1
|
Recinella L, Libero ML, Brunetti L, Acquaviva A, Chiavaroli A, Orlando G, Granata R, Salvatori R, Leone S. Effects of growth hormone-releasing hormone deficiency in mice beyond growth. Rev Endocr Metab Disord 2024:10.1007/s11154-024-09936-3. [PMID: 39695049 DOI: 10.1007/s11154-024-09936-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/28/2024] [Indexed: 12/20/2024]
Abstract
This paper provides a critical overview on GHRH and its deficiency, discussing its multiple roles in both central and peripheral tissues. Genetically engineered mice have been instrumental in elucidating the multifaceted roles of GHRH and GH, each offering unique insights into the physiological and pathological roles of these hormones, although in many of these models dissecting the direct effect of GHRH from the effect of GH is not possible. Key findings highlight the effects of GHRH deficiency on emotional behavior, including anxiety and depression, its impact on memory and learning capabilities, as well as on adipose tissue, immune system, inflammation and pain.
Collapse
Affiliation(s)
- Lucia Recinella
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Maria Loreta Libero
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Luigi Brunetti
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy.
| | - Alessandra Acquaviva
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Annalisa Chiavaroli
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Giustino Orlando
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Riccarda Granata
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Roberto Salvatori
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sheila Leone
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
2
|
Zanini BM, de Avila BM, Garcia DN, Hense JD, Veiga GB, Barreto MM, Ashiqueali S, Mason JB, Yadav H, Masternak M, Schneider A. Dynamics of serum exosome microRNA profile altered by chemically induced estropause and rescued by estrogen therapy in female mice. GeroScience 2024; 46:5891-5909. [PMID: 38499957 PMCID: PMC11493931 DOI: 10.1007/s11357-024-01129-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/09/2024] [Indexed: 03/20/2024] Open
Abstract
The decline in the ovarian reserve leads to menopause and reduced serum estrogens. MicroRNAs are small non-coding RNAs, which can regulate gene expression and be secreted by cells and trafficked in serum via exosomes. Serum miRNAs regulate tissue function and disease development. Therefore, the aim of this study was to identify miRNA profiles in serum exosomes of mice induced to estropause and treated with 17β-estradiol (E2). Female mice were divided into three groups including control (CTL), injected with 4-Vinylcyclohexene diepoxide (VCD), and injected with VCD plus E2 (VCD + E2). Estropause was confirmed by acyclicity and a significant reduction in the number of ovarian follicles (p < 0.05). Body mass gain during estropause was higher in VCD and VCD + E2 compared to CTL females (p = 0.02). Sequencing of miRNAs was performed from exosomes extracted from serum, and 402 miRNAs were detected. Eight miRNAs were differentially regulated between CTL and VCD groups, seven miRNAs regulated between CTL and VCD + E2 groups, and ten miRNAs regulated between VCD and VCD + E2 groups. Only miR-200a-3p and miR-200b-3p were up-regulated in both serum exosomes and ovarian tissue in both VCD groups, suggesting that these exosomal miRNAs could be associated with ovarian activity. In the hepatic tissue, only miR-370-3p (p = 0.02) was up-regulated in the VCD + E2 group, as observed in serum. Our results suggest that VCD-induced estropause and E2 replacement have an impact on the profile of serum exosomal miRNAs. The miR-200 family was increased in serum exosomes and ovarian tissue and may be a candidate biomarker of ovarian function.
Collapse
Affiliation(s)
| | | | | | - Jéssica Damé Hense
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | | | | | - Sarah Ashiqueali
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Jeffrey B Mason
- College of Veterinary Medicine, Department of Veterinary Clinical and Life Sciences, Center for Integrated BioSystems, Utah State University, Logan, UT, USA
| | - Hariom Yadav
- USF Center for Microbiome Research, and Department of Neurosurgery and Brain Repair, Microbiomes Institute, University of South Florida, Tampa, FL, USA
| | - Michal Masternak
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, USA
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
3
|
Noureddine S, Schneider A, Strader S, Zhu X, Dhahbi J, Allsopp R, Willcox DC, Donlon TA, Shimabukuro M, Higa M, Suzuki M, Torigoe T, Ashiqueali S, Yadav H, Willcox BJ, Masternak MM. Circulating microRNA profile of long-lived Okinawans identifies novel potential targets for optimizing lifespan and health span. Aging Cell 2024; 23:e14191. [PMID: 38751007 PMCID: PMC11320357 DOI: 10.1111/acel.14191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 08/15/2024] Open
Abstract
Nonagenarians and centenarians serve as successful examples of aging and extended longevity, showcasing robust regulation of biological mechanisms and homeostasis. Given that human longevity is a complex field of study that navigates molecular and biological mechanisms influencing aging, we hypothesized that microRNAs, a class of small noncoding RNAs implicated in regulating gene expression at the post-transcriptional level, are differentially regulated in the circulatory system of young, middle-aged, and nonagenarian individuals. We sequenced circulating microRNAs in Okinawan males and females <40, 50-80, and >90 years of age accounting for FOXO3 genetic variations of single nucleotide polymorphism (SNP) rs2802292 (TT - common vs. GT - longevity) and validated the findings through RT-qPCR. We report five microRNAs exclusively upregulated in both male and female nonagenarians with the longevity genotype, play predictive functional roles in TGF-β, FoxO, AMPK, Pi3K-Akt, and MAPK signaling pathways. Our findings suggest that these microRNAs upregulated in nonagenarians may provide novel insight into enhanced lifespan and health span. This discovery warrants further exploration into their roles in human aging and longevity.
Collapse
Affiliation(s)
- Sarah Noureddine
- University of Central Florida College of Medicine, Burnett School of Biomedical SciencesOrlandoFloridaUSA
| | | | - Sydney Strader
- University of Central Florida College of Medicine, Burnett School of Biomedical SciencesOrlandoFloridaUSA
| | - Xiang Zhu
- University of Central Florida College of Medicine, Burnett School of Biomedical SciencesOrlandoFloridaUSA
| | - Joseph Dhahbi
- Department of Medical Education, School of MedicineCalifornia University of Science & MedicineColtonCaliforniaUSA
| | - Richard Allsopp
- Institute for Biogenesis Research, John A. Burns School of MedicineUniversity of Hawai'iHonoluluHawaiiUSA
- Center of Biomedical Research Excellence for Translational Research on Aging, Kuakini Medical CenterHonoluluHawaiiUSA
- Okinawa Research Center for Longevity ScienceUrasoeJapan
| | - D. Craig Willcox
- Center of Biomedical Research Excellence for Translational Research on Aging, Kuakini Medical CenterHonoluluHawaiiUSA
- Okinawa Research Center for Longevity ScienceUrasoeJapan
- Department of Human WelfareOkinawa International UniversityGinowanJapan
| | - Timothy A. Donlon
- Center of Biomedical Research Excellence for Translational Research on Aging, Kuakini Medical CenterHonoluluHawaiiUSA
- Department of Cell and Molecular Biology, John A. Burns School of MedicineUniversity of Hawai'iHonoluluHawaiiUSA
| | - Michio Shimabukuro
- Okinawa Research Center for Longevity ScienceUrasoeJapan
- Department of Diabetes, Endocrinology and MetabolismFukushima Medical University, School of MedicineFukushimaJapan
| | - Moritake Higa
- Diabetes and Life‐Style Related Disease Center, Tomishiro Central HospitalTomishiroJapan
| | - Makoto Suzuki
- Okinawa Research Center for Longevity ScienceUrasoeJapan
| | - Trevor Torigoe
- Institute for Biogenesis Research, John A. Burns School of MedicineUniversity of Hawai'iHonoluluHawaiiUSA
| | - Sarah Ashiqueali
- University of Central Florida College of Medicine, Burnett School of Biomedical SciencesOrlandoFloridaUSA
| | - Hariom Yadav
- USF Center for Microbiome ResearchMicrobiomes Institute, University of South Florida Morsani College of MedicineTampaFloridaUSA
| | - Bradley J. Willcox
- Center of Biomedical Research Excellence for Translational Research on Aging, Kuakini Medical CenterHonoluluHawaiiUSA
- Okinawa Research Center for Longevity ScienceUrasoeJapan
- Department of Geriatric Medicine, John A. Burns School of MedicineUniversity of Hawai'iHonoluluHawaiiUSA
| | - Michal M. Masternak
- University of Central Florida College of Medicine, Burnett School of Biomedical SciencesOrlandoFloridaUSA
- Department of Head and Neck SurgeryPoznan University of Medical SciencesPoznanPoland
| |
Collapse
|
4
|
Barros-Oliveira CS, de Jesus MJM, Campos VC, Salvatori R, de Souza Araújo AA, Neto RFS, Bartke A, Batista VO, Schneider A, Villar-Gouy KR, Masternak MM, Leal ÂC, Santos LB, Oliveira CRP, Santos EG, Oliveira Simões DA, de Santana Silva B, Aguiar-Oliveira MH. Skin assessment in congenital untreated isolated GH deficiency. Endocrine 2024; 84:1116-1124. [PMID: 38703329 DOI: 10.1007/s12020-024-03840-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/16/2024] [Indexed: 05/06/2024]
Abstract
PURPOSE The separation between the inside and outside through the skin was fundamental for the evolution of prevertebrates, which grow through extrapituitary circuits, to vertebrates, which grow through the somatotrophic axis, namely pituitary growth hormone (GH). and circulating IGF1.Individuals with untreated isolated growth hormone (GH) deficiency (IGHD) due to a mutation in the GH-releasing hormone receptor (GHRH) gene, residing in Itabaianinha, Brazil, are vulnerable to skin cancer and have reduced sweating. However other aspects of their skin physiology are still unknown. Our objectives were to evaluate the number of skin cancers, skin aging, and functional aspects of the skin in this IGHD cohort. METHODS Twenty-six IGHD individuals and 26 controls matched by age, sex, ethnicity, and occupation were submitted to a biochemical, dermatological and a functional skin assessment by the Multi Probe Adapter Cutometer® MPA 580. RESULTS There was no difference in the number of skin cancers and in the degrees of photodamage between the groups. The melanin content in the forearm was similar between the groups but was lower in the buttocks (p = 0.005), as well as skin resistance (p < 0.0001) and elasticity (p = 0.003), lower in the IGHD. There was no difference in hydration and sebum content between the two groups. CONCLUSION IGHD is apparently associated with a neutral profile in terms of skin cancer and photodamage, with similar melanin on the forearm and lower buttocks, lower skin resistance and elasticity, with hydration and sebum similar to controls.
Collapse
Affiliation(s)
- Cynthia S Barros-Oliveira
- Division of Endocrinology, Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, 49060-100, Sergipe, Brazil
| | - Maria Joseli Melo de Jesus
- Pharmaceutical Testing Laboratory, Department of Pharmacy, Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, 49100000, Aracaju, Sergipe, Brazil
| | - Viviane C Campos
- Division of Endocrinology, Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, 49060-100, Sergipe, Brazil
| | - Roberto Salvatori
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, USA
| | - Adriano Antunes de Souza Araújo
- Pharmaceutical Testing Laboratory, Department of Pharmacy, Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, 49100000, Aracaju, Sergipe, Brazil
- Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, 49060-100, Sergipe, Brazil
| | | | - Andrzej Bartke
- Southern Illinois University School of Medicine, Department of Internal Medicine, 801 N. Rutledge, P.O. Box 19628, Springfield, Illinois, 62702, USA
| | - Vanderlan O Batista
- Division of Psychiatry, Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, 49060-100, Sergipe, Brazil
| | - Augusto Schneider
- Faculty of Nutrition, Federal University of Pelotas, Pelotas, 96010-610, Brazil
| | - Keila R Villar-Gouy
- Division of Endocrinology, Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, 49060-100, Sergipe, Brazil
| | - Michal M Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, 32826 FL, USA
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, 60-512, Poland
| | - Ângela C Leal
- Division of Endocrinology, Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, 49060-100, Sergipe, Brazil
| | - Lucas B Santos
- Division of Endocrinology, Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, 49060-100, Sergipe, Brazil
| | - Carla R P Oliveira
- Division of Endocrinology, Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, 49060-100, Sergipe, Brazil
| | - Elenilde G Santos
- Division of Endocrinology, Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, 49060-100, Sergipe, Brazil
| | - Davi A Oliveira Simões
- Division of Endocrinology, Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, 49060-100, Sergipe, Brazil
| | - Bruno de Santana Silva
- Division of Dermatology, Department of Medicine, Federal University of Sergipe, Aracaju, 49060-100, Sergipe, Brazil
| | - Manuel H Aguiar-Oliveira
- Division of Endocrinology, Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, 49060-100, Sergipe, Brazil.
| |
Collapse
|
5
|
Jeong HR, Hwang IT. MicroRNAs as novel biomarkers for the diagnosis and treatment of pediatric diseases. Clin Exp Pediatr 2024; 67:119-125. [PMID: 37232075 PMCID: PMC10915459 DOI: 10.3345/cep.2023.00171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
MicroRNAs (miRNAs) are highly conserved noncoding RNAs that regulate gene expression by silencing or degrading messenger RNAs. Many of the approximately 2,500 miRNAs discovered in humans are known to regulate vital biological processes, including cell differentiation, proliferation, apoptosis, and embryonic tissue development. Aberrant miRNA expression may have pathological and malignant consequences. Therefore, miRNAs have emerged as novel diagnostic markers and potential therapeutic targets for various diseases. Children undergo various stages of growth, development, and maturation between birth and adulthood. It is important to study the role of miRNA expression in normal growth and disease development during these developmental stages. In this mini-review, we discuss the role of miRNAs as diagnostic and prognostic biomarkers in various pediatric diseases.
Collapse
Affiliation(s)
- Hwal Rim Jeong
- Department of Pediatrics, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Il Tae Hwang
- Department of Pediatrics, Hallym University Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Santos HT, Silva-Albuquerque VM, Salvatori R, Melo EV, Oliveira-Santos AA, Oliveira CRP, Campos VC, Barros-Oliveira CS, Menezes NV, Santos EG, Pereira FA, Santana NO, Batista VO, Villar-Gouy KR, Oliveira-Neto LA, Aguiar-Oliveira MH. Function and form of the shoulder in congenital and untreated growth hormone deficiency. Endocrine 2023; 81:547-554. [PMID: 37198380 DOI: 10.1007/s12020-023-03391-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/27/2023] [Indexed: 05/19/2023]
Abstract
OBJECTIVES The shoulder is the most mobile joint in the entire human body. During arm elevation, it requires the integrity of a set of muscles, bones, and tendons. Individuals with short stature often need to raise their arms above the shoulder girdle and may have functional restriction or shoulder injuries. The impact of isolated GH deficiency (IGHD) on joints remains not well defined. The purpose of this work is to evaluate the function and structure of the shoulder in short-statured adult individuals with untreated IGHD due to the same homozygous mutation in the GHRH receptor gene. METHODS A cross-sectional study (evidence 3) was carried out in 20 GH-naive IGHD subjects and 20 age-matched controls. They completed the disabilities of the arm, shoulder, and hand (DASH) questionnaire and shoulder ultrasound (US). Thickness of the anterior, medial, and posterior portions of the supraspinatus tendon and of subacromial space was measured, and the number of individuals with tendinosis or tearing of the supraspinatus tendon was registered. RESULTS DASH score was similar between IGHD and controls, but IGHD subjects complained less of symptoms (p = 0.002). The number of individual with tears was higher in the controls (p = 0.02). As expected, the absolute US measurements were lower in IGHD, but the magnitude of the reduction was most pronounced in the thickness of the anterior portion of the supraspinatus tendon. CONCLUSION Adults with lifetime IGHD do not have functional shoulder restrictions, complain less of problems in performing upper extremity activities, and have fewer tendinous injuries than controls.
Collapse
Affiliation(s)
- Hertz T Santos
- Division of Orthopedics, Health Sciences Graduate Program, Federal University of Sergipe, 49060-100, Aracaju, Sergipe, Brazil
| | - Victor M Silva-Albuquerque
- Ultrasound Division, Health Sciences Graduate Program, Federal University of Sergipe, 49060-100, Aracaju, Sergipe, Brazil
| | - Roberto Salvatori
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, The Johns Hopkins University School of Medicine Baltimore, Baltimore, Maryland, 21287, USA
| | - Enaldo V Melo
- Division of Endocrinology, Health Sciences Graduate Program, Federal University of Sergipe, 49060-100, Aracaju, Sergipe, Brazil
| | - Alécia A Oliveira-Santos
- Division of Endocrinology, Health Sciences Graduate Program, Federal University of Sergipe, 49060-100, Aracaju, Sergipe, Brazil
| | - Carla R P Oliveira
- Division of Endocrinology, Health Sciences Graduate Program, Federal University of Sergipe, 49060-100, Aracaju, Sergipe, Brazil
| | - Viviane C Campos
- Division of Endocrinology, Health Sciences Graduate Program, Federal University of Sergipe, 49060-100, Aracaju, Sergipe, Brazil
| | - Cynthia S Barros-Oliveira
- Division of Endocrinology, Health Sciences Graduate Program, Federal University of Sergipe, 49060-100, Aracaju, Sergipe, Brazil
| | - Nelmo V Menezes
- Division of Endocrinology, Health Sciences Graduate Program, Federal University of Sergipe, 49060-100, Aracaju, Sergipe, Brazil
| | - Elenilde G Santos
- Division of Endocrinology, Health Sciences Graduate Program, Federal University of Sergipe, 49060-100, Aracaju, Sergipe, Brazil
| | - Francisco A Pereira
- Division of Endocrinology, Health Sciences Graduate Program, Federal University of Sergipe, 49060-100, Aracaju, Sergipe, Brazil
| | - Nathalie O Santana
- Division of Endocrinology, Health Sciences Graduate Program, Federal University of Sergipe, 49060-100, Aracaju, Sergipe, Brazil
| | - Vanderlan O Batista
- Division of Endocrinology, Health Sciences Graduate Program, Federal University of Sergipe, 49060-100, Aracaju, Sergipe, Brazil
| | - Keila R Villar-Gouy
- Division of Endocrinology, Health Sciences Graduate Program, Federal University of Sergipe, 49060-100, Aracaju, Sergipe, Brazil
| | - Luiz A Oliveira-Neto
- Postgraduate Program in Dentistry, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - Manuel H Aguiar-Oliveira
- Division of Endocrinology, Health Sciences Graduate Program, Federal University of Sergipe, 49060-100, Aracaju, Sergipe, Brazil.
| |
Collapse
|
7
|
Hage C, Salvatori R. Growth Hormone and Aging. Endocrinol Metab Clin North Am 2023; 52:245-257. [PMID: 36948778 DOI: 10.1016/j.ecl.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Growth hormone (GH) secretion declines with aging (somatopause). One of the most controversial issues in aging is GH treatment of older adults without evidence of pituitary pathology. Although some clinicians have proposed reversing the GH decline in the older population, most information comes from not placebo-controlled studies. Although most animal studies reported an association between decreased GH levels (or GH resistance) and increased lifespan, human models have shown contradictory reports on the consequences of GH deficiency (GHD) on longevity. Currently, GH treatment in adults is only indicated for individuals with childhood-onset GHD transitioning to adulthood or new-onset GHD due to hypothalamic or pituitary pathologic processes.
Collapse
Affiliation(s)
- Camille Hage
- Division of Endocrinology, Diabetes, & Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, 1830 east Monument street #333 Baltimore, MD 21287, USA
| | - Roberto Salvatori
- Division of Endocrinology, Diabetes, & Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, 1830 east Monument street #333 Baltimore, MD 21287, USA.
| |
Collapse
|
8
|
Bickel MA, Csik B, Gulej R, Ungvari A, Nyul-Toth A, Conley SM. Cell non-autonomous regulation of cerebrovascular aging processes by the somatotropic axis. Front Endocrinol (Lausanne) 2023; 14:1087053. [PMID: 36755922 PMCID: PMC9900125 DOI: 10.3389/fendo.2023.1087053] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023] Open
Abstract
Age-related cerebrovascular pathologies, ranging from cerebromicrovascular functional and structural alterations to large vessel atherosclerosis, promote the genesis of vascular cognitive impairment and dementia (VCID) and exacerbate Alzheimer's disease. Recent advances in geroscience, including results from studies on heterochronic parabiosis models, reinforce the hypothesis that cell non-autonomous mechanisms play a key role in regulating cerebrovascular aging processes. Growth hormone (GH) and insulin-like growth factor 1 (IGF-1) exert multifaceted vasoprotective effects and production of both hormones is significantly reduced in aging. This brief overview focuses on the role of age-related GH/IGF-1 deficiency in the development of cerebrovascular pathologies and VCID. It explores the mechanistic links among alterations in the somatotropic axis, specific macrovascular and microvascular pathologies (including capillary rarefaction, microhemorrhages, impaired endothelial regulation of cerebral blood flow, disruption of the blood brain barrier, decreased neurovascular coupling, and atherogenesis) and cognitive impairment. Improved understanding of cell non-autonomous mechanisms of vascular aging is crucial to identify targets for intervention to promote cerebrovascular and brain health in older adults.
Collapse
Affiliation(s)
- Marisa A. Bickel
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Boglarka Csik
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Anna Ungvari
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- International Training Program in Geroscience, Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Adam Nyul-Toth
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- International Training Program in Geroscience, Department of Public Health, Semmelweis University, Budapest, Hungary
- Institute of Biophysics, Biological Research Centre, Eötvös Lorand Research Network (ELKH), Szeged, Hungary
| | - Shannon M. Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
9
|
Aguiar-Oliveira MH, Salvatori R. The state of Sergipe contribution to GH research: from Souza Leite to Itabaianinha syndrome. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2022; 66:919-928. [PMID: 36394485 PMCID: PMC10118753 DOI: 10.20945/2359-3997000000567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the late 19th century, José Dantas de Souza Leite, a physician born in Sergipe, published the first detailed clinical description of acromegaly under the guidance of the French neurologist Pierre Marie. In 2014, the Brazilian Society of Endocrinology and Metabolism created the "José Dantas de Souza Leite Award", which is granted every two years to a Brazilian researcher who has contributed to the development of endocrinology. In 2022, the award was given to another physician from Sergipe, Manuel Hermínio de Aguiar Oliveira, from the Federal University of Sergipe for the description of "Itabaianinha syndrome" in a cohort of individuals with isolated GH deficiency due to a homozygous inactivating mutation in the GH-releasing hormone receptor gene. This research, which was carried out over almost 30 years, was performed in partnership with Roberto Salvatori from Johns Hopkins University and in collaboration with other researchers around the world. This review article tells the story of Souza Leite, some milestones in the history of GH, and summarizes the description of Itabaianinha syndrome.
Collapse
|
10
|
He J, Li X, Yu M. The correlation of serum/plasma IGF-1 concentrations with obstructive sleep apnea hypopnea syndrome: A meta-analysis and meta-regression. Front Endocrinol (Lausanne) 2022; 13:922229. [PMID: 36120463 PMCID: PMC9471370 DOI: 10.3389/fendo.2022.922229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Obstructive sleep apnea hypopnea syndrome (OSAHS) is a common disease that has serious cardiovascular and metabolic effects. Insulin-like growth factor 1 (IGF-1) levels are reportedly reduced in patients with OSAHS; however, this is still a matter of debate. Therefore, we investigated the association between serum/plasma IGF-1 levels and OSAHS in this meta-analysis. METHODS Wan Fang, Excerpta Medica dataBASE, Web of Science, China National Knowledge Infrastructure, VIP, PubMed, and other databases were searched for materials published in any language before April 2, 2022. Two researchers analyzed the studies for quality according to the Newcastle-Ottawa Scale. The acquired data were analyzed using Stata 11.0 and R 3.6.1 software. The effect size was estimated and calculated using standard mean differences and correlation coefficients. Moreover, a combined analysis was conducted using either a random- or fixed-effects model. RESULTS Ultimately, 34 studies met our inclusion criteria. Our findings revealed that the plasma/serum IGF-1 concentrations in patients with OSAHS was significantly reduced compared with those in healthy subjects. Subgroup analyses were performed according to OSAHS severity, ethnicity, age, body mass index, specimen testing method, and study design. The outcomes suggested that nearly all subgroups of patients with OSAHS had reduced serum IGF-1 levels. Disease severity and differences in ethnicity were identified as possible influencing factors of serum IGF-1 levels in patients with OSAHS in the meta-regression analysis, and no other factors were found to alter plasma/serum IGF-1 concentrations. Moreover, plasma/serum IGF-1 concentrations were negatively correlated with apnea-hypopnea index and oxygen desaturation index scores and positively associated with minimum oxygen saturation. CONCLUSION Serum/plasma IGF-1 concentrations in patients with OSAHS were greatly reduced compared with those of patients in the control group, and were negatively correlated with apnea-hypopnea index and oxygen desaturation index scores and positively correlated with minimum oxygen saturation. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42022322738.
Collapse
Affiliation(s)
- Jie He
- Clinical Medical College of Chengdu Medical College, Chengdu, China
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- *Correspondence: Jie He,
| | - Xiaoyan Li
- Clinical Medical College of Chengdu Medical College, Chengdu, China
- Department of Endocrinology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Mi Yu
- Clinical Medical College of Chengdu Medical College, Chengdu, China
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
11
|
Catellani C, Ravegnini G, Sartori C, Righi B, Lazzeroni P, Bonvicini L, Poluzzi S, Cirillo F, Predieri B, Iughetti L, Giorgi Rossi P, Angelini S, Street ME. Specific miRNAs Change After 3 Months of GH treatment and Contribute to Explain the Growth Response After 12 Months. Front Endocrinol (Lausanne) 2022; 13:896640. [PMID: 35813630 PMCID: PMC9256936 DOI: 10.3389/fendo.2022.896640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/21/2022] [Indexed: 11/20/2022] Open
Abstract
CONTEXT There is growing evidence of the role of epigenetic regulation of growth, and miRNAs potentially play a role. OBJECTIVE The aim of this study is to identify changes in circulating miRNAs following GH treatment in subjects with isolated idiopathic GH deficiency (IIGHD) after the first 3 months of treatment, and verify whether these early changes can predict growth response. DESIGN AND METHODS The expression profiles of 384 miRNAs were analyzed in serum in 10 prepubertal patients with IIGHD (5 M, 5 F) at two time points before starting GH treatment (t-3, t0), and at 3 months on treatment (t+3). MiRNAs with a fold change (FC) >+1.5 or <-1.5 at t+3 were considered as differentially expressed. In silico analysis of target genes and pathways led to a validation step on 8 miRNAs in 25 patients. Clinical and biochemical parameters were collected at baseline, and at 6 and 12 months. Simple linear regression analysis and multiple stepwise linear regression models were used to explain the growth response. RESULTS Sixteen miRNAs were upregulated and 2 were downregulated at t+3 months. MiR-199a-5p (p = 0.020), miR-335-5p (p = 0.001), and miR-494-3p (p = 0.026) were confirmed to be upregulated at t+3. Changes were independent of GH peak values at testing, and levels stabilized after 12 months. The predicted growth response at 12 months was considerably improved compared with models using the common clinical and biochemical parameters. CONCLUSIONS MiR-199a-5p, miR-335-5p, and miR-494-3p changed after 3 months of GH treatment and likely reflected both the degree of GH deficiency and the sensitivity to treatment. Furthermore, they were of considerable importance to predict growth response.
Collapse
Affiliation(s)
- Cecilia Catellani
- Department of Mother and Child, Azienda Unità Sanitaria Locale – IRCCS di Reggio Emilia, Reggio Emilia, Italy
- PhD Program in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Gloria Ravegnini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Chiara Sartori
- Department of Mother and Child, Azienda Unità Sanitaria Locale – IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Beatrice Righi
- Department of Mother and Child, Azienda Unità Sanitaria Locale – IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Pietro Lazzeroni
- Department of Mother and Child, Azienda Unità Sanitaria Locale – IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Laura Bonvicini
- Epidemiology Unit, Azienda Unità Sanitaria Locale – IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Silvia Poluzzi
- Department of Medical and Surgical Sciences of the Mother, Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesca Cirillo
- Department of Mother and Child, Azienda Unità Sanitaria Locale – IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Barbara Predieri
- Department of Medical and Surgical Sciences of the Mother, Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Lorenzo Iughetti
- Department of Medical and Surgical Sciences of the Mother, Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Paolo Giorgi Rossi
- Epidemiology Unit, Azienda Unità Sanitaria Locale – IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Sabrina Angelini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Maria Elisabeth Street
- Department of Mother and Child, Azienda Unità Sanitaria Locale – IRCCS di Reggio Emilia, Reggio Emilia, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- *Correspondence: Maria Elisabeth Street,
| |
Collapse
|
12
|
Saccon TD, Schneider A, Marinho CG, Nunes ADC, Noureddine S, Dhahbi J, Nunez Lopez YO, LeMunyan G, Salvatori R, Oliveira CRP, Oliveira‐Santos AA, Musi N, Bartke A, Aguiar‐Oliveira MH, Masternak MM. Circulating microRNA profile in humans and mice with congenital GH deficiency. Aging Cell 2021; 20:e13420. [PMID: 34118183 PMCID: PMC8282278 DOI: 10.1111/acel.13420] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/10/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022] Open
Abstract
Reduced inflammation, increased insulin sensitivity, and protection against cancer are shared between humans and mice with GH/IGF1 deficiency. Beyond hormone levels, miRNAs are important regulators of metabolic changes associated with healthy aging. We hypothesized that GH deficiency in humans alters the abundance of circulating miRNAs and that a subset of those miRNAs may overlap with those found in GH-deficient mice. In this study, subjects with untreated congenital isolated GH deficiency (IGHD; n = 23) and control subjects matched by age and sex (n = 23) were recruited and serum was collected for miRNA sequencing. Serum miRNAs from young (6 month) and old (22 month) Ames dwarf (df/df) mice with GH deficiency and their WT littermates (n = 5/age/genotype group) were used for comparison. We observed 14 miRNAs regulated with a genotype by age effect and 19 miRNAs regulated with a genotype effect independent of age in serum of IGHD subjects. These regulated miRNAs are known for targeting pathways associated with longevity such as mTOR, insulin signaling, and FoxO. The aging function was overrepresented in IGHD individuals, mediated by hsa-miR-31, hsa-miR-146b, hsa-miR-30e, hsa-miR-100, hsa-miR-181b-2, hsa-miR-195, and hsa-miR-181b-1, which target the FoxO and mTOR pathways. Intriguingly, miR-181b-5p, miR-361-3p, miR-144-3p, and miR-155-5p were commonly regulated in the serum of humans and GH-deficient mice. In vitro assays confirmed target genes for the main up-regulated miRNAs, suggesting miRNAs regulated in IGHD individuals can regulate the expression of age-related genes. These findings indicate that systemic miRNAs regulated in IGHD individuals target pathways involved in aging in both humans and mice.
Collapse
Affiliation(s)
- Tatiana D. Saccon
- Centro de Desenvolvimento Tecnológico Universidade Federal de Pelotas Pelotas Brazil
- Burnett School of Biomedical Sciences College of Medicine University of Central Florida Orlando FL USA
| | - Augusto Schneider
- Faculdade de Nutrição Universidade Federal de Pelotas Pelotas Brazil
| | - Cindi G. Marinho
- Division of Endocrinology Health Sciences Graduate Program Federal University of Sergipe Aracaju Brazil
| | - Allancer D. C. Nunes
- Burnett School of Biomedical Sciences College of Medicine University of Central Florida Orlando FL USA
| | - Sarah Noureddine
- Burnett School of Biomedical Sciences College of Medicine University of Central Florida Orlando FL USA
| | - Joseph Dhahbi
- Department of Medical Education School of Medicine California University of Science & Medicine San Bernardino CA USA
| | - Yury O. Nunez Lopez
- Advent Health Translational Research Institute for Metabolism and Diabetes Orlando FL USA
| | - Gage LeMunyan
- Department of Medical Education School of Medicine California University of Science & Medicine San Bernardino CA USA
| | - Roberto Salvatori
- Division of Endocrinology, Diabetes and Metabolism Department of Medicine The Johns Hopkins University School of Medicine Baltimore MD USA
| | - Carla R. P. Oliveira
- Division of Endocrinology Health Sciences Graduate Program Federal University of Sergipe Aracaju Brazil
| | - Alécia A. Oliveira‐Santos
- Division of Endocrinology Health Sciences Graduate Program Federal University of Sergipe Aracaju Brazil
| | - Nicolas Musi
- Barshop Institute for Longevity and Aging Studies Center for Healthy Aging University of Texas Health Sciences Center at San Antonio and South Texas Veterans Health Care System San Antonio TX USA
- San Antonio Geriatric Research Education and Clinical Center South Texas Veterans Health Care System San Antonio TX USA
| | - Andrzej Bartke
- Department of Internal Medicine Southern Illinois University School of Medicine Springfield IL USA
| | - Manuel H. Aguiar‐Oliveira
- Division of Endocrinology Health Sciences Graduate Program Federal University of Sergipe Aracaju Brazil
| | - Michal M. Masternak
- Burnett School of Biomedical Sciences College of Medicine University of Central Florida Orlando FL USA
- Department of Head and Neck Surgery Poznan University of Medical Sciences Poznan Poland
| |
Collapse
|