1
|
Liang X, Wen Y, Feng C, Xu L, Xian Y, Xie H, Huang J, Huang Y, Zhao X, Gao X. Neuroglobin protects dopaminergic neurons in a Parkinson's cell model by interacting with mitochondrial complex NDUFA10. Neuroscience 2024; 562:43-53. [PMID: 39454716 DOI: 10.1016/j.neuroscience.2024.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 09/14/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
The study aimed to validate the protective effect of neuroglobin (Ngb) in a cell model of Parkinson's disease (PD) and explore its therapeutic potential. Lentivirus-Ngb (LvNgb) and siRNA-Ngb (siNgb) were used to achieve Ngb overexpression and knockdown, respectively, in a sporadic PD cell model. Apoptosis was evaluated by flow cytometry-based Annexin V/propidium iodide assays. Activation of the pro-apoptotic factor, Caspase-9, was detected by immunoblotting, and Complex I activities were detected by using enzyme-linked immunosorbent assay (ELISA). Mitochondrial dysfunction was examined by measuring the mitochondrial membrane potential (MMP), NAD+/NADH ratios, and reactive oxygen species (ROS) levels. Additionally, coimmunoprecipitation (Co-IP) assays were conducted in mouse neuroblastoma cell line 9D (MN9D) cells to determine the interactions of Ngb with the Complex I subunit NDUFA10. The results showed that Ngb overexpression reduced the percentages of apoptotic cells, total caspase-9 levels and restored Complex I activities in the PD cell model. Conversely, knockdown of Ngb resulted in an increase in apoptotic cells, higher total caspase-9 levels, and decreased Complex I activities. Furthermore, Ngb overexpression restored MMP and NAD+/NADH ratios and alleviated ROS-mediated oxidative stress in MN9D cells. Finally, Co-IP confirmed the interaction between Ngb and NDUFA10 in MN9D cells. In conclusion, Ngb protects MN9D cells against apoptosis by interacting with Complex I subunit NDUFA10, rescuing its activity and inhibiting the mitochondrial pathway of apoptosis in the MPP+-mediated PD model.
Collapse
Affiliation(s)
- Xiaomei Liang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, China; Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province 510080, China
| | - Yutong Wen
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Cuilian Feng
- Department of Pediatric Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Lan Xu
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Ying Xian
- Department of General Intensive Care Unit, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Haiting Xie
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Jianou Huang
- Department of Neurology, Fifth Affiliated Hospital of Southern Medical University, Conghua, Guangdong 510900, China
| | - Yihong Huang
- Department of Spine Surgery, Foshan Fosun Chancheng Hospital, Foshan, Guangdong 510000, China.
| | - Xiaodong Zhao
- Department of Neurology, Fifth Affiliated Hospital of Southern Medical University, Conghua, Guangdong 510900, China.
| | - Xiaoya Gao
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, China; Department of Pediatric Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, China.
| |
Collapse
|
2
|
Zhang D, Zhang J, Ma Z, Wu Q, Liu M, Fan T, Ding L, Ren D, Wen A, Wang J. Luteoloside inhibits Aβ1-42 fibrillogenesis, disintegrates preformed fibrils, and alleviates amyloid-induced cytotoxicity. Biophys Chem 2024; 306:107171. [PMID: 38194817 DOI: 10.1016/j.bpc.2023.107171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/17/2023] [Accepted: 12/30/2023] [Indexed: 01/11/2024]
Abstract
Abnormal aggregation and fibrillogenesis of amyloid-β protein (Aβ) can cause Alzheimer's disease (AD). Thus, the discovery of effective drugs that inhibit Aβ fibrillogenesis in the brain is crucial for the treatment of AD. Luteoloside, as one of the polyphenolic compounds, is found to have a certain therapeutic effect on nervous system diseases. However, it remains unknown whether luteoloside is a potential drug for treating AD by modulating Aβ aggregation pathway. In this study, we performed diverse biophysical and biochemical methods to explore the inhibition of luteoloside on Aβ1-42 which is linked to AD. The results demonstrated that luteoloside efficiently prevented amyloid oligomerization and cross-β-sheet formation, reduced the rate of amyloid growth and the length of amyloid fibrils in a dose-dependent manner. Moreover, luteoloside was able to influence aggregation and conformation of Aβ1-42 during different fiber-forming phases, and it could disintegrate already preformed fibrils of Aβ1-42 and convert them into nontoxic aggregates. Furthermore, luteoloside protected cells from amyloid-induced cytotoxicity and hemolysis, and attenuated the level of reactive oxygen species (ROS). The molecular docking study showed that luteoloside interacted with Aβ1-42 mainly via Conventional Hydrogen Bond, Carbon Hydrogen Bond, Pi-Pi T-shaped, Pi-Alkyl and Pi-Anion, thereby possibly preventing it from forming the aggregates. These observations indicate that luteoloside, a natural anti-oxidant molecule, may be applicable as an effective inhibitor of Aβ, and promote further exploration of the therapeutic strategy against AD.
Collapse
Affiliation(s)
- Di Zhang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Juanli Zhang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Zhongying Ma
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Qianwen Wu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Meiyou Liu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Tingting Fan
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Likun Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Danjun Ren
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Jingwen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
3
|
Li CY, Jiang HF, Li L, Lai XJ, Liu QR, Yu SB, Yi CL, Chen XQ. Neuroglobin Facilitates Neuronal Oxygenation through Tropic Migration under Hypoxia or Anemia in Rat: How Does the Brain Breathe? Neurosci Bull 2023; 39:1481-1496. [PMID: 36884214 PMCID: PMC10533768 DOI: 10.1007/s12264-023-01040-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/03/2023] [Indexed: 03/09/2023] Open
Abstract
The discovery of neuroglobin (Ngb), a brain- or neuron-specific member of the hemoglobin family, has revolutionized our understanding of brain oxygen metabolism. Currently, how Ngb plays such a role remains far from clear. Here, we report a novel mechanism by which Ngb might facilitate neuronal oxygenation upon hypoxia or anemia. We found that Ngb was present in, co-localized to, and co-migrated with mitochondria in the cell body and neurites of neurons. Hypoxia induced a sudden and prominent migration of Ngb towards the cytoplasmic membrane (CM) or cell surface in living neurons, and this was accompanied by the mitochondria. In vivo, hypotonic and anemic hypoxia induced a reversible Ngb migration toward the CM in cerebral cortical neurons in rat brains but did not alter the expression level of Ngb or its cytoplasm/mitochondria ratio. Knock-down of Ngb by RNA interference significantly diminished respiratory succinate dehydrogenase (SDH) and ATPase activity in neuronal N2a cells. Over-expression of Ngb enhanced SDH activity in N2a cells upon hypoxia. Mutation of Ngb at its oxygen-binding site (His64) significantly increased SDH activity and reduced ATPase activity in N2a cells. Taken together, Ngb was physically and functionally linked to mitochondria. In response to an insufficient oxygen supply, Ngb migrated towards the source of oxygen to facilitate neuronal oxygenation. This novel mechanism of neuronal respiration provides new insights into the understanding and treatment of neurological diseases such as stroke and Alzheimer's disease and diseases that cause hypoxia in the brain such as anemia.
Collapse
Affiliation(s)
- Chun-Yang Li
- Department of Pathophysiology, Tongji Medical College; Key Laboratory of Neurological Diseases, The Ministry of Education (HUST), Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hai-Feng Jiang
- Department of Pathophysiology, Tongji Medical College; Key Laboratory of Neurological Diseases, The Ministry of Education (HUST), Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li Li
- Department of Pathophysiology, Tongji Medical College; Key Laboratory of Neurological Diseases, The Ministry of Education (HUST), Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-Jing Lai
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Qian-Rong Liu
- Department of Pathophysiology, Tongji Medical College; Key Laboratory of Neurological Diseases, The Ministry of Education (HUST), Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shang-Bin Yu
- Department of Pathophysiology, Tongji Medical College; Key Laboratory of Neurological Diseases, The Ministry of Education (HUST), Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Cheng-La Yi
- Department of Traumatic Surgery, Tong-ji Hospital, Tong-ji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Xiao-Qian Chen
- Department of Pathophysiology, Tongji Medical College; Key Laboratory of Neurological Diseases, The Ministry of Education (HUST), Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|