validate potential therapeutic targets for healthy aging.
Collapse
Affiliation(s)
- Nalini Raghavachari
- Division of Geriatrics & Clinical Gerontology, National Institute on Aging, NIH, Bethesda, Maryland, USA
| | - Beth Wilmot
- Division of Geriatrics & Clinical Gerontology, National Institute on Aging, NIH, Bethesda, Maryland, USA
| | - Chhanda Dutta
- Division of Geriatrics & Clinical Gerontology, National Institute on Aging, NIH, Bethesda, Maryland, USA
| |
Collapse
|
11
|
Deng Y, Feng Y, Lv Z, He J, Chen X, Wang C, Yuan M, Xu T, Gao W, Chen D, Zhu H, Hou D. Machine learning models identify ferroptosis-related genes as potential diagnostic biomarkers for Alzheimer’s disease. Front Aging Neurosci 2022; 14:994130. [PMID: 36262887 PMCID: PMC9575464 DOI: 10.3389/fnagi.2022.994130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is a complex, and multifactorial neurodegenerative disease. Previous studies have revealed that oxidative stress, synaptic toxicity, autophagy, and neuroinflammation play crucial roles in the progress of AD, however, its pathogenesis is still unclear. Recent researches have indicated that ferroptosis, an iron-dependent programmed cell death, might be involved in the pathogenesis of AD. Therefore, we aim to screen correlative ferroptosis-related genes (FRGs) in the progress of AD to clarify insights into the diagnostic value. Interestingly, we identified eight FRGs were significantly differentially expressed in AD patients. 10,044 differentially expressed genes (DEGs) were finally identified by differential expression analysis. The following step was investigating the function of DEGs using gene set enrichment analysis (GSEA). Weight gene correlation analysis was performed to explore ten modules and 104 hub genes. Subsequently, based on machine learning algorithms, we constructed diagnostic classifiers to select characteristic genes. Through the multivariable logistic regression analysis, five features (RAF1, NFKBIA, MOV10L1, IQGAP1, FOXO1) were then validated, which composed a diagnostic model of AD. Thus, our findings not only developed genetic diagnostics strategy, but set a direction for further study of the disease pathogenesis and therapy targets.
Collapse
Affiliation(s)
- Yanyao Deng
- Department of Rehabilitation, The First Hospital of Changsha, Changsha, China
| | - Yanjin Feng
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhicheng Lv
- Department of Neurosurgery, The First People’s Hospital of Chenzhou, Chenzhou, China
| | - Jinli He
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xun Chen
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Chen Wang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Mingyang Yuan
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ting Xu
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wenzhe Gao
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Dongjie Chen
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hongwei Zhu
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Deren Hou
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Deren Hou,
| |
Collapse
|
12
|
Zhang Q, Li J, Weng L. Identification and Validation of Aging-Related Genes in Alzheimer’s Disease. Front Neurosci 2022; 16:905722. [PMID: 35615282 PMCID: PMC9124812 DOI: 10.3389/fnins.2022.905722] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/13/2022] [Indexed: 12/17/2022] Open
Abstract
Aging is recognized as the key risk factor for Alzheimer’s disease (AD). This study aimed to identify and verify potential aging-related genes associated with AD using bioinformatics analysis. Aging-related differential expression genes (ARDEGs) were determined by the intersection of limma test, weighted correlation network analysis (WGCNA), and 1153 aging and senescence-associated genes. Potential biological functions and pathways of ARDEGs were determined by GO, KEGG, GSEA, and GSVA. Then, LASSO algorithm was used to identify the hub genes and the diagnostic ability of the five ARDEGs in discriminating AD from the healthy control samples. Further, the correlation between hub ARDEGs and clinical characteristics was explored. Finally, the expression level of the five ARDEGs was validated using other four GEO datasets and blood samples of patients with AD and healthy individuals. Five ARDEGs (GFAP, PDGFRB, PLOD1, MAP4K4, and NFKBIA) were obtained. For biological function analysis, aging, cellular senescence, and Ras protein signal transduction regulation were enriched. Diagnostic ability of the five ARDEGs in discriminating AD from the control samples demonstrated a favorable diagnostic value. Eventually, quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) validation test revealed that compared with healthy controls, the mRNA expression level of PDGFRB, PLOD1, MAP4K4, and NFKBIA were elevated in AD patients. In conclusion, this study identified four ARDEGs (PDGFRB, PLOD1, MAP4K4, and NFKBIA) associated with AD. They provide an insight into potential novel biomarkers for diagnosing AD and monitoring progression.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hydrocephalus Center, Xiangya Hospital, Central South University, Changsha, China
| | - Ling Weng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- *Correspondence: Ling Weng,
| |
Collapse
|
13
|
Bin-Jumah MN, Nadeem MS, Gilani SJ, Al-Abbasi FA, Ullah I, Alzarea SI, Ghoneim MM, Alshehri S, Uddin A, Murtaza BN, Kazmi I. Genes and Longevity of Lifespan. Int J Mol Sci 2022; 23:1499. [PMID: 35163422 PMCID: PMC8836117 DOI: 10.3390/ijms23031499] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/04/2022] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
Aging is a complex process indicated by low energy levels, declined physiological activity, stress induced loss of homeostasis leading to the risk of diseases and mortality. Recent developments in medical sciences and an increased availability of nutritional requirements has significantly increased the average human lifespan worldwide. Several environmental and physiological factors contribute to the aging process. However, about 40% human life expectancy is inherited among generations, many lifespan associated genes, genetic mechanisms and pathways have been demonstrated during last decades. In the present review, we have evaluated many human genes and their non-human orthologs established for their role in the regulation of lifespan. The study has included more than fifty genes reported in the literature for their contributions to the longevity of life. Intact genomic DNA is essential for the life activities at the level of cell, tissue, and organ. Nucleic acids are vulnerable to oxidative stress, chemotherapies, and exposure to radiations. Efficient DNA repair mechanisms are essential for the maintenance of genomic integrity, damaged DNA is not replicated and transferred to next generations rather the presence of deleterious DNA initiates signaling cascades leading to the cell cycle arrest or apoptosis. DNA modifications, DNA methylation, histone methylation, histone acetylation and DNA damage can eventually lead towards apoptosis. The importance of calorie restriction therapy in the extension of lifespan has also been discussed. The role of pathways involved in the regulation of lifespan such as DAF-16/FOXO (forkhead box protein O1), TOR and JNK pathways has also been particularized. The study provides an updated account of genetic factors associated with the extended lifespan and their interactive contributory role with cellular pathways.
Collapse
Affiliation(s)
- May Nasser Bin-Jumah
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
- Environment and Biomaterial Unit, Health Sciences Research Center, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Sadaf Jamal Gilani
- Department of Basic Health Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Inam Ullah
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan;
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Aziz Uddin
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra 21300, Pakistan;
| | - Bibi Nazia Murtaza
- Department of Zoology, Abbottabad University of Science and Technology (AUST), Abbottabad 22310, Pakistan;
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
14
|
Dhande IS, Braun MC, Doris PA. Emerging Insights Into Chronic Renal Disease Pathogenesis in Hypertension From Human and Animal Genomic Studies. Hypertension 2021; 78:1689-1700. [PMID: 34757770 PMCID: PMC8577298 DOI: 10.1161/hypertensionaha.121.18112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The pathogenic links between elevated blood pressure and chronic kidney disease remain obscure. This article examines progress in population genetics and in animal models of hypertension and chronic kidney disease. It also provides a critique of the application of genome-wide association studies to understanding the heritability of renal function. Emerging themes identified indicate that heritable risk of chronic kidney disease in hypertension can arise from genetic variation in (1) glomerular and tubular protein handling mechanisms; (2) autoregulatory capacity of the renal vasculature; and (3) innate and adaptive immune mechanisms. Increased prevalence of hypertension-associated chronic kidney disease that occurs with aging may reflect amplification of heritable risks by normal aging processes affecting immunity and autoregulation.
Collapse
Affiliation(s)
- Isha S. Dhande
- Center for Human Genetics, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas HSC, Houston (I.S.D., P.A.D.)
| | - Michael C. Braun
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston (M.C.B.)
| | - Peter A. Doris
- Center for Human Genetics, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas HSC, Houston (I.S.D., P.A.D.)
| |
Collapse
|
15
|
Zhang L, Zhao J, Mu X, McGowan SJ, Angelini L, O'Kelly RD, Yousefzadeh MJ, Sakamoto A, Aversa Z, LeBrasseur NK, Suh Y, Huard J, Kamenecka TM, Niedernhofer LJ, Robbins PD. Novel small molecule inhibition of IKK/NF-κB activation reduces markers of senescence and improves healthspan in mouse models of aging. Aging Cell 2021; 20:e13486. [PMID: 34734460 PMCID: PMC8672781 DOI: 10.1111/acel.13486] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 09/01/2021] [Accepted: 09/13/2021] [Indexed: 11/30/2022] Open
Abstract
Constitutive NF-κB activation is associated with cellular senescence and stem cell dysfunction and rare variants in NF-κB family members are enriched in centenarians. We recently identified a novel small molecule (SR12343) that inhibits IKK/NF-κB activation by disrupting the association between IKKβ and NEMO. Here we investigated the therapeutic effects of SR12343 on senescence and aging in three different mouse models. SR12343 reduced senescence-associated beta-galactosidase (SA-β-gal) activity in oxidative stress-induced senescent mouse embryonic fibroblasts as well as in etoposide-induced senescent human IMR90 cells. Chronic administration of SR12343 to the Ercc1-/∆ and Zmpste24-/- mouse models of accelerated aging reduced markers of cellular senescence and SASP and improved multiple parameters of aging. SR12343 also reduced markers of senescence and increased muscle fiber size in 2-year-old WT mice. Taken together, these results demonstrate that IKK/NF-κB signaling pathway represents a promising target for reducing markers of cellular senescence, extending healthspan and treating age-related diseases.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Biochemistry, Molecular Biology and BiophysicsInstitute on the Biology of Aging and MetabolismUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Jing Zhao
- Department of Molecular MedicineScripps ResearchJupiterFloridaUSA
| | - Xiaodong Mu
- Center for Regenerative Sports MedicineSteadman Philippon Research InstituteVailColoradoUSA
- Shandong First Medical University (Shandong Academy of Medical Sciences)JinanChina
| | - Sara J. McGowan
- Department of Biochemistry, Molecular Biology and BiophysicsInstitute on the Biology of Aging and MetabolismUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Luise Angelini
- Department of Biochemistry, Molecular Biology and BiophysicsInstitute on the Biology of Aging and MetabolismUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Ryan D. O'Kelly
- Department of Biochemistry, Molecular Biology and BiophysicsInstitute on the Biology of Aging and MetabolismUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Matthew J. Yousefzadeh
- Department of Biochemistry, Molecular Biology and BiophysicsInstitute on the Biology of Aging and MetabolismUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Ayumi Sakamoto
- Department of Physical Medicine and Rehabilitation and Robert and Arlene Kogod Center on AgingRochesterMinnesotaUSA
| | - Zaira Aversa
- Department of Physical Medicine and Rehabilitation and Robert and Arlene Kogod Center on AgingRochesterMinnesotaUSA
| | - Nathan K. LeBrasseur
- Department of Physical Medicine and Rehabilitation and Robert and Arlene Kogod Center on AgingRochesterMinnesotaUSA
| | - Yousin Suh
- Department of Genetics and DevelopmentColumbia UniversityNew YorkNew YorkUSA
| | - Johnny Huard
- Center for Regenerative Sports MedicineSteadman Philippon Research InstituteVailColoradoUSA
| | | | - Laura J. Niedernhofer
- Department of Biochemistry, Molecular Biology and BiophysicsInstitute on the Biology of Aging and MetabolismUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Paul D. Robbins
- Department of Biochemistry, Molecular Biology and BiophysicsInstitute on the Biology of Aging and MetabolismUniversity of MinnesotaMinneapolisMinnesotaUSA
| |
Collapse
|