1
|
Sebastiani P, Monti S, Lustgarten MS, Song Z, Ellis D, Tian Q, Schwaiger-Haber M, Stancliffe E, Leshchyk A, Short MI, Ardisson Korat AV, Gurinovich A, Karagiannis T, Li M, Lords HJ, Xiang Q, Marron MM, Bae H, Feitosa MF, Wojczynski MK, O'Connell JR, Montasser ME, Schupf N, Arbeev K, Yashin A, Schork N, Christensen K, Andersen SL, Ferrucci L, Rappaport N, Perls TT, Patti GJ. Metabolite signatures of chronological age, aging, survival, and longevity. Cell Rep 2024; 43:114913. [PMID: 39504246 DOI: 10.1016/j.celrep.2024.114913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 07/05/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024] Open
Abstract
Metabolites that mark aging are not fully known. We analyze 408 plasma metabolites in Long Life Family Study participants to characterize markers of age, aging, extreme longevity, and mortality. We identify 308 metabolites associated with age, 258 metabolites that change over time, 230 metabolites associated with extreme longevity, and 152 metabolites associated with mortality risk. We replicate many associations in independent studies. By summarizing the results into 19 signatures, we differentiate between metabolites that may mark aging-associated compensatory mechanisms from metabolites that mark cumulative damage of aging and from metabolites that characterize extreme longevity. We generate and validate a metabolomic clock that predicts biological age. Network analysis of the age-associated metabolites reveals a critical role of essential fatty acids to connect lipids with other metabolic processes. These results characterize many metabolites involved in aging and point to nutrition as a source of intervention for healthy aging therapeutics.
Collapse
Affiliation(s)
- Paola Sebastiani
- Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA 02111, USA; Department of Medicine, School of Medicine, Tufts University, Boston, MA 02111, USA.
| | - Stefano Monti
- Department of Medicine, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA; Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | - Michael S Lustgarten
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
| | - Zeyuan Song
- Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA 02111, USA
| | - Dylan Ellis
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Qu Tian
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21224, USA
| | | | - Ethan Stancliffe
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | | - Meghan I Short
- Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA 02111, USA; Department of Medicine, School of Medicine, Tufts University, Boston, MA 02111, USA
| | - Andres V Ardisson Korat
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
| | - Anastasia Gurinovich
- Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA 02111, USA; Department of Medicine, School of Medicine, Tufts University, Boston, MA 02111, USA
| | - Tanya Karagiannis
- Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA 02111, USA; Department of Medicine, School of Medicine, Tufts University, Boston, MA 02111, USA
| | - Mengze Li
- Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | - Hannah J Lords
- Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | - Qingyan Xiang
- Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA 02111, USA
| | - Megan M Marron
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Harold Bae
- Biostatistics Program, College of Health, Oregon State University, Corvallis, OR 97331, USA
| | - Mary F Feitosa
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Mary K Wojczynski
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Jeffrey R O'Connell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - May E Montasser
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Nicole Schupf
- Department of Epidemiology, Columbia University Medical Center, New York, NY 10032, USA
| | - Konstantin Arbeev
- Social Science Research Institute, Duke University, Durham, NC 27708, USA
| | - Anatoliy Yashin
- Social Science Research Institute, Duke University, Durham, NC 27708, USA
| | - Nicholas Schork
- The Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Kaare Christensen
- Danish Aging Research Center, University of Southern Denmark, 5000 Odense, Denmark
| | - Stacy L Andersen
- Department of Medicine, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Luigi Ferrucci
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21224, USA
| | - Noa Rappaport
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Thomas T Perls
- Department of Medicine, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Gary J Patti
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
2
|
Park K, Jeon MC, Lee D, Kim JI, Im SW. Genetic and Epigenetic Alterations in Aging and Rejuvenation of Human. Mol Cells 2024:100137. [PMID: 39433213 DOI: 10.1016/j.mocell.2024.100137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/19/2024] [Accepted: 10/16/2024] [Indexed: 10/23/2024] Open
Abstract
All the information essential for life is encoded within our genome and epigenome, which orchestrates diverse cellular states spatially and temporally. In particular, the epigenome interacts with internal and external stimuli, encoding and preserving cellular experiences, and it serves as the regulatory base of the transcriptome across diverse cell types. The emergence of single-cell transcriptomic and epigenomic data collection has revealed unique omics signatures in diverse tissues, highlighting cellular heterogeneity. Recent research has documented age-related epigenetic changes at the single-cell level, alongside the validation of cellular rejuvenation through partial reprogramming, which involves simultaneous epigenetic modifications. These dynamic shifts, primarily fueled by stem cell plasticity, have catalyzed significant interest and cross-disciplinary research endeavors. This review explores the genomic and epigenomic alterations with aging, elucidating their reciprocal interactions. Additionally, it seeks to discuss the evolving landscape of rejuvenation research, with a particular emphasis on dissecting stem cell behavior through the lens of single-cell analysis. Moreover, it proposes potential research methodologies for future studies.
Collapse
Affiliation(s)
- Kyunghyuk Park
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Korea
| | - Min Chul Jeon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Dakyung Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Jong-Il Kim
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea; Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea.
| | - Sun-Wha Im
- Department of Biochemistry and Molecular Biology, Kangwon National University School of Medicine, Gangwon, Korea.
| |
Collapse
|
3
|
Qin Z, He X, Gao Q, Li Y, Zhang Y, Wang H, Qin N, Wang C, Huang B, Shi Y, Liu C, Wang S, Zhang H, Li Y, Shi H, Tian X, Song L. Postweaning sodium citrate exposure induces long-lasting and sex-dependent effects on social behaviours in mice. Pharmacol Biochem Behav 2024; 242:173807. [PMID: 38925482 DOI: 10.1016/j.pbb.2024.173807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Postweaning is a pivotal period for brain development and individual growth. As an important chemical used in medicines, foods and beverages, sodium citrate (SC) is commonly available. Although some effects of SC exposure on individual physiology have been demonstrated, the potential long-lasting effects of postweaning dietary SC exposure on social behaviours are still elusive. METHODS Both postweaning male and female C57BL/6 mice were exposed to SC through drinking water for a total of 3 weeks. A series of behavioural tests, including social dominance test (SDT), social interaction test (SIT), bedding preference test (BPT) and sexual preference test (SPT), were performed in adolescence and adulthood. After these tests, serum oxytocin (OT) levels and gut microbiota were detected. RESULTS The behavioural results revealed that postweaning SC exposure decreased the social dominance of male mice in adulthood and female mice in both adolescence and adulthood. SC exposure also reduced the sexual preference rates of both males and females, while it had no effect on social interaction behaviour. ELISA results indicated that SC exposure decreased the serum OT levels of females but not males. 16S rRNA sequencing analysis revealed a significant difference in β-diversity after SC exposure in both males and females. The correlation coefficient indicated the correlation between social behaviours, OT levels and dominant genera of gut microbiota. CONCLUSION Our findings suggest that postweaning SC exposure may have enduring and sex-dependent effects on social behaviours, which may be correlated with altered serum OT levels and gut microbiota composition.
Collapse
Affiliation(s)
- Zihan Qin
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Xinyue He
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Qiang Gao
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology (SZX2020013), Hebei Medical University, 050017, China
| | - Yuxin Li
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Yue Zhang
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Huajian Wang
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Na Qin
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Chen Wang
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Boya Huang
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology (SZX2020013), Hebei Medical University, 050017, China
| | - Yun Shi
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology (SZX2020013), Hebei Medical University, 050017, China
| | - Congcong Liu
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Early Life Health Research Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Sheng Wang
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology (SZX2020013), Hebei Medical University, 050017, China
| | - Huifeng Zhang
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Department of Pediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang 050017, China; Early Life Health Research Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Youdong Li
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Early Life Health Research Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Haishui Shi
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology (SZX2020013), Hebei Medical University, 050017, China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China; Early Life Health Research Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiaoyu Tian
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Department of Pediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang 050017, China.
| | - Li Song
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology (SZX2020013), Hebei Medical University, 050017, China.
| |
Collapse
|
4
|
Wang Q, Lan X, Ke H, Xu S, Huang C, Wang J, Wang X, Huang T, Wu X, Chen M, Guo Y, Zeng L, Tian XL, Xiang Y. Histone β-hydroxybutyrylation is critical in reversal of sarcopenia. Aging Cell 2024:e14284. [PMID: 39076122 DOI: 10.1111/acel.14284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024] Open
Abstract
Sarcopenia, a leading cause for global disability and mortality, is an age-related muscular disorder, characterized by accelerated muscle mass loss and functional decline. It is known that caloric restriction (CR), ketogenic diet or endurance exercise lessen sarcopenia and elevate circulating β-hydroxybutyrate (β-HB) levels. Whether the elevated β-HB is essential to the reversal of sarcopenia, however, remains unclear. Here we show in both Caenorhabditis elegans and mouse models that an increase of β-HB reverse myofiber atrophy and improves motor functions at advanced ages. β-HB-induced histone lysine β-hydroxybutyrylation (Kbhb) is indispensable for the reversal of sarcopenia. Histone Kbhb enhances transcription of genes associated with mitochondrial pathways, including oxidative phosphorylation, ATP metabolic process and aerobic respiration. This ultimately leads to improve mitochondrial integrity and enhance mitochondrial respiration. The histone Kbhb are validated in mouse model with CR. Thus, we demonstrate that β-HB induces histone Kbhb, increases mitochondrial function, and reverses sarcopenia.
Collapse
Affiliation(s)
- Qiquan Wang
- Metabolic Control and Aging, Human Aging Research Institute and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Aging and Diseases, Nanchang, China
| | - Xinqiang Lan
- Metabolic Control and Aging, Human Aging Research Institute and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Aging and Diseases, Nanchang, China
| | - Hao Ke
- Metabolic Control and Aging, Human Aging Research Institute and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Aging and Diseases, Nanchang, China
| | - Siman Xu
- Metabolic Control and Aging, Human Aging Research Institute and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Aging and Diseases, Nanchang, China
| | - Chunping Huang
- Metabolic Control and Aging, Human Aging Research Institute and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Aging and Diseases, Nanchang, China
| | - Jiali Wang
- Metabolic Control and Aging, Human Aging Research Institute and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Aging and Diseases, Nanchang, China
| | - Xiang Wang
- Metabolic Control and Aging, Human Aging Research Institute and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Aging and Diseases, Nanchang, China
| | - Tiane Huang
- Metabolic Control and Aging, Human Aging Research Institute and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Aging and Diseases, Nanchang, China
| | - Xia Wu
- Metabolic Control and Aging, Human Aging Research Institute and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Aging and Diseases, Nanchang, China
| | - Mengxin Chen
- Metabolic Control and Aging, Human Aging Research Institute and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Aging and Diseases, Nanchang, China
| | - Yingqi Guo
- Institutional Center for Shared Technologies and Facilities of the Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Lin Zeng
- Institutional Center for Shared Technologies and Facilities of the Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Xiao-Li Tian
- Aging and Vascular Diseases, Human Aging Research Institute and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Aging and Diseases, Nanchang, China
| | - Yang Xiang
- Metabolic Control and Aging, Human Aging Research Institute and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Aging and Diseases, Nanchang, China
| |
Collapse
|
5
|
Ottone OK, Mundo JJ, Kwakye BN, Slaweski A, Collins JA, Wu Q, Connelly MA, Niaziorimi F, van de Wetering K, Risbud MV. Oral citrate supplementation mitigates age-associated pathological intervertebral disc calcification in LG/J mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.17.604008. [PMID: 39071393 PMCID: PMC11275755 DOI: 10.1101/2024.07.17.604008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Despite the high prevalence of age-dependent intervertebral disc calcification, there is a glaring lack of treatment options for this debilitating pathology. Here, we investigate the efficacy of long-term oral K3Citrate supplementation in ameliorating disc calcification in LG/J mice, a model of spontaneous age-associated disc calcification. K3Citrate successfully reduced the incidence of disc calcification in LG/J mice without deleterious effects on vertebral bone structure, plasma chemistry, and locomotion. Notably, a positive effect on grip strength was evident in treated mice. Spectroscopic investigation of the persisting calcified nodules indicated K3Citrate did not alter the mineral composition and revealed that reactivation of an endochondral differentiation program in endplates may drive LG/J disc calcification. Importantly, K3Citrate reduced calcification incidence without altering the pathological endplate chondrocyte hypertrophy, suggesting mitigation of disc calcification primarily occurred through Ca2+ chelation, a conclusion supported by chondrogenic differentiation and Seahorse metabolic assays. Overall, this study underscores the therapeutic potential of K3Citrate as a systemic intervention strategy for disc calcification.
Collapse
Affiliation(s)
- Olivia K. Ottone
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jorge J. Mundo
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Boahen N. Kwakye
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Amber Slaweski
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - John A. Collins
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | - Fatemeh Niaziorimi
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- PXE International Center of Excellence for Research and Clinical Care
| | - Koen van de Wetering
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- PXE International Center of Excellence for Research and Clinical Care
| | - Makarand V. Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
6
|
Kakizawa S, Park JJ, Tonoki A. Biology of cognitive aging across species. Geriatr Gerontol Int 2024; 24 Suppl 1:15-24. [PMID: 38126240 DOI: 10.1111/ggi.14782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
Aging is associated with cognitive decline, which can critically affect quality of life. Examining the biology of cognitive aging across species will lead to a better understanding of the fundamental mechanisms involved in this process, and identify potential interventions that could help to improve cognitive function in aging individuals. This minireview aimed to explore the mechanisms and processes involved in cognitive aging across a range of species, from flies to rodents, and covers topics, such as the role of reactive oxygen species and autophagy/mitophagy in cognitive aging. Overall, this literature provides a comprehensive overview of the biology of cognitive aging across species, highlighting the latest research findings and identifying potential avenues for future research. Geriatr Gerontol Int 2024; 24: 15-24.
Collapse
Affiliation(s)
- Sho Kakizawa
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Joong-Jean Park
- Department of Physiology, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Ayako Tonoki
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| |
Collapse
|
7
|
Janssens GE, Grevendonk L, Schomakers BV, Perez RZ, van Weeghel M, Schrauwen P, Hoeks J, Houtkooper RH. A metabolomic signature of decelerated physiological aging in human plasma. GeroScience 2023; 45:3147-3164. [PMID: 37259015 PMCID: PMC10643795 DOI: 10.1007/s11357-023-00827-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/13/2023] [Indexed: 06/02/2023] Open
Abstract
The degenerative processes that occur during aging increase the risk of disease and impaired health. Meanwhile, interventions that target aging to promote healthy longevity are gaining interest, both academically and in the public. While nutritional and physical interventions exist, efficacy is often difficult to determine. It is therefore imperative that an aging score measuring the biological aging process is available to the wider public. However, simple, interpret, and accessible biological aging scores are lacking. Here, we developed PhysiAge, a physiological aging score based on five accessible parameters that have influence on or reflect the aging process: (1) average daily step count, (2) blood glucose, (3) systolic blood pressure, (4) sex, and (5) age. Here, we found that compared to calendar age alone, PhysiAge better predicts mortality, as well as established muscle aging markers such as decrease in NAD+ levels, increase in oxidative stress, and decline in physical functioning. In order to demonstrate the usefulness of PhysiAge in identifying relevant factors associated with decelerated aging, we calculated PhysiAges for a cohort of aged individuals and obtained mass spectrometry-based blood plasma metabolomic profiles for each individual. Here, we identified a metabolic signature of decelerated aging, which included components of the TCA cycle, including malate, citrate, and isocitrate. Higher abundance of these metabolites was associated with decelerated aging, in line with supplementation studies in model organisms. PhysiAge represents an accessible way for people to track and intervene in their aging trajectories, and identifies a metabolic signature of decelerated aging in human blood plasma, which can be further studied for its causal involvement in human aging.
Collapse
Affiliation(s)
- Georges E Janssens
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.
- Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, The Netherlands.
| | - Lotte Grevendonk
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD, Maastricht, The Netherlands
- TI Food and Nutrition, PO Box 557, 6700 AN, Wageningen, The Netherlands
| | - Bauke V Schomakers
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Ruben Zapata Perez
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Faculty of Health Sciences, UCAM - Universidad Católica de Murcia, 30107, Murcia, Spain
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Patrick Schrauwen
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD, Maastricht, The Netherlands
- TI Food and Nutrition, PO Box 557, 6700 AN, Wageningen, The Netherlands
| | - Joris Hoeks
- Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, The Netherlands
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD, Maastricht, The Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.
- Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, The Netherlands.
- Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Chen F, Xiong B, Xian S, Zhang J, Ding R, Xu M, Zhang Z. Fibroblast growth factor 5 protects against spinal cord injury through activating AMPK pathway. J Cell Mol Med 2023; 27:3706-3716. [PMID: 37950418 PMCID: PMC10718139 DOI: 10.1111/jcmm.17934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/26/2023] [Accepted: 08/18/2023] [Indexed: 11/12/2023] Open
Abstract
Excessive productions of inflammatory cytokines and free radicals are involved in spinal cord injury (SCI). Fibroblast growth factor 5 (FGF5) is associated with inflammatory response and oxidative damage, and we herein intend to determine its function in SCI. Lentivirus was instilled to overexpress or knockdown FGF5 expression in mice. Compound C or H89 2HCl were used to suppress AMP-activated protein kinase (AMPK) or protein kinase A (PKA), respectively. FGF5 level was significantly decreased during SCI. FGF5 overexpression mitigated, while FGF5 silence further facilitated inflammatory response, oxidative damage and SCI. Mechanically, FGF5 activated AMPK to attenuate SCI in a cAMP/PKA-dependent manner, while inhibiting AMPK or PKA with pharmacological methods significantly abolished the neuroprotective effects of FGF5 against SCI. More importantly, serum FGF5 level was decreased in SCI patients, and elevated serum FGF5 level often indicate better prognosis. Our study identifies FGF5 as an effective therapeutic and prognostic target for SCI.
Collapse
Affiliation(s)
- Feng Chen
- Department of AnesthesiologyZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Bing‐Rui Xiong
- Department of AnesthesiologyZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Shu‐Yue Xian
- Department of AnesthesiologyZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Jing Zhang
- Department of AnesthesiologyZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Rui‐Wen Ding
- Department of AnesthesiologyZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Ming Xu
- Department of Thoracic SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Zong‐Ze Zhang
- Department of AnesthesiologyZhongnan Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
9
|
Wang JX, Qiao F, Zhang ML, Chen LQ, Du ZY, Luo Y. Double-edged effect of sodium citrate in Nile tilapia ( Oreochromis niloticus): Promoting lipid and protein deposition vs. causing hyperglycemia and insulin resistance. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 14:303-314. [PMID: 37635932 PMCID: PMC10447919 DOI: 10.1016/j.aninu.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 08/29/2023]
Abstract
Citrate is an essential substrate for energy metabolism that plays critical roles in regulating glucose and lipid metabolic homeostasis. However, the action of citrate in regulating nutrient metabolism in fish remains poorly understood. Here, we investigated the effects of dietary sodium citrate on growth performance and systematic energy metabolism in juvenile Nile tilapia (Oreochromis niloticus). A total of 270 Nile tilapia (2.81 ± 0.01 g) were randomly divided into three groups (3 replicates per group, 30 fish per replicate) and fed with control diet (35% protein and 6% lipid), 2% and 4% sodium citrate diets, respectively, for 8 weeks. The results showed that sodium citrate exhibited no effect on growth performance (P > 0.05). The whole-body crude protein, serum triglyceride and hepatic glycogen contents were significantly increased in the 4% sodium citrate group (P < 0.05), but not in the 2% sodium citrate group (P > 0.05). The 4% sodium citrate treatment significantly increased the serum glucose and insulin levels at the end of feeding trial and also in the glucose tolerance test (P < 0.05). The 4% sodium citrate significantly enhanced the hepatic phosphofructokinase activity and inhibited the expression of pyruvate dehydrogenase kinase isozyme 2 and phosphor-pyruvate dehydrogenase E1 component subunit alpha proteins (P < 0.05). Additionally, the 4% sodium citrate significantly increased hepatic triglyceride and acetyl-CoA levels, while the expressions of carnitine palmitoyl transferase 1a protein were significantly down-regulated by the 4% sodium citrate (P < 0.05). Besides, the 4% sodium citrate induced crude protein deposition in muscle by activating mTOR signaling and inhibiting AMPK signaling (P < 0.05). Furthermore, the 4% sodium citrate significantly suppressed serum aspartate aminotransferase and alanine aminotransferase activities, along with the lowered expression of pro-inflammatory genes, such as nfκb, tnfα and il8 (P < 0.05). Although the 4% sodium citrate significantly increased phosphor-nuclear factor-kB p65 protein expression (P < 0.05), no significant tissue damage or inflammation occurred. Taken together, dietary supplementation of sodium citrate could exhibit a double-edged effect in Nile tilapia, with the positive aspect in promoting nutrient deposition and the negative aspect in causing hyperglycemia and insulin resistance.
Collapse
Affiliation(s)
- Jun-Xian Wang
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| | - Fang Qiao
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| | - Mei-Ling Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| | - Li-Qiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhen-Yu Du
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| | - Yuan Luo
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
10
|
Liu B, Meng Q, Gao X, Sun H, Xu Z, Wang Y, Zhou H. Lipid and glucose metabolism in senescence. Front Nutr 2023; 10:1157352. [PMID: 37680899 PMCID: PMC10481967 DOI: 10.3389/fnut.2023.1157352] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 08/09/2023] [Indexed: 09/09/2023] Open
Abstract
Senescence is an inevitable biological process. Disturbances in glucose and lipid metabolism are essential features of cellular senescence. Given the important roles of these types of metabolism, we review the evidence for how key metabolic enzymes influence senescence and how senescence-related secretory phenotypes, autophagy, apoptosis, insulin signaling pathways, and environmental factors modulate glucose and lipid homeostasis. We also discuss the metabolic alterations in abnormal senescence diseases and anti-cancer therapies that target senescence through metabolic interventions. Our work offers insights for developing pharmacological strategies to combat senescence and cancer.
Collapse
Affiliation(s)
- Bin Liu
- Department of Urology II, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Qingfei Meng
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Xin Gao
- Department of Urology II, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Huihui Sun
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Zhixiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Honglan Zhou
- Department of Urology II, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
11
|
Peters JD, Peters MP, Bradshaw PC. Nicotinamide riboside functions during development while beta-hydroxybutyrate functions during adulthood to extend C. elegans lifespan. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000841. [PMID: 37325193 PMCID: PMC10267727 DOI: 10.17912/micropub.biology.000841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
Nicotinamide riboside (NR), a form of vitamin B3 and a nicotinamide adenine dinucleotide (NAD + ) precursor, has been shown to activate the mitochondrial unfolded protein response (UPR mt ) and extend the lifespan when supplemented to C. elegans. The ketone body and histone deacetylase (HDAC) inhibitor beta-hydroxybutyrate (BHB) has also been shown to extend C. elegans lifespan. Experiments were performed that showed that NR extended lifespan by acting almost exclusively during larval development, while BHB extended lifespan by acting during adulthood, and the combination of NR during development and BHB during adulthood unexpectedly decreased lifespan. This suggests that hormesis is involved in the lifespan-altering effects of BHB and NR and that they are inducing parallel longevity pathways that converge on a common downstream target.
Collapse
Affiliation(s)
- J. Dylan Peters
- James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | | | - Patrick C. Bradshaw
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee, USA
| |
Collapse
|
12
|
Tomita I, Tsuruta H, Yasuda-Yamahara M, Yamahara K, Kuwagata S, Tanaka-Sasaki Y, Chin-Kanasaki M, Fujita Y, Nishi E, Katagiri H, Maegawa H, Kume S. Ketone bodies: A double-edged sword for mammalian life span. Aging Cell 2023:e13833. [PMID: 37060184 DOI: 10.1111/acel.13833] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/24/2023] [Indexed: 04/16/2023] Open
Abstract
Accumulating evidence suggests health benefits of ketone bodies, and especially for longevity. However, the precise role of endogenous ketogenesis in mammalian life span, and the safety and efficacy of the long-term exogenous supplementation of ketone bodies remain unclear. In the present study, we show that a deficiency in endogenous ketogenesis, induced by whole-body Hmgcs2 deletion, shortens life span in mice, and that this is prevented by daily ketone body supplementation using a diet containing 1,3-butanediol, a precursor of β-hydroxybutyrate. Furthermore, feeding the 1,3-butanediol-containing diet from early in life increases midlife mortality in normal mice, but in aged mice it extends life span and prevents the high mortality associated with atherosclerosis in ApoE-deficient mice. By contrast, an ad libitum low-carbohydrate ketogenic diet markedly increases mortality. In conclusion, endogenous ketogenesis affects mammalian survival, and ketone body supplementation may represent a double-edged sword with respect to survival, depending on the method of administration and health status.
Collapse
Affiliation(s)
- Issei Tomita
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Seta, Otsu, Shiga, 520-2192, Japan
| | - Hiroaki Tsuruta
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Seta, Otsu, Shiga, 520-2192, Japan
| | - Mako Yasuda-Yamahara
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Seta, Otsu, Shiga, 520-2192, Japan
| | - Kosuke Yamahara
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Seta, Otsu, Shiga, 520-2192, Japan
| | - Shogo Kuwagata
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Seta, Otsu, Shiga, 520-2192, Japan
| | - Yuki Tanaka-Sasaki
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Seta, Otsu, Shiga, 520-2192, Japan
| | - Masami Chin-Kanasaki
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Seta, Otsu, Shiga, 520-2192, Japan
| | - Yukihiro Fujita
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Seta, Otsu, Shiga, 520-2192, Japan
| | - Eiichiro Nishi
- Department of Pharmacology, Shiga University of Medical Science, Tsukinowa-cho, Seta, Tsukinowa-cho, Seta, Otsu, Shiga, 520-2192, Japan
| | - Hideki Katagiri
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Hiroshi Maegawa
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Seta, Otsu, Shiga, 520-2192, Japan
| | - Shinji Kume
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Seta, Otsu, Shiga, 520-2192, Japan
| |
Collapse
|
13
|
Grande de França NA, Rolland Y, Guyonnet S, de Souto Barreto P. The role of dietary strategies in the modulation of hallmarks of aging. Ageing Res Rev 2023; 87:101908. [PMID: 36905962 DOI: 10.1016/j.arr.2023.101908] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023]
Abstract
The hallmarks of aging constitute an interconnected network of basic mechanisms that modulate aging and can be modulated by lifestyle factors, including dietary strategies. This narrative review aimed to summarize the evidence on promoting dietary restriction or adherence to specific dietary patterns on hallmarks of aging. Studies with preclinical models or humans were considered. Dietary restriction (DR), usually operationalized as a reduction in caloric intake, is the main strategy applied to study the axis diet-hallmarks of aging. DR has been shown to modulate mainly genomic instability, loss of proteostasis, deregulating nutrient sensing, cellular senescence, and altered intercellular communication. Much less evidence exists on the role of dietary patterns, with most of the studies evaluating the Mediterranean Diet and other similar plant-based diets, and the ketogenic diet. Potential benefits are described in genomic instability, epigenetic alterations, loss of proteostasis, mitochondrial dysfunction, and altered intercellular communication. Given the predominant place of food in human life, it is imperative to determine the impact of nutritional strategies on the modulation of lifespan and healthspan, considering applicability, long-term adherence, and side effects.
Collapse
Affiliation(s)
- Natasha A Grande de França
- Gérontopôle of Toulouse, Institute on Aging, Toulouse University Hospital (CHU Toulouse), Toulouse, France.
| | - Yves Rolland
- Gérontopôle of Toulouse, Institute on Aging, Toulouse University Hospital (CHU Toulouse), Toulouse, France; Maintain Aging Researchteam, CERPOP, Université de Toulouse, Inserm, Université Paul Sabatier, Toulouse, France
| | - Sophie Guyonnet
- Gérontopôle of Toulouse, Institute on Aging, Toulouse University Hospital (CHU Toulouse), Toulouse, France; Maintain Aging Researchteam, CERPOP, Université de Toulouse, Inserm, Université Paul Sabatier, Toulouse, France
| | - Philipe de Souto Barreto
- Gérontopôle of Toulouse, Institute on Aging, Toulouse University Hospital (CHU Toulouse), Toulouse, France; Maintain Aging Researchteam, CERPOP, Université de Toulouse, Inserm, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
14
|
Kang AW, Sun C, Li HT, Zhong K, Zeng XH, Gu ZF, Li BQ, Zhang XN, Gao JL, Chen TX. Puerarin extends the lifespan of Drosophila melanogaster by activating autophagy. Food Funct 2023; 14:2149-2161. [PMID: 36752212 DOI: 10.1039/d2fo02800j] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Lifespan longevity has attracted increasing attention with societal development. To counter the effects of aging on longevity, we focused on the natural chemicals of plants. In this study, we investigated the effects of puerarin supplementation on the lifespan of Drosophila melanogaster. Puerarin supplementation significantly extended the lifespan of D. melanogaster at 60 μM and 120 μM by upregulating proteasome subunit beta 5 (prosbeta5) and sirtuin-1 (Sirt1). However, puerarin-induced longevity of male flies (F0 generation) may not be passed on to descendants. Additionally, a puerarin diet for 10 and 25 days did not influence the body weight and food intake of male Canton-S flies. Puerarin significantly improved the climbing ability, starvation resistance, and oxidation resistance of male flies by upregulating the expression of Shaker, catalase (CAT), superoxide dismutase 1 (SOD1), and Methuselah, and downregulating poly [ADP-ribose] polymerase (PARP-1) and major heat shock 70 kDa protein Aa (HSP70). Moreover, 120 μM puerarin supplementation for 25 days significantly increased adenosine 5' triphosphate (ATP) content by increasing adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) levels. Additionally, the puerarin diet for 25 days suppressed male fecundity in male flies by decreasing the levels of Bam and Punt. Mechanistically, puerarin enhanced lysosome-involved autophagy by promoting the expression of lysosome markers [β-galactosidase and lysosomal associated membrane protein 1 (LAMP1)], and elevating the levels of autophagy-related genes, including autophagy-associated gene 1 (ATG1), ATG5, and ATG8b. However, puerarin decreased the phosphorylation of the target of rapamycin (TOR) protein. In conclusion, puerarin is a promising compound for improving the longevity of D. melanogaster by activating autophagy.
Collapse
Affiliation(s)
- Ai-Wen Kang
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong 226001, Jiangsu, P. R. China.
| | - Chi Sun
- Research Center of Gerontology and Longevity, Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, China. .,Department of Geriatrics, Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, China
| | - Hai-Tao Li
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong 226001, Jiangsu, P. R. China.
| | - Kun Zhong
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong 226001, Jiangsu, P. R. China.
| | - Xu-Hui Zeng
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong 226001, Jiangsu, P. R. China.
| | - Zhi-Feng Gu
- Research Center of Gerontology and Longevity, Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, China.
| | - Bing-Qian Li
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong 226001, Jiangsu, P. R. China.
| | - Xiao-Ning Zhang
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong 226001, Jiangsu, P. R. China.
| | - Jian-Lin Gao
- Research Center of Gerontology and Longevity, Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, China.
| | - Tian-Xing Chen
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong 226001, Jiangsu, P. R. China.
| |
Collapse
|
15
|
He Y, Su Y, Duan C, Wang S, He W, Zhang Y, An X, He M. Emerging role of aging in the progression of NAFLD to HCC. Ageing Res Rev 2023; 84:101833. [PMID: 36565959 DOI: 10.1016/j.arr.2022.101833] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 12/10/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
With the aging of global population, the incidence of nonalcoholic fatty liver disease (NAFLD) has surged in recent decades. NAFLD is a multifactorial disease that follows a progressive course, ranging from simple fatty liver, nonalcoholic steatohepatitis (NASH) to liver cirrhosis and hepatocellular carcinoma (HCC). It is well established that aging induces pathological changes in liver and potentiates the occurrence and progression of NAFLD, HCC and other age-related liver diseases. Studies of senescent cells also indicate a pivotal engagement in the development of NAFLD via diverse mechanisms. Moreover, nicotinamide adenine dinucleotide (NAD+), silence information regulator protein family (sirtuins), and mechanistic target of rapamycin (mTOR) are three vital and broadly studied targets involved in aging process and NAFLD. Nevertheless, the crucial role of these aging-associated factors in aging-related NAFLD remains underestimated. Here, we reviewed the current research on the roles of aging, cellular senescence and three aging-related factors in the evolution of NAFLD to HCC, aiming at inspiring promising therapeutic targets for aging-related NAFLD and its progression.
Collapse
Affiliation(s)
- Yongyuan He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinghong Su
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengcheng Duan
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siyuan Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Basic Medicine, Kunming Medical University, China
| | - Yingting Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofei An
- Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Ming He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
| |
Collapse
|
16
|
López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. Hallmarks of aging: An expanding universe. Cell 2023; 186:243-278. [PMID: 36599349 DOI: 10.1016/j.cell.2022.11.001] [Citation(s) in RCA: 1430] [Impact Index Per Article: 1430.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/19/2022] [Accepted: 11/01/2022] [Indexed: 01/05/2023]
Abstract
Aging is driven by hallmarks fulfilling the following three premises: (1) their age-associated manifestation, (2) the acceleration of aging by experimentally accentuating them, and (3) the opportunity to decelerate, stop, or reverse aging by therapeutic interventions on them. We propose the following twelve hallmarks of aging: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, disabled macroautophagy, deregulated nutrient-sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, chronic inflammation, and dysbiosis. These hallmarks are interconnected among each other, as well as to the recently proposed hallmarks of health, which include organizational features of spatial compartmentalization, maintenance of homeostasis, and adequate responses to stress.
Collapse
Affiliation(s)
- Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| | - Maria A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Linda Partridge
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, UK; Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain; Altos Labs, Cambridge, UK
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France; Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| |
Collapse
|
17
|
López-Otín C, Pietrocola F, Roiz-Valle D, Galluzzi L, Kroemer G. Meta-hallmarks of aging and cancer. Cell Metab 2023; 35:12-35. [PMID: 36599298 DOI: 10.1016/j.cmet.2022.11.001] [Citation(s) in RCA: 134] [Impact Index Per Article: 134.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/11/2022] [Accepted: 11/07/2022] [Indexed: 01/05/2023]
Abstract
Both aging and cancer are characterized by a series of partially overlapping "hallmarks" that we subject here to a meta-analysis. Several hallmarks of aging (i.e., genomic instability, epigenetic alterations, chronic inflammation, and dysbiosis) are very similar to specific cancer hallmarks and hence constitute common "meta-hallmarks," while other features of aging (i.e., telomere attrition and stem cell exhaustion) act likely to suppress oncogenesis and hence can be viewed as preponderantly "antagonistic hallmarks." Disabled macroautophagy and cellular senescence are two hallmarks of aging that exert context-dependent oncosuppressive and pro-tumorigenic effects. Similarly, the equivalence or antagonism between aging-associated deregulated nutrient-sensing and cancer-relevant alterations of cellular metabolism is complex. The agonistic and antagonistic relationship between the processes that drive aging and cancer has bearings for the age-related increase and oldest age-related decrease of cancer morbidity and mortality, as well as for the therapeutic management of malignant disease in the elderly.
Collapse
Affiliation(s)
- Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| | - Federico Pietrocola
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - David Roiz-Valle
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France; Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| |
Collapse
|
18
|
Lushchak O, Strilbytska O, Storey KB. Gender-specific effects of pro-longevity interventions in Drosophila. Mech Ageing Dev 2023; 209:111754. [PMID: 36375654 DOI: 10.1016/j.mad.2022.111754] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022]
Abstract
Sex differences in lifespan are well recognized in the majority of animal species. For example, in male versus female Drosophila melanogaster there are significant differences in behavior and physiology. However, little is known about the underlying mechanisms of gender differences in responses to pro-longevity interventions in this model organism. Here we summarize the existing data on the effects of nutritional and pharmacological anti-aging interventions such as nutrition regimens, diet and dietary supplementation on the lifespan of male and female Drosophila. We demonstrate that males and females have different sensitivities to interventions and that the effects are highly dependent on genetic background, mating, dose and exposure duration. Our work highlights the importance of understanding the mechanisms that underlie the gender-specific effect of anti-aging manipulations. This will provide insight into how these benefits may be valuable for elucidating the primary physiological and molecular targets involved in aging and lifespan determination.
Collapse
Affiliation(s)
- Oleh Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., Ivano-Frankivsk 76018, Ukraine; Research and Development University, 13a Shota Rustaveli Str., Ivano-Frankivsk 76018, Ukraine.
| | - Olha Strilbytska
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., Ivano-Frankivsk 76018, Ukraine
| | - Kenneth B Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| |
Collapse
|
19
|
Lin ZH, Chang SY, Shen WC, Lin YH, Shen CL, Liao SB, Liu YC, Chen CS, Ching TT, Wang HD. Isocitrate Dehydrogenase Alpha-1 Modulates Lifespan and Oxidative Stress Tolerance in Caenorhabditis elegans. Int J Mol Sci 2022; 24:ijms24010612. [PMID: 36614054 PMCID: PMC9820670 DOI: 10.3390/ijms24010612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/14/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
Altered metabolism is a hallmark of aging. The tricarboxylic acid cycle (TCA cycle) is an essential metabolic pathway and plays an important role in lifespan regulation. Supplementation of α-ketoglutarate, a metabolite converted by isocitrate dehydrogenase alpha-1 (idha-1) in the TCA cycle, increases lifespan in C. elegans. However, whether idha-1 can regulate lifespan in C. elegans remains unknown. Here, we reported that the expression of idha-1 modulates lifespan and oxidative stress tolerance in C. elegans. Transgenic overexpression of idha-1 extends lifespan, increases the levels of NADPH/NADP+ ratio, and elevates the tolerance to oxidative stress. Conversely, RNAi knockdown of idha-1 exhibits the opposite effects. In addition, the longevity of eat-2 (ad1116) mutant via dietary restriction (DR) was reduced by idha-1 knockdown, indicating that idha-1 may play a role in DR-mediated longevity. Furthermore, idha-1 mediated lifespan may depend on the target of rapamycin (TOR) signaling. Moreover, the phosphorylation levels of S6 kinase (p-S6K) inversely correlate with idha-1 expression, supporting that the idha-1-mediated lifespan regulation may involve the TOR signaling pathway. Together, our data provide new insights into the understanding of idha-1 new function in lifespan regulation probably via DR and TOR signaling and in oxidative stress tolerance in C. elegans.
Collapse
Affiliation(s)
- Zhi-Han Lin
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 300044, Taiwan
- Institute of Chemistry, Academia Sinica, Taipei 115201, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115201, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 106319, Taiwan
| | - Shun-Ya Chang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Wen-Chi Shen
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Yen-Hung Lin
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Chiu-Lun Shen
- Department of Life Science, National Tsing Hua University, Hsinchu 300044, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Sin-Bo Liao
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Yu-Chun Liu
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Chang-Shi Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Tsui-Ting Ching
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Horng-Dar Wang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 300044, Taiwan
- Department of Life Science, National Tsing Hua University, Hsinchu 300044, Taiwan
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu 300044, Taiwan
- Correspondence: ; Tel.: +88-635742470
| |
Collapse
|
20
|
Nutrition Strategies Promoting Healthy Aging: From Improvement of Cardiovascular and Brain Health to Prevention of Age-Associated Diseases. Nutrients 2022; 15:nu15010047. [PMID: 36615705 PMCID: PMC9824801 DOI: 10.3390/nu15010047] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND An increasing number of studies suggest that diet plays an important role in regulating aging processes and modulates the development of the most important age-related diseases. OBJECTIVE The aim of this review is to provide an overview of the relationship between nutrition and critical age-associated diseases. METHODS A literature review was conducted to survey recent pre-clinical and clinical findings related to the role of nutritional factors in modulation of fundamental cellular and molecular mechanisms of aging and their role in prevention of the genesis of the diseases of aging. RESULTS Studies show that the development of cardiovascular and cerebrovascular diseases, neurodegenerative diseases, cognitive impairment and dementia can be slowed down or prevented by certain diets with anti-aging action. The protective effects of diets, at least in part, may be mediated by their beneficial macro- (protein, fat, carbohydrate) and micronutrient (vitamins, minerals) composition. CONCLUSIONS Certain diets, such as the Mediterranean diet, may play a significant role in healthy aging by preventing the onset of certain diseases and by improving the aging process itself. This latter can be strengthened by incorporating fasting elements into the diet. As dietary recommendations change with age, this should be taken into consideration as well, when developing a diet tailored to the needs of elderly individuals. Future and ongoing clinical studies on complex anti-aging dietary interventions translating the results of preclinical investigations are expected to lead to novel nutritional guidelines for older adults in the near future.
Collapse
|
21
|
Chen R, Cao C, Liu H, Jiang W, Pan R, He H, Ding K, Meng Q. Macrophage Sprouty4 deficiency diminishes sepsis-induced acute lung injury in mice. Redox Biol 2022; 58:102513. [PMID: 36334381 PMCID: PMC9637958 DOI: 10.1016/j.redox.2022.102513] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/10/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE Inflammation and oxidative stress play critical roles in sepsis-induced acute lung injury (ALI). Sprout4 (Spry4) is involved in regulating inflammation and tissue injury; however, its role and mechanism in sepsis-induced ALI remain elusive. METHODS Macrophage-specific Spry4 knockout (Spry4MKO), transgenic (Spry4MTG) mice and matched control littermates were generated and exposed to cecum ligation and puncture (CLP) surgery to establish bacterial sepsis-induced ALI. Bone marrow-derived macrophages (BMDMs) from Spry4MKO or Spry4MTG mice were isolated and subjected to lipopolysaccharide (LPS) stimulation to further validate the role of Spry4 in vitro. To verify the necessity of AMP-activated protein kinase (AMPK), Spry4 and AMPK double knockout mice and compound C were used in vivo and in vitro. BMDMs were treated with STO-609 to inhibit calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2). RESULTS We found that macrophage Spry4 was increased in CLP mice and positively correlated with sepsis-induced ALI. Macrophage Spry4 deficiency prevented, while macrophage Spry4 overexpression exacerbated sepsis-induced inflammation, oxidative stress and ALI in mice and BMDMs. Mechanistic studies revealed that macrophage Spry4 deficiency alleviated sepsis-induced ALI through activating CaMKK2/AMPK pathway. CONCLUSION Our study identify macrophage Spry4 as a promising predictive and therapeutic target of sepsis-induced ALI.
Collapse
Affiliation(s)
- Rong Chen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Chen Cao
- Medical Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Huimin Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wanli Jiang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Rui Pan
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - He He
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ke Ding
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qingtao Meng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
22
|
Lin WS, Wang PY. Janus-faced citrate in aging and metabolism. Aging (Albany NY) 2022; 14:4929-4930. [PMID: 35714976 PMCID: PMC9271304 DOI: 10.18632/aging.204138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/09/2022] [Indexed: 11/25/2022]
Affiliation(s)
- Wei-Sheng Lin
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pei-Yu Wang
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
23
|
Li Q, Zhang T, Wang Y, Yang S, Luo J, Fang F, Liao J, Wen W, Cui H, Shang H. Qing-Wen-Jie-Re Mixture Ameliorates Poly (I:C)-Induced Viral Pneumonia Through Regulating the Inflammatory Response and Serum Metabolism. Front Pharmacol 2022; 13:891851. [PMID: 35784698 PMCID: PMC9240632 DOI: 10.3389/fphar.2022.891851] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022] Open
Abstract
Qing-Wen-Jie-Re mixture (QWJR) has been used in the treatment of the coronavirus disease 2019 (COVID-19) in China. However, the protective mechanisms of QWJR on viral pneumonia remain unclear. In the present study, we first investigated the therapeutic effects of QWJR on a rat viral pneumonia model established by using polyinosinic-polycytidylic acid (poly (I:C)). The results indicated that QWJR could relieve the destruction of alveolar-capillary barrier in viral pneumonia rats, as represented by the decreased wet/dry weight (W/D) ratio in lung, total cell count and total protein concentration in bronchoalveolar lavage fluid (BALF). Besides, QWJR could also down-regulate the expression of inflammatory factors such as tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β and IL-6. More M1-type macrophage polarization was detected by calculating CD86+ cells and CD206+ cells and validated by the decline of inducible nitric oxide synthase (iNOS) and elevated arginase-1 (Arg-1) in lung. Finally, serum untargeted metabolomics analysis demonstrated that QWJR might take effect through regulating arginine metabolism, arachidonic acid (AA) metabolism, tricarboxylic acid (TCA) cycle, nicotinate and nicotinamide metabolism processes.
Collapse
Affiliation(s)
- Qin Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Postdoctoral Research Station, Yunnan Provincial Hospital of Traditional Chinese Medicine, Kunming, China
- School of Basic Medical Sciences, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Tingrui Zhang
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Yuming Wang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shangsong Yang
- School of Basic Medical Sciences, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Junyu Luo
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Fang Fang
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Jiabao Liao
- Department of Emergency, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Weibo Wen
- Postdoctoral Research Station, Yunnan Provincial Hospital of Traditional Chinese Medicine, Kunming, China
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
- *Correspondence: Weibo Wen, ; Huantian Cui, ; Hongcai Shang,
| | - Huantian Cui
- School of Life Sciences, Shandong University, Qingdao, China
- *Correspondence: Weibo Wen, ; Huantian Cui, ; Hongcai Shang,
| | - Hongcai Shang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Weibo Wen, ; Huantian Cui, ; Hongcai Shang,
| |
Collapse
|
24
|
Longo VD, Anderson RM. Nutrition, longevity and disease: From molecular mechanisms to interventions. Cell 2022; 185:1455-1470. [PMID: 35487190 PMCID: PMC9089818 DOI: 10.1016/j.cell.2022.04.002] [Citation(s) in RCA: 126] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 12/16/2022]
Abstract
Diet as a whole, encompassing food composition, calorie intake, and the length and frequency of fasting periods, affects the time span in which health and functional capacity are maintained. Here, we analyze aging and nutrition studies in simple organisms, rodents, monkeys, and humans to link longevity to conserved growth and metabolic pathways and outline their role in aging and age-related disease. We focus on feasible nutritional strategies shown to delay aging and/or prevent diseases through epidemiological, model organism, clinical, and centenarian studies and underline the need to avoid malnourishment and frailty. These findings are integrated to define a longevity diet based on a multi-pillar approach adjusted for age and health status to optimize lifespan and healthspan in humans.
Collapse
Affiliation(s)
- Valter D Longo
- Longevity Institute and Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA; IFOM, FIRC Institute of Molecular Oncology, Via Adamello, 16, 20139 Milano, Italy.
| | - Rozalyn M Anderson
- Department of Medicine, SMPH, University of Wisconsin-Madison, Madison, WI, USA; GRECC, William S Middleton Memorial Veterans Hospital, Madison, WI, USA
| |
Collapse
|
25
|
Branco JR, Esteves AM, Imbroisi Filho R, Demaria TM, Lisboa PC, Lopes BP, Moura EG, Zancan P, Sola-Penna M. Citrate enrichment in a Western diet reduces weight gain via browning of adipose tissues without resolving diet-induced insulin resistance in mice. Food Funct 2022; 13:10947-10955. [DOI: 10.1039/d2fo02011d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Citrate, a major component of processed foods, reduces weight gain without resolving insulin resistance.
Collapse
Affiliation(s)
- Jessica Ristow Branco
- The MetaboliZSm’ GrouP, Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Amanda Moreira Esteves
- The MetaboliZSm’ GrouP, Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Ricardo Imbroisi Filho
- The MetaboliZSm’ GrouP, Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Thainá M. Demaria
- The MetaboliZSm’ GrouP, Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Patricia C. Lisboa
- Laboratório de Fisiologia Endócrina, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Bruna Pereira Lopes
- Laboratório de Fisiologia Endócrina, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Egberto G. Moura
- Laboratório de Fisiologia Endócrina, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Patricia Zancan
- The MetaboliZSm’ GrouP, Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Mauro Sola-Penna
- The MetaboliZSm’ GrouP, Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| |
Collapse
|
26
|
Cheng FF, Liu YL, Du J, Lin JT. Metformin's Mechanisms in Attenuating Hallmarks of Aging and Age-Related Disease. Aging Dis 2022; 13:970-986. [PMID: 35855344 PMCID: PMC9286921 DOI: 10.14336/ad.2021.1213] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/13/2021] [Indexed: 11/01/2022] Open
Affiliation(s)
- Fang-Fang Cheng
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.
- Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, Xinxiang 453003, China.
| | - Yan-Li Liu
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.
- Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, Xinxiang 453003, China.
| | - Jang Du
- Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, Xinxiang 453003, China.
| | - Jun-Tang Lin
- Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, Xinxiang 453003, China.
- Correspondence should be addressed to: Dr. Jun-Tang Lin, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
27
|
Mendelsohn AR, Larrick JW. Stem Cell Rejuvenation by Restoration of Youthful Metabolic Compartmentalization. Rejuvenation Res 2021; 24:470-474. [PMID: 34846176 DOI: 10.1089/rej.2021.0076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Stem cell dysfunction is a hallmark of aging. Much recent study suggests that epigenetic changes play a critical role in the loss of stem cell function with age. However, the underlying mechanisms require elucidation. A recent report describes a process by which mild mitochondrial stress associated with aging causes lysosomal-mediated decreases in CiC, the mitochondrial citrate transporter, in bone marrow-derived mesenchymal stem cells (MSCs). This, in turn, results in a deficit of acetyl-CoA in the nucleus and hypoacetylation of histones. The altered epigenome results in skewered stem cell differentiation favoring adipogenesis and disfavoring osteogenesis, which is problematic given the role the MSCs play in maintaining the integrity of bone tissue. Restoration of nuclear acetyl-CoA by either ectopic expression of CiC or acetate supplementation of MSCs in culture rejuvenates the MSC, restoring the potential to efficiently differentiate along the osteogenic lineage. Citrate, which has recently been reported to extend lifespan in Drosophila, chemically incorporates acetyl-CoA and may prove useful to restore cytoplasmic and nuclear acetyl-CoA levels. The general applicability of the CiC defect in old cells, particularly stem cells, should be established.
Collapse
Affiliation(s)
- Andrew R Mendelsohn
- Panorama Research Institute, Sunnyvale, California, USA.,Regenerative Sciences Institute, Sunnyvale, California, USA
| | - James W Larrick
- Panorama Research Institute, Sunnyvale, California, USA.,Regenerative Sciences Institute, Sunnyvale, California, USA
| |
Collapse
|