1
|
Zeng X, Cai Y, Wu M, Chen H, Sun M, Yang H. An overview of current advances in perinatal alcohol exposure and pathogenesis of fetal alcohol spectrum disorders. J Neurodev Disord 2024; 16:20. [PMID: 38643092 PMCID: PMC11031898 DOI: 10.1186/s11689-024-09537-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/08/2024] [Indexed: 04/22/2024] Open
Abstract
The adverse use of alcohol is a serious global public health problem. Maternal alcohol consumption during pregnancy usually causes prenatal alcohol exposure (PAE) in the developing fetus, leading to a spectrum of disorders known as fetal alcohol spectrum disorders (FASD) and even fetal alcohol syndrome (FAS) throughout the lifelong sufferers. The prevalence of FASD is approximately 7.7 per 1,000 worldwide, and is even higher in developed regions. Generally, Ethanol in alcoholic beverages can impair embryonic neurological development through multiple pathways leading to FASD. Among them, the leading mechanism of FASDs is attributed to ethanol-induced neuroinflammatory damage to the central nervous system (CNS). Although the underlying molecular mechanisms remain unclear, the remaining multiple pathological mechanisms is likely due to the neurotoxic damage of ethanol and the resultant neuronal loss. Regardless of the molecular pathway, the ultimate outcome of the developing CNS exposed to ethanol is almost always the destruction and apoptosis of neurons, which leads to the reduction of neurons and further the development of FASD. In this review, we systematically summarize the current research progress on the pathogenesis of FASD, which hopefully provides new insights into differential early diagnosis, treatment and prevention for patents with FASD.
Collapse
Affiliation(s)
- Xingdong Zeng
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215031, China
| | - Yongle Cai
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215031, China
| | - Mengyan Wu
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215031, China
| | - Haonan Chen
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215031, China
| | - Miao Sun
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215031, China.
| | - Hao Yang
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215031, China.
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
2
|
Abstract
At-risk alcohol use is a major contributor to the global health care burden and leads to preventable deaths and diseases including alcohol addiction, alcoholic liver disease, cardiovascular disease, diabetes, traumatic injuries, gastrointestinal diseases, cancers, and fetal alcohol syndrome. Excessive and frequent alcohol consumption has increasingly been linked to alcohol-associated tissue injury and pathophysiology, which have significant adverse effects on multiple organ systems. Extensive research in animal and in vitro models has elucidated the salient mechanisms involved in alcohol-induced tissue and organ injury. In some cases, these pathophysiological mechanisms are shared across organ systems. The major alcohol- and alcohol metabolite-mediated mechanisms include oxidative stress, inflammation and immunometabolic dysregulation, gut leak and dysbiosis, cell death, extracellular matrix remodeling, endoplasmic reticulum stress, mitochondrial dysfunction, and epigenomic modifications. These mechanisms are complex and interrelated, and determining the interplay among them will make it possible to identify how they synergistically or additively interact to cause alcohol-mediated multiorgan injury. In this article, we review the current understanding of pathophysiological mechanisms involved in alcohol-induced tissue injury.
Collapse
Affiliation(s)
- Liz Simon
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA;
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Flavia M Souza-Smith
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Patricia E Molina
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA;
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| |
Collapse
|
3
|
Martín-Estal I, Castilla-Cortázar I, Castorena-Torres F. The Placenta as a Target for Alcohol During Pregnancy: The Close Relation with IGFs Signaling Pathway. Rev Physiol Biochem Pharmacol 2021; 180:119-153. [PMID: 34159446 DOI: 10.1007/112_2021_58] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Alcohol is one of the most consumed drugs in the world, even during pregnancy. Its use is a risk factor for developing adverse outcomes, e.g. fetal death, miscarriage, fetal growth restriction, and premature birth, also resulting in fetal alcohol spectrum disorders. Ethanol metabolism induces an oxidative environment that promotes the oxidation of lipids and proteins, triggers DNA damage, and advocates mitochondrial dysfunction, all of them leading to apoptosis and cellular injury. Several organs are altered due to this harmful behavior, the brain being one of the most affected. Throughout pregnancy, the human placenta is one of the most important organs for women's health and fetal development, as it secretes numerous hormones necessary for a suitable intrauterine environment. However, our understanding of the human placenta is very limited and even more restricted is the knowledge of the impact of toxic substances in its development and fetal growth. So, could ethanol consumption during this period have wounding effects in the placenta, compromising proper fetal organ development? Several studies have demonstrated that alcohol impairs various signaling cascades within G protein-coupled receptors and tyrosine kinase receptors, mainly through its action on insulin and insulin-like growth factor 1 (IGF-1) signaling pathway. This last cascade is involved in cell proliferation, migration, and differentiation and in placentation. This review tries to examine the current knowledge and gaps in our existing understanding of the ethanol effects in insulin/IGFs signaling pathway, which can explain the mechanism to elucidate the adverse actions of ethanol in the maternal-fetal interface of mammals.
Collapse
Affiliation(s)
- Irene Martín-Estal
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, NL, Mexico
| | | | | |
Collapse
|
4
|
TRPV1 Contributes to the Neuroprotective Effect of Dexmedetomidine in Pilocarpine-Induced Status Epilepticus Juvenile Rats. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7623635. [PMID: 32337274 PMCID: PMC7168755 DOI: 10.1155/2020/7623635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/08/2020] [Accepted: 02/20/2020] [Indexed: 11/25/2022]
Abstract
To investigate the antiepileptic and neuroprotective effects of dexmedetomidine (Dex) in pilocarpine- (Pilo-) induced status epilepticus (SE) juvenile rats, rats were randomly assigned to the following six groups (n = 20): normal, normal+Dex, SE, SE+Cap, SE+Dex, and SE+Dex+Cap. The rats were treated with either diazepam (i.p., an antiepileptic drug) or Dex after the onset of SE. The Morris water maze was used to assess rat cognitive behavior. Flow cytometry was used to detect the concentrations of Ca2+, mitochondrial membrane potential, and reactive oxygen species. Transmission electron microscopy was performed to evaluate specimens of brain tissue. The levels of caspase 3 and TRPV1 were examined by western blot and immunohistochemistry (IHC). Treatment with Dex significantly decreased the escape latency of the SE rats (P < 0.05). Capsaicin, a TRPV1 agonist, delivery aggravated the performance of SE rats. Pathological changes in SE rat were attenuated by Dex and deteriorated by capsaicin. Swollen mitochondria and abnormal endoplasmic reticulum were found in SE rats and were then aggravated by capsaicin and reversed by Dex. Moreover, our data showed that Dex significantly restrained calcium overload, ROS production, and mitochondrial membrane potential loss, all of which were induced by Pilo and capsaicin (P < 0.05). Dex decreased the apoptotic rate in the Model SE group (P < 0.05) and TRPV1 and caspase 3 expression in the Dex treatment group (P < 0.05). Interestingly, all these effects of Dex were partially counteracted by the TRPV1 agonist, capsaicin (P < 0.05). Our study showed that Dex exerted a neuroprotective effect in Pilo-induced SE rats by inhibiting TRPV1 expression and provided information for therapy to SE patients.
Collapse
|
5
|
de Angelis C, Nardone A, Garifalos F, Pivonello C, Sansone A, Conforti A, Di Dato C, Sirico F, Alviggi C, Isidori A, Colao A, Pivonello R. Smoke, alcohol and drug addiction and female fertility. Reprod Biol Endocrinol 2020; 18:21. [PMID: 32164734 PMCID: PMC7069005 DOI: 10.1186/s12958-020-0567-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 01/21/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Considerable interest has been gathered on the relevant impact of preventable factors, including incorrect lifestyle and unhealthy habits, on female fertility. Smoking, alcohol and addictive drugs consumption represent a major concern, given the broad range of diseases which might be favored or exacerbated by these dependable attitudes. Despite the well-characterized effects of prenatal exposure on pregnancy outcomes and fetus health, a substantial proportion of women of reproductive age is still concerned with these habits. At present, the impact of smoke, alcohol and addictive drugs on women fertility, and, particularly, the specific targets and underlying mechanisms, are still poorly understood or debated, mainly due to the scarcity of well-designed studies, and to numerous biases. OBJECTIVE The current review will provide a comprehensive overview of clinical and experimental studies in humans and animals addressing the impact of smoke, alcohol and addictive drugs on female fertility, by also embracing effects on ovary, oviduct, and uterus, with particular reference to primary endpoints such as ovarian reserve, steroidogenesis, ovulation and menstrual cycle, oviduct function and uterus receptivity and implantation. A brief focus on polycystic ovary syndrome and endometriosis will be also included. METHODS A Pubmed literature search was performed with selected keywords; articles were individually retrieved by each author. No limitation was set for publication date. Articles in languages other than English were excluded. Additional articles were retrieved from references list of selected manuscripts. RESULTS AND CONCLUSIONS Currently, the most consistent evidences of a detrimental effect of smoke, alcohol and addictive drugs on specific domains of the female reproductive function are provided by experimental studies in animals. Overall, clinical studies suggest that smoking is associated to decreased fertility, although causal inference should be further demonstrated. Studies addressing the effect of alcohol consumption on female fertility provide conflicting results, although the majority reported lack of a correlation. Extremely scarce studies investigated the effects of addictive drugs on female fertility, and the specific actions of selected drugs have been difficult to address, due to multidrug consumption.
Collapse
Affiliation(s)
- Cristina de Angelis
- I.O.S. & COLEMAN Srl, Naples, Italy
- grid.4691.a0000 0001 0790 385XDipartimento di Medicina Clinica e Chirurgia, Università “Federico II” di Napoli, Via Sergio Pansini 5, 80131 Naples, Italy
- grid.4691.a0000 0001 0790 385XFERTISEXCARES Centro di Andrologia, Medicina della Riproduzione e della Sessualità Maschile e Femminile, Università “Federico II” di Napoli, Naples, Italy
- grid.4691.a0000 0001 0790 385XDipartimento di Sanità Pubblica, Università “Federico II” di Napoli, Naples, Italy
| | - Antonio Nardone
- grid.4691.a0000 0001 0790 385XDipartimento di Sanità Pubblica, Università “Federico II” di Napoli, Naples, Italy
| | - Francesco Garifalos
- grid.4691.a0000 0001 0790 385XDipartimento di Medicina Clinica e Chirurgia, Università “Federico II” di Napoli, Via Sergio Pansini 5, 80131 Naples, Italy
- grid.4691.a0000 0001 0790 385XFERTISEXCARES Centro di Andrologia, Medicina della Riproduzione e della Sessualità Maschile e Femminile, Università “Federico II” di Napoli, Naples, Italy
| | - Claudia Pivonello
- grid.4691.a0000 0001 0790 385XDipartimento di Medicina Clinica e Chirurgia, Università “Federico II” di Napoli, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Andrea Sansone
- grid.7841.aDepartment of Experimental Medicine, Faculty of Medicine and Dentistry, University of Rome “Sapienza”, viale Regina Elena 324, 00162 Roma, Italy
| | - Alessandro Conforti
- grid.4691.a0000 0001 0790 385XDepartment of Neuroscience, Reproductive Medicine, Odontostomatology, University of Naples Federico II, Naples, Italy
| | - Carla Di Dato
- grid.7841.aDepartment of Experimental Medicine, Faculty of Medicine and Dentistry, University of Rome “Sapienza”, viale Regina Elena 324, 00162 Roma, Italy
| | - Felice Sirico
- grid.4691.a0000 0001 0790 385XDipartimento di Sanità Pubblica, Università “Federico II” di Napoli, Naples, Italy
| | - Carlo Alviggi
- grid.4691.a0000 0001 0790 385XDepartment of Neuroscience, Reproductive Medicine, Odontostomatology, University of Naples Federico II, Naples, Italy
| | - Andrea Isidori
- grid.7841.aDepartment of Experimental Medicine, Faculty of Medicine and Dentistry, University of Rome “Sapienza”, viale Regina Elena 324, 00162 Roma, Italy
| | - Annamaria Colao
- grid.4691.a0000 0001 0790 385XDipartimento di Medicina Clinica e Chirurgia, Università “Federico II” di Napoli, Via Sergio Pansini 5, 80131 Naples, Italy
- grid.4691.a0000 0001 0790 385XFERTISEXCARES Centro di Andrologia, Medicina della Riproduzione e della Sessualità Maschile e Femminile, Università “Federico II” di Napoli, Naples, Italy
- grid.4691.a0000 0001 0790 385XCattedra Unesco “Educazione alla salute e allo sviluppo sostenibile”, Università “Federico II” di Napoli, Naples, Italy
| | - Rosario Pivonello
- grid.4691.a0000 0001 0790 385XDipartimento di Medicina Clinica e Chirurgia, Università “Federico II” di Napoli, Via Sergio Pansini 5, 80131 Naples, Italy
- grid.4691.a0000 0001 0790 385XFERTISEXCARES Centro di Andrologia, Medicina della Riproduzione e della Sessualità Maschile e Femminile, Università “Federico II” di Napoli, Naples, Italy
- grid.4691.a0000 0001 0790 385XCattedra Unesco “Educazione alla salute e allo sviluppo sostenibile”, Università “Federico II” di Napoli, Naples, Italy
| |
Collapse
|
6
|
Abstract
Granulocytes are the major type of phagocytes constituting the front line of innate immune defense against bacterial infection. In adults, granulocytes are derived from hematopoietic stem cells in the bone marrow. Alcohol is the most frequently abused substance in human society. Excessive alcohol consumption injures hematopoietic tissue, impairing bone marrow production of granulocytes through disrupting homeostasis of granulopoiesis and the granulopoietic response. Because of the compromised immune defense function, alcohol abusers are susceptible to infectious diseases, particularly septic infection. Alcoholic patients with septic infection and granulocytopenia have an exceedingly high mortality rate. Treatment of serious infection in alcoholic patients with bone marrow inhibition continues to be a major challenge. Excessive alcohol consumption also causes diseases in other organ systems, particularly severe alcoholic hepatitis which is life threatening. Corticosteroids are the only therapeutic option for improving short-term survival in patients with severe alcoholic hepatitis. The existence of advanced alcoholic liver diseases and administration of corticosteroids make it more difficult to treat serious infection in alcoholic patients with the disorder of granulopoieis. This article reviews the recent development in understanding alcohol-induced disruption of marrow granulopoiesis and the granulopoietic response with the focus on progress in delineating cell signaling mechanisms underlying the alcohol-induced injury to hematopoietic tissue. Efforts in exploring effective therapy to improve patient care in this field will also be discussed.
Collapse
|
7
|
Bias and misleading concepts in an Arnica research study. Comments to improve experimental Homeopathy. J Ayurveda Integr Med 2018; 9:75-80. [PMID: 29496319 PMCID: PMC5884037 DOI: 10.1016/j.jaim.2017.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/23/2017] [Accepted: 01/30/2017] [Indexed: 01/01/2023] Open
Abstract
Basic experimental models in Homeopathy are of major interest because they could get insightful data about the ability of high dilutions to work in a biological system. Due to the extreme difficulty in the highlighting any possible effect and trusting its reliability, methods should be particularly stringent and highly standardized. Confounders, handling process, pre-analytical errors, misleading statistics and misinterpretations may lead to experimental biases. This article tries to elucidate those factors causing bias, taking into account some recent reported evidence in the field.
Collapse
|
8
|
Wang H, Wang X, Li Y, Yu H, Wang C, Feng C, Xu G, Chen J, You J, Wang P, Wu X, Zhao R, Zhang G. Chronic ethanol exposure induces SK-N-SH cell apoptosis by increasing N-methyl-D-aspartic acid receptor expression and intracellular calcium. Exp Ther Med 2018; 15:3791-3800. [PMID: 29581737 PMCID: PMC5863573 DOI: 10.3892/etm.2018.5902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 01/12/2018] [Indexed: 01/26/2023] Open
Abstract
It has been identified that chronic ethanol exposure damages the nervous system, particularly neurons. There is scientific evidence suggesting that neuronal loss caused by chronic ethanol exposure has an association with neuron apoptosis and intracellular calcium oscillation is one of the primary inducers of apoptosis. Therefore, the present study aimed to investigate the inductive effects of intracellular calcium oscillation on apoptosis in SK-N-SH human neuroblastoma cells and the protective effects of the N-methyl-D-aspartic acid receptor (NMDAR) antagonist, memantine, on SK-N-SH cell apoptosis caused by chronic ethanol exposure. SK-N-SH cells were treated with 100 mM ethanol and memantine (4 µM) for 2 days. Protein expression of NR1 was downregulated by RNA interference (RNAi). Apoptosis was detected by Annexin V/propidium iodide (PI) double-staining and flow cytometry and cell viability was detected using an MTS kit. Fluorescence dual wavelength spectrophotometry was used to determine the intracellular calcium concentration and the levels of NR1 and caspase-3 were detected using western blotting. NR1 mRNA levels were also detected using qPCR. It was found that chronic ethanol exposure reduced neuronal cell viability and caused apoptosis of SK-N-SH cells, and the extent of damage in SK-N-SH cells was associated with ethanol exposure concentration and time. In addition, chronic ethanol exposure increased the concentration of intracellular calcium in SK-N-SH cells by inducing the expression of NMDAR, resulting in apoptosis, and memantine treatment reduced ethanol-induced cell apoptosis. The results of the present study indicate that the application of memantine may provide a novel strategy for the treatment of alcoholic dementia.
Collapse
Affiliation(s)
- Hongbo Wang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Xiaolong Wang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Yan Li
- No.1 English Department, School of Fundamental Sciences, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Hao Yu
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Changliang Wang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Chunmei Feng
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Guohui Xu
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Jiajun Chen
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Jiabin You
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Pengfei Wang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Xu Wu
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Rui Zhao
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Guohua Zhang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
9
|
Bolnick AD, Bolnick JM, Kohan-Ghadr HR, Kilburn BA, Hertz M, Dai J, Drewlo S, Armant DR. Nifedipine Prevents Apoptosis of Alcohol-Exposed First-Trimester Trophoblast Cells. Alcohol Clin Exp Res 2017; 42:53-60. [PMID: 29048755 DOI: 10.1111/acer.13534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 10/12/2017] [Indexed: 11/30/2022]
Abstract
BACKGROUND Maternal alcohol abuse leading to fetal alcohol spectrum disorder (FASD) includes fetal growth restriction (FGR). Ethanol (EtOH) induces apoptosis of human placental trophoblast cells, possibly disrupting placentation and contributing to FGR in FASD. EtOH facilitates apoptosis in several embryonic tissues, including human trophoblasts, by raising intracellular Ca2+ . We previously found that acute EtOH exposure increases trophoblast apoptosis due to signaling from both intracellular and extracellular Ca2+ . Therefore, nifedipine, a Ca2+ channel blocker that is commonly administered to treat preeclampsia and preterm labor, was evaluated for cytoprotective properties in trophoblast cells exposed to alcohol. METHODS Human first-trimester chorionic villous explants and the human trophoblast cell line HTR-8/SVneo (HTR) were pretreated with 12.5 to 50 nM of the Ca2+ channel blocker nifedipine for 1 hour before exposure to 50 mM EtOH for an additional hour. Intracellular Ca2+ concentrations were monitored in real time by epifluorescence microscopy, using fluo-4-AM. Apoptosis was assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), accumulation of cytoplasmic cytochrome c, and cleavage rates of caspase 3 and caspase 9. RESULTS The increase in intracellular Ca2+ upon exposure to EtOH in both villous explants and HTR cells was completely blocked (p < 0.05) when pretreated with nifedipine, accompanied by inhibition of EtOH-induced release of cytochrome c, caspase activities, and TUNEL. CONCLUSIONS This study indicates that nifedipine can interrupt the apoptotic pathway downstream of EtOH exposure and could provide a novel strategy for future interventions in women with fetuses at risk for FASD.
Collapse
Affiliation(s)
- Alan D Bolnick
- Departments of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Jay M Bolnick
- Departments of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Hamid-Reza Kohan-Ghadr
- Departments of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Brian A Kilburn
- Departments of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Michael Hertz
- Departments of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Jing Dai
- Departments of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Sascha Drewlo
- Departments of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - D Randall Armant
- Departments of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, Michigan.,Anatomy& Cell Biology, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
10
|
Kalisch-Smith JI, Moritz KM. Detrimental effects of alcohol exposure around conception: putative mechanisms. Biochem Cell Biol 2017; 96:107-116. [PMID: 29112458 DOI: 10.1139/bcb-2017-0133] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In western countries, alcohol consumption is widespread in women of reproductive age, and in binge quantities. These countries also continue to have high incidences of unplanned pregnancies, with women often reported to cease drinking after discovering their pregnancy. This suggests the early embryo may be highly exposed to the detrimental effects of alcohol during the periconception period. The periconception and pre-implantation windows, which include maturation of the oocyte, fertilisation, and morphogenesis of the pre-implantation embryo, are particularly sensitive times of development. Within the oviduct and uterus, the embryo is exposed to a unique nutritional environment to facilitate its development and establish de-novo expression of the genome through epigenetic reprogramming. Alcohol has wide-ranging effects on cellular stress, as well as hormonal, and nutrient signalling pathways, which may affect the development and metabolism of the early embryo. In this review, we summarise the adverse developmental outcomes of early exposure to alcohol (prior to implantation in animal models) and discuss the potential mechanisms for these outcomes that may occur within the protected oviductal and uterine environment. One interesting candidate is reduced retinoic acid synthesis, as it is implicated in the control of epigenetic reprogramming and cell lineage commitment, processes that have adverse consequences for the formation of the placenta, and subsequently, fetal programming.
Collapse
Affiliation(s)
- J I Kalisch-Smith
- a School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - K M Moritz
- a School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia.,b Child Health Research Centre, The University of Queensland, South Brisbane, QLD 4101, Australia
| |
Collapse
|
11
|
Chirumbolo S, Bjørklund G. Homeopathic potencies of Arnica montana L. change gene expression in a Tamm-Horsfall protein-1 cell line in vitro model: the role of ethanol as a possible confounder and statistical bias. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2017; 15:255-264. [DOI: 10.1016/s2095-4964(17)60346-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
12
|
Bâ A. Alcohol and thiamine deficiency trigger differential mitochondrial transition pore opening mediating cellular death. Apoptosis 2017; 22:741-752. [DOI: 10.1007/s10495-017-1372-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
13
|
Li ZL, Li MQ, Li SY, Fu YS, Yang ZM. Alcohol Dehydrogenases and Acetaldehyde Dehydrogenases are Beneficial for Decidual Stromal Cells to Resist the Damage from Alcohol. Alcohol Alcohol 2017; 52:180-189. [PMID: 28182209 DOI: 10.1093/alcalc/agw073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 09/06/2016] [Accepted: 09/08/2016] [Indexed: 12/24/2022] Open
Abstract
Aims The aim of this study was to examine the effect of alcohol on the decidualization of human endometrial stromal cells during early pregnancy. Methods During in vitro decidualization, human endometrial stromal cells were treated with alcohol, 4-methylpyrazole hydrochloride (FPZ), the inhibitor of alcohol dehydrogenases (ADHs), and tetraethylthiuram disulfide (DSF), the inhibitor of acetaldehyde dehydrogenases (ALDHs), respectively. Cell viability and decidualization were examined. Apoptosis and proliferation were also evaluated. Results The findings showed that ADHs and ALDHs were up-regulated during decidualization. After alcohol treatment, the cell viability of decidual stromal cells was significantly higher than control, which was abrogated by FPZ or DSF. When cells were treated with alcohol, proliferation-related signal pathways were up-regulated in decidualized cells. Additionally, FOXO1 transcriptionally up-regulates ADH1B. Conclusion Our study provided an evidence that highly expressed ADHs and ALDHs endow decidual stromal cells an ability to alleviate the harm from alcohol.
Collapse
Affiliation(s)
- Zi-Long Li
- Department of Biology, Shantou University, 243 Daxue Rd., Shantou 515063, China.,College of Veterinary Medicine, South China Agricultural University, 483 Wushan Rd., Guangzhou 510642, China
| | - Meng-Qi Li
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Rd., Guangzhou 510642, China
| | - Shu-Yun Li
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Rd., Guangzhou 510642, China
| | - Yong-Sheng Fu
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Rd., Guangzhou 510642, China
| | - Zeng-Ming Yang
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Rd., Guangzhou 510642, China
| |
Collapse
|
14
|
Cesconetto PA, Andrade CM, Cattani D, Domingues JT, Parisotto EB, Filho DW, Zamoner A. Maternal Exposure to Ethanol During Pregnancy and Lactation Affects Glutamatergic System and Induces Oxidative Stress in Offspring Hippocampus. Alcohol Clin Exp Res 2016; 40:52-61. [PMID: 26727523 DOI: 10.1111/acer.12917] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 09/28/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND Alcohol abuse during pregnancy leads to intellectual disability and morphological defects in the offspring. The aim of this study was to determine the effect of chronic maternal ethanol (EtOH) consumption during pregnancy and lactation on glutamatergic transmission regulation, energy deficit, and oxidative stress in the hippocampus of the offspring. METHODS EtOH was administered to dams in drinking water at increasing doses (2 to 20%) from the gestation day 5 to lactation day 21. EtOH and tap water intake by treated and control groups, respectively, were measured daily. RESULTS Results showed that EtOH exposure does not affect fluid intake over the course of pregnancy and lactation. The toxicity of maternal exposure to EtOH was demonstrated by decreased offspring body weight at experimental age, on postnatal day 21. Moreover, maternal EtOH exposure decreased (45) Ca(2+) influx in the offspring's hippocampus. Corroborating this finding, EtOH increased both Na(+) -dependent and Na(+) -independent glial [(14) C]-glutamate uptake in hippocampus of immature rats. Also, maternal EtOH exposure decreased glutamine synthetase activity and induced aspartate aminotransferase enzymatic activity, suggesting that in EtOH-exposed offspring hippocampus, glutamate is preferentially used as a fuel in tricarboxylic acid cycle instead of being converted into glutamine. In addition, EtOH exposure decreased [U-14C]-2-deoxy-D-glucose uptake in offspring hippocampus. CONCLUSIONS The decline in glucose transport coincided with increased lactate dehydrogenase activity, suggesting an adaptative response in EtOH-exposed offspring hippocampus, using lactate as an alternative fuel. These events were associated with oxidative damage, as demonstrated by changes in the enzymatic antioxidant defense system and lipid peroxidation. Taken together, the results demonstrate that maternal exposure to EtOH during pregnancy and lactation impairs glutamatergic transmission, as well as inducing oxidative stress and energy deficit in immature rat hippocampus.
Collapse
Affiliation(s)
- Patricia A Cesconetto
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Camila M Andrade
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Daiane Cattani
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Juliana T Domingues
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Eduardo B Parisotto
- Departamento de Ecologia e Zoologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Danilo W Filho
- Departamento de Ecologia e Zoologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Ariane Zamoner
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
15
|
Alcohol exposure impairs trophoblast survival and alters subtype-specific gene expression in vitro. Placenta 2016; 46:87-91. [DOI: 10.1016/j.placenta.2016.08.080] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/29/2016] [Accepted: 08/19/2016] [Indexed: 01/27/2023]
|
16
|
Egeland GM, Klungsøyr K, Øyen N, Tell GS, Næss Ø, Skjærven R. Preconception Cardiovascular Risk Factor Differences Between Gestational Hypertension and Preeclampsia: Cohort Norway Study. Hypertension 2016; 67:1173-80. [PMID: 27113053 PMCID: PMC4861703 DOI: 10.1161/hypertensionaha.116.07099] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/18/2016] [Indexed: 11/16/2022]
Abstract
Supplemental Digital Content is available in the text. Preconception predictors of gestational hypertension and preeclampsia may identify opportunities for early detection and improve our understanding of the pathogenesis and life course epidemiology of these conditions. Female participants in community-based Cohort Norway health surveys, 1994 to 2003, were prospectively followed through 2012 via record linkages to Medical Birth Registry of Norway. Analyses included 13 217 singleton pregnancies (average of 1.59 births to 8321 women) without preexisting hypertension. Outcomes were gestational hypertension without proteinuria (n=237) and preeclampsia (n=429). Mean age (SD) at baseline was 27.9 years (4.5), and median follow-up was 4.8 years (interquartile range 2.6–7.8). Gestational hypertension and preeclampsia shared several baseline risk factors: family history of diabetes mellitus, pregravid diabetes mellitus, a high total cholesterol/high-density lipoprotein cholesterol ratio (>5), overweight and obesity, and elevated blood pressure status. For preeclampsia, a family history of myocardial infarction before 60 years of age and elevated triglyceride levels (≥1.7 mmol/L) also predicted risk while physical activity was protective. Preterm preeclampsia was predicted by past-year binge drinking (≥5 drinks on one occasion) with an adjusted odds ratio of 3.7 (95% confidence interval 1.3–10.8) and by past-year physical activity of ≥3 hours per week with an adjusted odds ratio of 0.5 (95% confidence interval 0.3–0.8). The results suggest similarities and important differences between gestational hypertension, preeclampsia, and preterm preeclampsia. Modifiable risk factors could be targeted for improving pregnancy outcomes and the short- and long-term sequelae for mothers and offspring.
Collapse
Affiliation(s)
- Grace M Egeland
- From the Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway (G.M.E., K.K., N.Ø., G.S.T., R.S.); Health Data and Digitalization, Norwegian Institute of Public Health, Bergen, Norway (G.M.E., K.K., G.S.T., Ø.N., R.S.); and Institute of Health and Society, Blindern, University of Oslo, Oslo, Norway (Ø.N.).
| | - Kari Klungsøyr
- From the Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway (G.M.E., K.K., N.Ø., G.S.T., R.S.); Health Data and Digitalization, Norwegian Institute of Public Health, Bergen, Norway (G.M.E., K.K., G.S.T., Ø.N., R.S.); and Institute of Health and Society, Blindern, University of Oslo, Oslo, Norway (Ø.N.)
| | - Nina Øyen
- From the Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway (G.M.E., K.K., N.Ø., G.S.T., R.S.); Health Data and Digitalization, Norwegian Institute of Public Health, Bergen, Norway (G.M.E., K.K., G.S.T., Ø.N., R.S.); and Institute of Health and Society, Blindern, University of Oslo, Oslo, Norway (Ø.N.)
| | - Grethe S Tell
- From the Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway (G.M.E., K.K., N.Ø., G.S.T., R.S.); Health Data and Digitalization, Norwegian Institute of Public Health, Bergen, Norway (G.M.E., K.K., G.S.T., Ø.N., R.S.); and Institute of Health and Society, Blindern, University of Oslo, Oslo, Norway (Ø.N.)
| | - Øyvind Næss
- From the Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway (G.M.E., K.K., N.Ø., G.S.T., R.S.); Health Data and Digitalization, Norwegian Institute of Public Health, Bergen, Norway (G.M.E., K.K., G.S.T., Ø.N., R.S.); and Institute of Health and Society, Blindern, University of Oslo, Oslo, Norway (Ø.N.)
| | - Rolv Skjærven
- From the Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway (G.M.E., K.K., N.Ø., G.S.T., R.S.); Health Data and Digitalization, Norwegian Institute of Public Health, Bergen, Norway (G.M.E., K.K., G.S.T., Ø.N., R.S.); and Institute of Health and Society, Blindern, University of Oslo, Oslo, Norway (Ø.N.)
| |
Collapse
|
17
|
Kiecker C. The chick embryo as a model for the effects of prenatal exposure to alcohol on craniofacial development. Dev Biol 2016; 415:314-325. [PMID: 26777098 DOI: 10.1016/j.ydbio.2016.01.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/28/2015] [Accepted: 01/13/2016] [Indexed: 12/15/2022]
Abstract
Prenatal exposure to ethanol results in fetal alcohol spectrum disorder (FASD), a syndrome characterised by a broad range of clinical manifestations including craniofacial dysmorphologies and neurological defects. The characterisation of the mechanisms by which ethanol exerts its teratogenic effects is difficult due to the pleiotropic nature of its actions. Different experimental model systems have been employed to investigate the aetiology of FASD. Here, I will review studies using these different model organisms that have helped to elucidate how ethanol causes the craniofacial abnormalities characteristic of FASD. In these studies, ethanol was found to impair the prechordal plate-an important embryonic signalling centre-during gastrulation and to negatively affect the induction, migration and survival of the neural crest, a cell population that generates the cartilage and most of the bones of the skull. At the cellular level, ethanol appears to inhibit Sonic hedgehog signalling, alter levels of retionoic acid activity, trigger a Ca(2+)-CamKII-dependent pathway that antagonises WNT signalling, affect cytoskeletal dynamics and increase oxidative stress. Embryos of the domestic chick Gallus gallus domesticus have played a central role in developing a working model for the effects of ethanol on craniofacial development because they are easily accessible and because key steps in craniofacial development are particularly well established in the avian embryo. I will finish this review by highlighting some potential future avenues of fetal alcohol research.
Collapse
Affiliation(s)
- Clemens Kiecker
- MRC Centre for Developmental Neurobiology, 4th Floor, Hodgkin Building, Guy's Hospital Campus, King's College London, UK.
| |
Collapse
|
18
|
Prenatal ethanol exposure and placental hCG and IGF2 expression. Placenta 2015; 36:854-62. [PMID: 26031386 DOI: 10.1016/j.placenta.2015.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 04/16/2015] [Accepted: 05/11/2015] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Fetal alcohol spectrum disorder (FASD) is the main cause of preventable non-genetic mental retardation. Diagnosis of prenatal exposure to ethanol (PEE) is based on questionnaires and biomarkers in perinatal matrices. Early diagnosis of FASD is important to mitigate secondary disabilities that will arise later in life. It is important to identify biomarkers related to cellular damage caused by PEE. The main objective was to identify novel candidate biomarkers from placental tissue using an in vitro model of exposure to ethanol and to support it in placental tissue obtained from pregnancies with PEE assessed by fatty acid esters in meconium samples. METHODS First, hormone production was examined using two different human trophoblast cell lines, JEG3 and BeWo. Viable cell count by exclusion method was analyzed and human chorionic gonadotrophin (hCG) and insulin-like growth factor 2 (IGF2) were quantified by Western blot and ELISA. Second, these techniques were used in protein lysates from human placentas from pregnancies with and without exposure to ethanol. RESULTS Both trophoblast cell lines showed a decrease in cell viability accompanied with apoptosis activation after a chronic ethanol treatment. Moreover, we showed an increase in the secretion of hCG and IGF2 in a dose-dependent manner. Interestingly, this increase was also observed in a set of human placenta tissue from fetuses exposed prenatally to ethanol. DISCUSSION Ethanol exposure during pregnancy causes placenta cell damage, so altering its normal function. The specific hCG and IGF2 release pattern is a candidate surrogated biomarker of the damage due to PEE.
Collapse
|
19
|
Smith SM, Garic A, Berres ME, Flentke GR. Genomic factors that shape craniofacial outcome and neural crest vulnerability in FASD. Front Genet 2014; 5:224. [PMID: 25147554 PMCID: PMC4124534 DOI: 10.3389/fgene.2014.00224] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 06/27/2014] [Indexed: 12/01/2022] Open
Abstract
Prenatal alcohol exposure (PAE) causes distinctive facial characteristics in some pregnancies and not others; genetic factors may contribute to this differential vulnerability. Ethanol disrupts multiple events of neural crest development, including induction, survival, migration, and differentiation. Animal models and genomic approaches have substantially advanced our understanding of the mechanisms underlying these facial changes. PAE during gastrulation produces craniofacial changes corresponding with human fetal alcohol syndrome. These result because PAE reduces prechordal plate extension and suppresses sonic hedgehog, leading to holoprosencephaly and malpositioned facial primordia. Haploinsufficiency in sonic hedgehog signaling increases vulnerability to facial deficits and may influence some PAE pregnancies. In contrast, PAE during early neurogenesis produces facial hypoplasia, preceded by neural crest reductions due to significant apoptosis. Factors mediating this apoptosis include intracellular calcium mobilization, elevated reactive oxygen species, and loss of trophic support from β-catenin/calcium, sonic hedgehog, and mTOR signaling. Genome-wide SNP analysis links PDGFRA with facial outcomes in human PAE. Multiple genomic-level comparisons of ethanol-sensitive and – resistant early embryos, in both mouse and chick, independently identify common candidate genes that may potentially modify craniofacial vulnerability, including ribosomal proteins, proteosome, RNA splicing, and focal adhesion. In summary, research using animal models with genome-level differences in ethanol vulnerability, as well as targeted loss-and gain-of-function mutants, has clarified the mechanisms mediating craniofacial change in PAE. The findings additionally suggest that craniofacial deficits may represent a gene–ethanol interaction for some affected individuals. Genetic-level changes may prime individuals toward greater sensitivity or resistance to ethanol’s neurotoxicity.
Collapse
Affiliation(s)
- Susan M Smith
- Department of Nutritional Sciences, University of Wisconsin-Madison Madison, WI, USA
| | - Ana Garic
- Department of Nutritional Sciences, University of Wisconsin-Madison Madison, WI, USA
| | - Mark E Berres
- Department of Animal Sciences, University of Wisconsin-Madison Madison, WI, USA
| | - George R Flentke
- Department of Nutritional Sciences, University of Wisconsin-Madison Madison, WI, USA
| |
Collapse
|
20
|
Garic A, Berres ME, Smith SM. High-throughput transcriptome sequencing identifies candidate genetic modifiers of vulnerability to fetal alcohol spectrum disorders. Alcohol Clin Exp Res 2014; 38:1874-82. [PMID: 24962712 PMCID: PMC4149215 DOI: 10.1111/acer.12457] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 03/31/2014] [Indexed: 12/01/2022]
Abstract
BACKGROUND Fetal alcohol spectrum disorders (FASD) is a leading cause of neurodevelopmental disability. Genetic factors can modify vulnerability to FASD, but these elements are poorly characterized. METHODS We performed high-throughput transcriptional profiling to identify gene candidates that could potentially modify vulnerability to ethanol's (EtOH's) neurotoxicity. We interrogated a unique genetic resource, neuroprogenitor cells from 2 closely related Gallus gallus lines having well-characterized robust or attenuated EtOH responses with respect to intracellular calcium mobilization and CaMKII/β-catenin-dependent apoptosis. Samples were not exposed to EtOH prior to analysis. RESULTS We identified 363 differentially expressed genes in neuroprogenitors from these 2 lines. Kyoto Encyclopedia of Genes and Genomes analysis revealed several gene clusters having significantly differential enrichment in gene expression. The largest and most significant cluster comprised ribosomal proteins (38 genes, p = 1.85 × 10(-47) ). Other significantly enriched gene clusters included metabolism (25 genes, p = 0.0098), oxidative phosphorylation (18 genes, p = 1.10 × 10(-11) ), spliceosome (13 genes, p = 7.02 × 10(-8) ), and protein processing in the endoplasmic reticulum (9 genes, p = 0.0011). Inspection of gene ontogeny (GO) terms identified 24 genes involved in the calcium/β-catenin signals that mediate EtOH's neurotoxicity in this model, including β-catenin itself and both calmodulin isoforms. CONCLUSIONS Four of the identified pathways with altered transcript abundance mediate the flow of cellular information from RNA to protein. Importantly, ribosome biogenesis also senses nucleolar stress and regulates p53-mediated apoptosis in neural crest. Human ribosomopathies produce craniofacial malformations and 11 known ribosomopathy genes were differentially expressed in this model of neural crest apoptosis. Rapid changes in ribosome expression are consistently observed in EtOH-treated mouse embryo neural folds, a model that is developmentally similar to ours. The recurring identification of ribosome biogenesis suggests it is a candidate modifier of EtOH vulnerability. These results highlight this approach's efficacy to formulate new, mechanistic hypotheses regarding EtOH's developmental damage.
Collapse
Affiliation(s)
| | - Mark E. Berres
- Corresponding author: Susan Smith, Ph.D., Department of Nutritional Sciences, University of Wisconsin-Madison, 1415 Linden Drive, Madison, WI 53706, Tel (608) 263-4316, Fax (608) 262-5860, Corresponding author mail id:
| | - Susan M. Smith
- Departments of Nutritional Sciences and Animal Sciences, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|