1
|
Johansson A, Ho NPY, Takizawa H. Microbiome and Hemato-immune Aging. Exp Hematol 2024; 141:104685. [PMID: 39581302 DOI: 10.1016/j.exphem.2024.104685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/17/2024] [Accepted: 11/16/2024] [Indexed: 11/26/2024]
Abstract
The microbiome is a highly complex and diverse symbiotic component that undergoes dynamic changes with the organismal aging. Microbial perturbations, termed dysbiosis, exert strong influence on dysregulating the bone marrow niche and subsequently promoting the aging of hematopoietic and immune system. Accumulating studies have revealed the substantial impact of intestinal microbiome on the initiation and progression of age-related hematologic alteration and diseases, such as clonal hematopoiesis and blood cancers. Current therapeutic approaches to restore the altered microbiome diversity target specific pathobionts and are demonstrated to improve clinical outcomes of antihematologic malignancy treatments. In this review, we discuss the interplay between the microbiome and the hemato-immune system during aging process. We also shed light on the emerging therapeutic strategies to tackle the dysbiosis for amelioration of aging and disease progression.
Collapse
Affiliation(s)
- Alban Johansson
- Laboratory of Stem Cell Stress, International Research Center for Medical Sciences, Kumamoto University, Japan
| | - Nicole Pui-Yu Ho
- Laboratory of Stem Cell Stress, International Research Center for Medical Sciences, Kumamoto University, Japan
| | - Hitoshi Takizawa
- Laboratory of Stem Cell Stress, International Research Center for Medical Sciences, Kumamoto University, Japan; Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Japan.
| |
Collapse
|
2
|
Li H, Lin S, Wang Y, Shi Y, Fang X, Wang J, Cui H, Bian Y, Qi X. Immunosenescence: A new direction in anti-aging research. Int Immunopharmacol 2024; 141:112900. [PMID: 39137628 DOI: 10.1016/j.intimp.2024.112900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
The immune system is a major regulatory system of the body, that is composed of immune cells, immune organs, and related signaling factors. As an organism ages, observable age-related changes in the function of the immune system accumulate in a process described as 'immune aging. Research has shown that the impact of aging on immunity is detrimental, with various dysregulated responses that affect the function of immune cells at the cellular level. For example, increased aging has been shown to result in the abnormal chemotaxis of neutrophils and decreased phagocytosis of macrophages. Age-related diminished functionality of immune cell types has direct effects on host fitness, leading to poorer responses to vaccination, more inflammation and tissue damage, as well as autoimmune disorders and the inability to control infections. Similarly, age impacts the function of the immune system at the organ level, resulting in decreased hematopoietic function in the bone marrow, a gradual deficiency of catalase in the thymus, and thymic atrophy, resulting in reduced production of related immune cells such as B cells and T cells, further increasing the risk of autoimmune disorders in the elderly. As the immune function of the body weakens, aging cells and inflammatory factors cannot be cleared, resulting in a cycle of increased inflammation that accumulates over time. Cumulatively, the consequences of immune aging increase the likelihood of developing age-related diseases, such as Alzheimer's disease, atherosclerosis, and osteoporosis, among others. Therefore, targeting the age-related changes that occur within cells of the immune system might be an effective anti-aging strategy. In this article, we summarize the relevant literature on immune aging research, focusing on its impact on aging, in hopes of providing new directions for anti-aging research.
Collapse
Affiliation(s)
- Hanzhou Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Union Medical Center, Tianjin, China
| | - Shan Lin
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuming Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuexuan Shi
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xixing Fang
- College of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Jida Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huantian Cui
- Yunnan University of Chinese Medicine, Yunnan, China.
| | - Yuhong Bian
- Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Xin Qi
- Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Union Medical Center, Tianjin, China.
| |
Collapse
|
3
|
Liu Y, He L, Hu Y, Liao X, Wang H, Yang L. Synthetic bacterial consortia transplantation attenuates vaginal inflammation and modulates the immune response in a mouse model of Gardnerella vaginalis-induced bacterial vaginosis. Heliyon 2024; 10:e38218. [PMID: 39498013 PMCID: PMC11533556 DOI: 10.1016/j.heliyon.2024.e38218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 11/07/2024] Open
Abstract
This study aimed to evaluate the efficacy of synthetic bacterial consortia transplantation (SBCT) and compare it with VMT (vaginal microbiota transplantation) in a mouse model of Gardnerella vaginalis-induced Bacterial vaginosis (BV). A murine model of G. vaginalis-induced BV was established, and mice were treated with SBCT, VMT, or saline. Histopathological changes, inflammatory cytokine levels, pro-inflammatory biomarker expression, helper T cell transcription factor expression, and vaginal microbiota composition were assessed. SBCT and VMT effectively suppressed G. vaginalis growth, reduced inflammation, and restored vaginal microbiota diversity. Both treatments attenuated epithelial damage, downregulated pro-inflammatory cytokines (IL-1β and IL-8), and upregulated the anti-inflammatory cytokine IL-10. SBCT and VMT also inhibited NF-κB activation, suppressed IL-17 expression, and enhanced Foxp3 expression in vaginal tissues. SBCT is a promising therapeutic approach for treating BV, as it effectively modulates the immune response and restores vaginal microbiota diversity in a mouse model of G. vaginalis-induced BV.
Collapse
Affiliation(s)
- Ying Liu
- Department of Gynecology, Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Center, Kunming, Yunnan Province, 650000,China
| | - Liang He
- Department of Laboratory, Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Center, Kunming, Yunnan Province, 650000,China
| | - Yan Hu
- Department of Gynecology, Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Center, Kunming, Yunnan Province, 650000,China
| | - Xingya Liao
- Department of Gynecology, Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Center, Kunming, Yunnan Province, 650000,China
| | - Hongyan Wang
- Department of Gynecology, Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Center, Kunming, Yunnan Province, 650000,China
| | - Linlin Yang
- Department of Gynecology, Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Center, Kunming, Yunnan Province, 650000,China
| |
Collapse
|
4
|
Bolton C. Review of evidence linking exposure to environmental stressors and associated alterations in the dynamics of immunosenescence (ISC) with the global increase in multiple sclerosis (MS). Immun Ageing 2024; 21:73. [PMID: 39438909 PMCID: PMC11494837 DOI: 10.1186/s12979-024-00473-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Historical survey confirms that, over the latter part of the 20th century, autoimmune-based diseases, including multiple sclerosis (MS), have shown a worldwide increase in incidence and prevalence. Analytical population studies have established that the exponential rise in MS is not solely due to improvements in diagnosis and healthcare but relates to an increase in autoimmune risk factors. Harmful environmental exposures, including non-communicable social determinants of health, anthropogens and indigenous or transmissible microbes, constitute a group of causal determinants that have been closely linked with the global rise in MS cases. Exposure to environmental stressors has profound effects on the adaptive arm of the immune system and, in particular, the associated intrinsic process of immune ageing or immunosenescence (ISC). Stressor-related disturbances to the dynamics of ISC include immune cell-linked untimely or premature (p) alterations and an accelerated replicative (ar) change. A recognised immune-associated feature of MS is pISC and current evidence supports the presence of an arISC during the disease. Moreover, collated data illustrates the immune-associated alterations that characterise pISC and arISC are inducible by environmental stressors strongly implicated in causing duplicate changes in adaptive immune cells during MS. The close relationship between exposure to environmental risk factors and the induction of pISC and arISC during MS offers a valid mechanism through which pro-immunosenescent stressors may act and contribute to the recorded increase in the global rate and number of new cases of the disease. Confirmation of alterations to the dynamics of ISC during MS provides a rational and valuable therapeutic target for the use of senolytic drugs to either prevent accumulation and enhance ablation of less efficient untimely senescent adaptive immune cells or decelerate the dysregulated process of replicative proliferation. A range of senotherapeutics are available including kinase and transcriptase inhibitors, rapalogs, flavanols and genetically-engineered T cells and the use of selective treatments to control emerging and unspecified aspects of pISC and arISC are discussed.
Collapse
|
5
|
Wang X, Peng J, Cai P, Xia Y, Yi C, Shang A, Akanyibah FA, Mao F. The emerging role of the gut microbiota and its application in inflammatory bowel disease. Biomed Pharmacother 2024; 179:117302. [PMID: 39163678 DOI: 10.1016/j.biopha.2024.117302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024] Open
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is a complex disorder with an unknown cause. However, the dysbiosis of the gut microbiome has been found to play a role in IBD etiology, including exacerbated immune responses and defective intestinal barrier integrity. The gut microbiome can also be a potential biomarker for several diseases, including IBD. Currently, conventional treatments targeting pro-inflammatory cytokines and pathways in IBD-associated dysbiosis do not yield effective results. Other therapies that directly target the dysbiotic microbiome for effective outcomes are emerging. We review the role of the gut microbiome in health and IBD and its potential as a diagnostic, prognostic, and therapeutic target for IBD. This review also explores emerging therapeutic advancements that target gut microbiome-associated alterations in IBD, such as nanoparticle or encapsulation delivery, fecal microbiota transplantation, nutritional therapies, microbiome/probiotic engineering, phage therapy, mesenchymal stem cells (MSCs), gut proteins, and herbal formulas.
Collapse
Affiliation(s)
- Xiu Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang, Jiangsu 222006, China
| | - Jianhua Peng
- The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang, Jiangsu 212300, China
| | - Peipei Cai
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yuxuan Xia
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chengxue Yi
- School of Medical Technology, Zhenjiang College, Zhenjiang 212028, China
| | - Anquan Shang
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang, Jiangsu 222006, China
| | - Francis Atim Akanyibah
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang, Jiangsu 222006, China.
| |
Collapse
|
6
|
Hao C, Ting L, Feng G, Jing X, Ming H, Yang L, Jie Z, Yin J. Global incidence trends of autoimmune diseases from 1990 to 2021 and projections to 2050: A systemic analysis of the global burden of disease study 2021. Autoimmun Rev 2024:103621. [PMID: 39232989 DOI: 10.1016/j.autrev.2024.103621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 08/31/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND The analysis of the incidence trends of four autoimmune diseases (ADs) globally from 1990 to 2021, including rheumatoid arthritis (RA), inflammatory bowel disease (IBD), multiple sclerosis (MS), and psoriasis, reveals significant patterns of change, which further projects the incidence of these diseases at the global, regional, and national levels up to the year 2050. METHODS The estimates for the number of incident cases and age-standardized incidence rates (ASIR), along with the 95 % uncertainty intervals (UI) for RA, IBD, MS and psoriasis, were obtained from the Global Burden of Diseases Study 2021. The estimated annual percentage change (EAPC) was used to quantify the global incidence trends of these four ADs from 1990 to 2021. Additionally, a Bayesian age-period-cohort model was employed to project the number of new cases and incidence rates of these four ADs up to 2050. RESULTS From 1990 to 2021, the global ASIR of MS showed a declining trend (EAPC = -0.02 %, 95 % UI: -0.07 to 0.03), while the global ASIRs of IBD (EAPC = 0.29 %, 95 % UI: 0.20 to 0.38), RA (EAPC = 0.49 %, 95 % UI: 0.46 to 0.52), and psoriasis (EAPC = 0.23 %, 95 % UI: 0.21 to 0.26) demonstrated increasing trends. From 2022 to 2050, the global ASIRs of these four ADs are projected to rise, with the number of cases for all these conditions expected to continue increasing. CONCLUSIONS The global incidence trends and projected changes in ADs reveal that the burden of ADs is expected to continue growing in the future, underscoring the necessity for developing targeted policies to address this emerging challenge.
Collapse
Affiliation(s)
- Chen Hao
- Department of Pulmonary and Critical Care Medicine, Peking Union Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Lin Ting
- Department of Pulmonary and Critical Care Medicine, Peking Union Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Gao Feng
- Department of Pulmonary and Critical Care Medicine, Peking Union Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Xu Jing
- Department of Allergy, Peking Union Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Huang Ming
- Department of Allergy, Peking Union Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Liu Yang
- Department of Pulmonary and Critical Care Medicine, Peking Union Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Zhou Jie
- Department of Pulmonary and Critical Care Medicine, Peking Union Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Jia Yin
- Department of Pulmonary and Critical Care Medicine, Peking Union Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China.
| |
Collapse
|
7
|
Xu Y, He C, Xi Y, Zhang Y, Bai Y. Gut microbiota and immunosenescence in cancer. Semin Cancer Biol 2024; 104-105:32-45. [PMID: 39127266 DOI: 10.1016/j.semcancer.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
Cancer is generally defined as a disease of aging. With aging, the composition, diversity and functional characteristics of the gut microbiota occur changes, with a decline of beneficial commensal microbes triggered by intrinsic and extrinsic factors (e.g., diet, drugs and chronic health conditions). Nowadays, dysbiosis of the gut microbiota is recognized as a hallmark of cancer. At the same time, aging is accompanied by changes in innate and adaptive immunity, known as immunosenescence, as well as chronic low-grade inflammation, known as inflammaging. The elevated cancer incidence and mortality in the elderly are linked with aging-associated alterations in the gut microbiota that elicit systemic metabolic alterations, leading to immune dysregulation with potentially tumorigenic effects. The gut microbiota and immunosenescence might both affect the response to treatment in cancer patients. In-depth understanding of age-associated alterations in the gut microbiota and immunity will shed light on the risk of cancer development and progression in the elderly. Here, we describe the aging-associated changes of the gut microbiota in cancer, and review the evolving understanding of the gut microbiota-targeted intervention strategies. Furthermore, we summarize the knowledge on the cellular and molecular mechanisms of immunosenescence and its impact on cancer. Finally, we discuss the latest knowledge about the relationships between gut microbiota and immunosenescence, with implications for cancer therapy. Intervention strategies targeting the gut microbiota may attenuate inflammaging and rejuvenate immune function to provide antitumor benefits in elderly patients.
Collapse
Affiliation(s)
- Yaozheng Xu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110136, China; Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning 110136, China.
| | - Chuan He
- Department of Laboratory Medicine, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| | - Ying Xi
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110136, China; Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning 110136, China.
| | - Yue Zhang
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110136, China; Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning 110136, China.
| | - Yibo Bai
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110136, China; Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning 110136, China.
| |
Collapse
|
8
|
Liu Y, Zhou J, Yang Y, Chen X, Chen L, Wu Y. Intestinal Microbiota and Its Effect on Vaccine-Induced Immune Amplification and Tolerance. Vaccines (Basel) 2024; 12:868. [PMID: 39203994 PMCID: PMC11359036 DOI: 10.3390/vaccines12080868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
This review provides the potential of intestinal microbiota in vaccine design and application, exploring the current insights into the interplay between the intestinal microbiota and the immune system, with a focus on its intermediary function in vaccine efficacy. It summarizes families and genera of bacteria that are part of the intestinal microbiota that may enhance or diminish vaccine efficacy and discusses the foundational principles of vaccine sequence design and the application of gut microbial characteristics in vaccine development. Future research should further investigate the use of multi-omics technologies to elucidate the interactive mechanisms between intestinal microbiota and vaccine-induced immune responses, aiming to optimize and improve vaccine design.
Collapse
Affiliation(s)
- Yixin Liu
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China;
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (J.Z.); (L.C.)
| | - Jianfeng Zhou
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (J.Z.); (L.C.)
| | - Yushang Yang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (J.Z.); (L.C.)
| | - Xiangzheng Chen
- Department of Liver Surgery & Liver Transplantation, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Longqi Chen
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (J.Z.); (L.C.)
| | - Yangping Wu
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China;
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu 610041, China
| |
Collapse
|
9
|
Frileux S, Boltri M, Doré J, Leboyer M, Roux P. Cognition and gut microbiota in schizophrenia spectrum and mood disorders: A systematic review. Neurosci Biobehav Rev 2024; 162:105722. [PMID: 38754717 DOI: 10.1016/j.neubiorev.2024.105722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/11/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024]
Abstract
FRILEUX, M., BOLTRI M. and al. Cognition and Gut microbiota in schizophrenia spectrum and mood disorders: a Systematic Review. NEUROSCI BIOBEHAV REV (1) 2024 Schizophrenia spectrum disorders and major mood disorders are associated with cognitive impairments. Recent studies suggest a link between gut microbiota composition and cognitive functioning. Here, we review the relationship between gut microbiota and cognition in these disorders. To do this, we conducted a systematic review, searching Cochrane Central Register of Controlled Trials, EBSCOhost, Embase, Pubmed, Scopus, and Web of Science. Studies were included if they investigated the relationship between gut microbiota composition and cognitive function through neuropsychological assessments in patients with bipolar, depressive, schizophrenia spectrum, and other psychotic disorders. Ten studies were identified. Findings underscore a link between gut dysbiosis and cognitive impairment. This relationship identified specific taxa (Haemophilus, Bacteroides, and Alistipes) as potential contributors to bolstered cognitive performance. Conversely, Candida albicans, Toxoplasma gondii, Streptococcus and Deinococcus were associated with diminished performance on cognitive assessments. Prebiotics and probiotics interventions were associated with cognitive enhancements, particularly executive functions. These results emphasize the role of gut microbiota in cognition, prompting further exploration of the underlying mechanisms paving the way toward precision psychiatry.
Collapse
Affiliation(s)
- S Frileux
- Service Hospitalo-Universitaire de Psychiatrie d'Adultes et d'Addictologie, Centre Hospitalier de Versailles, 177, rue de Versailles, Le Chesnay-Rocquencourt 78157, France; Université Paris-Saclay, Université Versailles Saint-Quentin-En-Yvelines, DisAP-DevPsy-CESP, INSERM UMR1018, Villejuif 94807, France.
| | - M Boltri
- Department of Psychology, Catholic University of Sacred Heart, Milan, Italy; I.R.C.C.S. Istituto Auxologico Italiano, Experimental Laboratory for Metabolic Neurosciences Research, Piancavallo, Italy
| | - J Doré
- Université Paris-Saclay, INRA, MetaGenoPolis, AgroParisTech, MICALIS, Jouy-en-Josas 78350, France
| | - M Leboyer
- Inserm U955 IMRB, Translational Neuropsychiatry Laboratory, AP-HP, DMU IMPACT, Fédération Hospitalo-Universitaire de médecine de précision en psychiatrie (FHU ADAPT), Paris Est Créteil University and Fondation FondaMental, Créteil 94010, France; Fondation Fondamental, Créteil 94010, France
| | - P Roux
- Service Hospitalo-Universitaire de Psychiatrie d'Adultes et d'Addictologie, Centre Hospitalier de Versailles, 177, rue de Versailles, Le Chesnay-Rocquencourt 78157, France; Université Paris-Saclay, Université Versailles Saint-Quentin-En-Yvelines, DisAP-DevPsy-CESP, INSERM UMR1018, Villejuif 94807, France
| |
Collapse
|
10
|
Bixio R, Bertelle D, Bertoldo E, Morciano A, Rossini M. The potential pathogenic role of gut microbiota in rheumatic diseases: a human-centred narrative review. Intern Emerg Med 2024; 19:891-900. [PMID: 38141117 DOI: 10.1007/s11739-023-03496-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023]
Abstract
A growing amount of evidence suggests that gut microbiota plays an important role in human health, including a possible role in the pathogenesis of rheumatic and musculoskeletal diseases (RMD). We analysed the current evidence about the role of microbiota in rheumatoid arthritis (RA), spondyloarthritis (SpA), systemic lupus erythematosus (SLE) and systemic sclerosis (SSc). In RA, we found a general consensus regarding a reduction of diversity and a specific bacterial signature, with consistent changes according to the different ethnic and geographical areas. The major pathogenetic role in RA is recognised for P. copri, L. salivarius and Collinsella, even if findings become more heterogeneous when considering established disease. In SpA, we found a relative gut abundance of Akkermansia, Coprococcus, Ruminoccocus and a relative reduction in Bacterioides and Firmicutes spp. Human and preclinical data suggest loss of mucosal barrier, increased permeability and Th1- and Th17-mediated inflammation. Additionally, HLA-B27 seems to play a role in shaping the intestinal microbiota and the consequent inflammation. In SLE, the typical gut microbiota signature was characterised by a reduction in the Firmicutes/Bacteroidetes ratio and by enrichment of Rhodococcus, Eggerthella, Klebsiella, Prevotella, Eubacterium and Flavonifractor, even if their real pathogenic impact remains unclear. In SSc, gastrointestinal dysbiosis is well documented with an increase of pro-inflammatory species (Fusobacterium, Prevotella, Ruminococcus, Akkermansia, γ-Proteobacteria, Erwinia, Trabsulsiella, Bifidobacterium, Lactobacillus, Firmicutes and Actinobacteria) and a reduction of species as Faecalibacterium, Clostridium, Bacteroidetes and Rikenella. In conclusion, seems possible to recognise a distinct gut microbiota profile for each RMD, even if significant differences in bacterial species do exist between different studies and there is a high risk of bias due to the cross-sectional nature of such studies. Therefore longitudinal studies are needed, especially on patients with preclinical and early disease, to investigate the real role of gut microbiota in the pathogenesis of RMD.
Collapse
Affiliation(s)
- Riccardo Bixio
- Rheumatology Section, Department of Medicine, University of Verona, P.Le L.A. Scuro 10, 37134, Verona, Italy.
| | - Davide Bertelle
- Rheumatology Section, Department of Medicine, University of Verona, P.Le L.A. Scuro 10, 37134, Verona, Italy
- Rheumatology Section, Department of Medicine, Azienda Ospedaliera Friuli Occidentale, Pordenone, Italy
| | - Eugenia Bertoldo
- Rheumatology Section, Department of Medicine, University of Verona, P.Le L.A. Scuro 10, 37134, Verona, Italy
- Internal Medicine Unit, Department of Medicine, Mater Salutis Hospital, Legnago, Italy
| | - Andrea Morciano
- Rheumatology Section, Department of Medicine, University of Verona, P.Le L.A. Scuro 10, 37134, Verona, Italy
| | - Maurizio Rossini
- Rheumatology Section, Department of Medicine, University of Verona, P.Le L.A. Scuro 10, 37134, Verona, Italy
| |
Collapse
|
11
|
Jang S, Jeon M, Mun SJ, Kim SH. Clinical characteristics and risk factors for septic shock in patients with pyometra: A retrospective multicenter cohort study. J Infect Public Health 2024; 17:862-867. [PMID: 38554592 DOI: 10.1016/j.jiph.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/11/2024] [Accepted: 03/17/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND Pyometra is a disease characterized by the collection of pus in the uterus. The clinical characteristics and etiology of pyometra have not been sufficiently described. In this study, we investigated the clinical characteristics, epidemiology, outcomes, and risk factors of septic shock in patients with pyometra. METHODS Patients with pyometra admitted to one of four university-affiliated hospitals between January 2010 to August 2022 were enrolled. Pyometra cases associated with peripartum infection and surgical site infection were excluded. Clinical characteristics and outcomes of pyometra were described, and pyometra patients with or without septic shock were compared. RESULTS A total of 192 patients was included. Twenty-eight-day all-cause mortality was 5.0%, and the 1-year recurrence rate was 6.3%. Median patient age was 77.5 years. The two most common symptoms were abdominal pain (49.0%) and vaginal discharge (47.9%). Escherichia coli (40.1%), Klebsiella pneumoniae (16.7%), and Streptococcus spp.(16.0%) were the pathogens most frequently isolated by conventional culture; those isolated from polymerase chain reaction were Mycoplasma hominis (48.0%), and Ureaplasma spp. (32.0%). In multivariable analysis, fever, uterine perforation, and dementia were associated with increased incidence of septic shock, while vaginal discharge was associated with a lower incidence of septic shock. CONCLUSIONS Our findings suggest that pyometra is a unique gynecological infectious syndrome in post-menopausal individuals. The most common associated pathogens are similar to those involved in urinary tract infections rather than those of sexually transmitted diseases. Decreased cognitive function could delay early diagnosis of pyometra and lead to septic shock and higher mortality.
Collapse
Affiliation(s)
- Sukbin Jang
- Division of Infectious Diseases, Department of Medicine, Dankook University School of Medicine, Cheonan, Republic of Korea
| | - Minji Jeon
- Division of Infectious Diseases, Department of Medicine, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Republic of Korea
| | - Seok Jun Mun
- Division of Infectious Diseases, Department of Internal Medicine, Inje University Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea.
| | - Si-Ho Kim
- Division of Infectious Diseases, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Republic of Korea.
| |
Collapse
|
12
|
Malik JA, Zafar MA, Lamba T, Nanda S, Khan MA, Agrewala JN. The impact of aging-induced gut microbiome dysbiosis on dendritic cells and lung diseases. Gut Microbes 2023; 15:2290643. [PMID: 38087439 PMCID: PMC10718154 DOI: 10.1080/19490976.2023.2290643] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Aging is an inevitable natural process that impacts every individual, and understanding its effect on the gut microbiome and dendritic cell (DC) functionality in elderly subjects is crucial. DCs are vital antigen-presenting cells (APCs) that orchestrate the immune response, maintaining immune tolerance to self-antigens and bridging innate and adaptive immunity. With aging, there is a shift toward nonspecific innate immunity, resulting in a decline in adaptive immune responses. This alteration raises significant concerns about managing the health of an elderly population. However, the precise impact of aging and microbiome changes on DC function and their implications in lung-associated diseases remain relatively understudied. To illuminate this subject, we will discuss recent advancements in understanding the connections between aging, gut dysbiosis, DCs, and lung diseases. Emphasizing the key concepts linking age-related gut microbiome changes and DC functions, we will focus on their relevance to overall health and immune response in elderly individuals. This article aims to improve our understanding of the intricate relationship between aging, gut microbiome, and DCs, potentially benefiting the management of age-associated diseases and promoting healthy aging.
Collapse
Affiliation(s)
- Jonaid Ahmad Malik
- Department of Biomedical Engineering, Indian Institute of Ropar, Rupnagar, Punjab, India
| | - Mohammad Adeel Zafar
- Department of Biomedical Engineering, Indian Institute of Ropar, Rupnagar, Punjab, India
| | - Taruna Lamba
- Department of Biomedical Engineering, Indian Institute of Ropar, Rupnagar, Punjab, India
| | - Sidhanta Nanda
- Department of Biomedical Engineering, Indian Institute of Ropar, Rupnagar, Punjab, India
| | - Mohammad Affan Khan
- Department of Biomedical Engineering, Indian Institute of Ropar, Rupnagar, Punjab, India
| | - Javed Naim Agrewala
- Department of Biomedical Engineering, Indian Institute of Ropar, Rupnagar, Punjab, India
| |
Collapse
|
13
|
Li DP, Han YX, He YS, Wen Y, Liu YC, Fu ZY, Pan HF, Cao F. A global assessment of incidence trends of autoimmune diseases from 1990 to 2019 and predicted changes to 2040. Autoimmun Rev 2023; 22:103407. [PMID: 37572826 DOI: 10.1016/j.autrev.2023.103407] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/22/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
AIM To analyze the global incidence trends for four autoimmune diseases (ADs) including rheumatoid arthritis (RA), inflammatory bowel disease (IBD), multiple sclerosis (MS) and psoriasis from 1990 to 2019, and further predict their changes to 2040 at global, regional, and national levels. METHODS The estimates and 95% uncertainty intervals (UIs) for case number and agestandardized incidence rate (ASIR) of RA, IBD, MS and psoriasis were derived from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019. Estimated annual percentage change (EAPC) was utilized to quantify the global incidence trends for RA, IBD, MS and psoriasis from 1990 to 2019. Furthermore, a log-linear age-period-cohort model was adopted to predict the new case number and incidence rates for these four ADs through 2040. RESULTS From 1990 to 2019, the global ASIR rose significantly for RA (EAPC = 0.30%, 95% CI: 0.26 to 0.34) whereas declined significantly for IBD (EAPC = -0.60%, 95% CI: -0.72 to - 0.48), MS (EAPC = -0.19%, 95% CI: -0.24 to -0.13) and psoriasis (EAPC = -0.77%, 95% CI: -0.78 to -0.76). From 2020 to 2040, the global ASIR of RA, IBD, and psoriasis was predicted to decrease whereas the global ASIR of MS was predicted to increase, with continuous increasing case number of all these diseases. Furthermore, the predicted incidence trends of these four ADs varied significantly across 195 countries and territories, with a prominent higher burden in high-income North America and Western Europe. CONCLUSIONS There are strong heterogeneities in the global incidence trends (1990-2019) and predicted changes (2020-2040) of ADs across the world, highlighting prominent challenges in the control of ADs, including both growing case number and distributive disparities of these diseases worldwide, which may be instructive for better public health policy establishment and healthcare resource allocation.
Collapse
Affiliation(s)
- Da-Peng Li
- Department of Otolaryngology, Head and Neck Surgery, The Affiliated Bozhou Hospital of Anhui Medical University, China; Scientific research and experiment center, The Affiliated Bozhou Hospital of Anhui Medical University, China
| | - Yan-Xun Han
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui, China
| | - Yi-Sheng He
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Yu Wen
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, China; Department of clinical medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Yu-Chen Liu
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui, China
| | - Zi-Yue Fu
- Department of clinical medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China.
| | - Fan Cao
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, China; Department of clinical medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China.
| |
Collapse
|