1
|
Janeski JD, Naik VD, Carabulea AL, Jiang H, Ramadoss J. In Vivo Administration of Phosphatidic Acid, a Direct Alcohol Target Rescues Fetal Growth Restriction and Maternal Uterine Artery Dysfunction in Rat FASD Model. Nutrients 2024; 16:1409. [PMID: 38794647 PMCID: PMC11123873 DOI: 10.3390/nu16101409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Fetal growth restriction is a hallmark of Fetal Alcohol Syndrome (FAS) and is accompanied by maternal uterine circulatory maladaptation. FAS is the most severe form of Fetal Alcohol Spectrum Disorder (FASD), a term for the range of conditions that can develop in a fetus when their pregnant mother consumes alcohol. Alcohol exerts specific direct effects on lipids that control fundamental developmental processes. We previously demonstrated that direct in vitro application of phosphatidic acid (PA, the simplest phospholipid and a direct target of alcohol exposure) to excised uterine arteries from alcohol-exposed rats improved vascular function, but it is unknown if PA can rescue end organ phenotypes in our FASD animal model. Pregnant Sprague-Dawley rats (n = 40 total dams) were gavaged daily from gestational day (GD) 5 to GD 19 with alcohol or maltose dextrin, with and without PA supplementation, for a total of four unique groups. To translate and assess the beneficial effects of PA, we hypothesized that in vivo administration of PA concomitant with chronic binge alcohol would reverse uterine artery dysfunction and fetal growth deficits in our FASD model. Mean fetal weights and placental efficiency were significantly lower in the binge alcohol group compared with those in the control (p < 0.05). However, these differences between the alcohol and the control groups were completely abolished by auxiliary in vivo PA administration with alcohol, indicating a reversal of the classic FAS growth restriction phenotype. Acetylcholine (ACh)-induced uterine artery relaxation was significantly impaired in the uterine arteries of chronic in vivo binge alcohol-administered rats compared to the controls (p < 0.05). Supplementation of PA in vivo throughout pregnancy reversed the alcohol-induced vasodilatory deficit; no differences were detected following in vivo PA administration between the pair-fed control and PA alcohol groups. Maximal ACh-induced vasodilation was significantly lower in the alcohol group compared to all the other treatments, including control, control PA, and alcohol PA groups (p < 0.05). When analyzing excitatory vasodilatory p1177-eNOS, alcohol-induced downregulation of p1177-eNOS was completely reversed following in vivo PA supplementation. In summary, these novel data utilize a specific alcohol target pathway (PA) to demonstrate a lipid-based preventive strategy and provide critical insights important for the development of translatable interventions.
Collapse
Affiliation(s)
- Joseph D. Janeski
- Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Vishal D. Naik
- Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Alexander L. Carabulea
- Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Hong Jiang
- Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Jayanth Ramadoss
- Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
2
|
Gualdoni GS, Barril C, Jacobo PV, Pacheco Rodríguez LN, Cebral E. Involvement of metalloproteinase and nitric oxide synthase/nitric oxide mechanisms in early decidual angiogenesis-vascularization of normal and experimental pathological mouse placenta related to maternal alcohol exposure. Front Cell Dev Biol 2023; 11:1207671. [PMID: 37670932 PMCID: PMC10476144 DOI: 10.3389/fcell.2023.1207671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/28/2023] [Indexed: 09/07/2023] Open
Abstract
Successful pregnancy for optimal fetal growth requires adequate early angiogenesis and remodeling of decidual spiral arterioles during placentation. Prior to the initiation of invasion and endothelial replacement by trophoblasts, interactions between decidual stromal cells and maternal leukocytes, such as uterine natural killer cells and macrophages, play crucial roles in the processes of early maternal vascularization, such as proliferation, apoptosis, migration, differentiation, and matrix and vessel remodeling. These placental angiogenic events are highly dependent on the coordination of several mechanisms at the early maternal-fetal interface, and one of them is the expression and activity of matrix metalloproteinases (MMPs) and endothelial nitric oxide synthases (NOSs). Inadequate balances of MMPs and nitric oxide (NO) are involved in several placentopathies and pregnancy complications. Since alcohol consumption during gestation can affect fetal growth associated with abnormal placental development, recently, we showed, in a mouse model, that perigestational alcohol consumption up to organogenesis induces fetal malformations related to deficient growth and vascular morphogenesis of the placenta at term. In this review, we summarize the current knowledge of the early processes of maternal vascularization that lead to the formation of the definitive placenta and the roles of angiogenic MMP and NOS/NO mechanisms during normal and altered early gestation in mice. Then, we propose hypothetical defective decidual cellular and MMP and NOS/NO mechanisms involved in abnormal decidual vascularization induced by perigestational alcohol consumption in an experimental mouse model. This review highlights the important roles of decidual cells and their MMP and NOS balances in the physiological and pathophysiological early maternal angiogenesis-vascularization during placentation in mice.
Collapse
Affiliation(s)
| | | | | | | | - Elisa Cebral
- Laboratorio de Reproducción y Fisiología Materno-Embrionaria, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
3
|
Hartel TC, Oelofse A, De Smidt JJA. Vascular Effects, Potential Pathways and Mediators of Fetal Exposure to Alcohol and Cigarette Smoking during Pregnancy: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6398. [PMID: 37510630 PMCID: PMC10378932 DOI: 10.3390/ijerph20146398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
(1) Background: Programming of atherosclerosis results in vascular structure and function alterations, which may be attributed to fetal exposure to maternal tobacco smoking, alcohol consumption and several lifestyle factors in the first few years of life. This review aims to study the effects of teratogen exposure in utero on vascular dysfunction in offspring and consider mediators and pathways originating from the fetal environment. (2) Methods: Eligible studies were identified in the PubMed, Scopus and Web of Science databases. After the full-text screening, 20 articles were included in the narrative synthesis. (3) Results: The literature presents evidence supporting the detrimental effects of fetal exposure to tobacco smoking on vascular alterations in both human and animal studies. Alcohol exposure impaired endothelial dilation in animal studies, but human studies on both tobacco and alcohol exposure are still sparse. Reduction in nitric oxide (NO) bioavailability and alterations in the epigenome in infants through the upregulation of pro-oxidative and proinflammatory genes may be the common denominators. (4) Conclusion: While maternal smoking and alcohol consumption have more negative outcomes on the infant in the short term, several factors during the first few years of life may mediate the development of vascular dysfunction. Therefore, more prospective studies are needed to ascertain the long-term effects of teratogen exposure, specifically in South Africa.
Collapse
Affiliation(s)
- Tammy C Hartel
- Department of Medical Biosciences, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville, Cape Town 7530, South Africa
| | - André Oelofse
- Department of Medical Biosciences, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville, Cape Town 7530, South Africa
| | - Juléy J A De Smidt
- Department of Medical Biosciences, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville, Cape Town 7530, South Africa
| |
Collapse
|
4
|
Momin SZ, Le JT, Miranda RC. Vascular Contributions to the Neurobiological Effects of Prenatal Alcohol Exposure. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2023; 3:10924. [PMID: 37205306 PMCID: PMC10191416 DOI: 10.3389/adar.2023.10924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Fetal alcohol spectrum disorders (FASD) are often characterized as a cluster of brain-based disabilities. Though cardiovascular effects of prenatal alcohol exposure (PAE) have been documented, the vascular deficits due to PAE are less understood, but may contribute substantially to the severity of neurobehavioral presentation and health outcomes in persons with FASD. Methods We conducted a systematic review of research articles curated in PubMed to assess the strength of the research on vascular effects of PAE. 40 pertinent papers were selected, covering studies in both human populations and animal models. Results Studies in human populations identified cardiac defects, and defects in vasculature, including increased tortuosity, defects in basement membranes, capillary basal hyperplasia, endarteritis, and disorganized and diminished cerebral vasculature due to PAE. Preclinical studies showed that PAE rapidly and persistently results in vasodilation of large afferent cerebral arteries, but to vasoconstriction of smaller cerebral arteries and microvasculature. Moreover, PAE continues to affect cerebral blood flow into middle-age. Human and animal studies also indicate that ocular vascular parameters may have diagnostic and predictive value. A number of intervening mechanisms were identified, including increased autophagy, inflammation and deficits in mitochondria. Studies in animals identified persistent changes in blood flow and vascular density associated with endocannabinoid, prostacyclin and nitric oxide signaling, as well as calcium mobilization. Conclusion Although the brain has been a particular focus of studies on PAE, the cardiovascular system is equally affected. Studies in human populations, though constrained by small sample sizes, did link pathology in major blood vessels and tissue vasculature, including brain vasculature, to PAE. Animal studies highlighted molecular mechanisms that may be useful therapeutic targets. Collectively, these studies suggest that vascular pathology is a possible contributing factor to neurobehavioral and health problems across a lifespan in persons with a diagnosis of FASD. Furthermore, ocular vasculature may serve as a biomarker for neurovascular health in FASD.
Collapse
Affiliation(s)
| | | | - Rajesh C. Miranda
- Corresponding author to whom correspondence should be addressed: Rajesh C. Miranda, PhD, , Texas A&M University Health Science Center, School of Medicine, Department of Neuroscience & Experimental Therapeutics, Medical Research and Education Building, 8447 Riverside Parkway, Bryan, TX 77807-3260, Phone: 979-436-0332, Fax: 979-436-0086
| |
Collapse
|
5
|
Interaction of Alcohol & Phosphatidic Acid in Maternal Rat Uterine Artery Function. Reprod Toxicol 2022; 111:178-183. [PMID: 35671880 PMCID: PMC9670159 DOI: 10.1016/j.reprotox.2022.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 11/23/2022]
Abstract
Alcohol has been demonstrated to impair maternal uterine arterial adaptations in Fetal Alcohol Spectrum Disorder (FASD) animal models. However, the exact mechanism remains inconclusive. We hypothesized that phosphatidic acid (PA), a direct target of alcohol metabolism, would alleviate alcohol-induced vascular dysfunction of the maternal uterine artery. Mean fetal weight, and crown-rump length of the alcohol administered rats were ~9% and 7.6% lower than the pair-fed control pups, respectively. Acetylcholine (Ach)-induced uterine artery relaxation was significantly impaired in uterine arteries of alcohol-administered rats (P<0.05). Supplementation of 10-5M PA reversed alcohol-induced vasodilatory deficit; no difference was detected after PA treatment between pair-fed control and alcohol groups (P=0.37). There was a significant interaction between PA concentrations and alcohol exposure (PA X Alcohol effect, P<0.0001). Pair-wise comparisons showed a concentration-dependent vasodilatory effect on uterine arteries of the alcohol-administered rats, with % relaxation significantly improved at PA concentrations > 10-7 M (P<0.05). Alcohol significantly reduced vasodilatory P-Ser1177 endothelial nitric oxide synthase (eNOS) levels in the uterine artery (↓90.7%; P=0.0029). PA treatment significantly reversed P-Ser1177 eNOS level in alcohol uterine arteries (153.7%↑; P=0.005); following ex vivo PA, there was no difference in P-Ser1177 eNOS levels between Control and Alcohol. Neither alcohol treatment nor PA affected total eNOS levels. Our data provide the first evidence of the interaction of alcohol and PA in rat maternal uterine artery vascular function and demonstrates PA's relationship with the eNOS system. Overall, the current study demonstrates that PA may be a promising therapeutic molecule of interest in alcohol-related gestational vascular dysfunction.
Collapse
|
6
|
Gualdoni GS, Jacobo PV, Barril C, Ventureira MR, Cebral E. Early Abnormal Placentation and Evidence of Vascular Endothelial Growth Factor System Dysregulation at the Feto-Maternal Interface After Periconceptional Alcohol Consumption. Front Physiol 2022; 12:815760. [PMID: 35185604 PMCID: PMC8847216 DOI: 10.3389/fphys.2021.815760] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/28/2021] [Indexed: 01/16/2023] Open
Abstract
Adequate placentation, placental tissue remodeling and vascularization is essential for the success of gestation and optimal fetal growth. Recently, it was suggested that abnormal placenta induced by maternal alcohol consumption may participate in fetal growth restriction and relevant clinical manifestations of the Fetal Alcohol Spectrum Disorders (FASD). Particularly, periconceptional alcohol consumption up to early gestation can alter placentation and angiogenesis that persists in pregnancy beyond the exposure period. Experimental evidence suggests that abnormal placenta following maternal alcohol intake is associated with insufficient vascularization and defective trophoblast development, growth and function in early gestation. Accumulated data indicate that impaired vascular endothelial growth factor (VEGF) system, including their downstream effectors, the nitric oxide (NO) and metalloproteinases (MMPs), is a pivotal spatio-temporal altered mechanism underlying the early placental vascular alterations induced by maternal alcohol consumption. In this review we propose that the periconceptional alcohol intake up to early organogenesis (first trimester) alters the VEGF-NO-MMPs system in trophoblastic-decidual tissues, generating imbalances in the trophoblastic proliferation/apoptosis, insufficient trophoblastic development, differentiation and migration, deficient labyrinthine vascularization, and uncompleted remodelation and transformation of decidual spiral arterioles. Consequently, abnormal placenta with insufficiency blood perfusion, vasoconstriction and reduced labyrinthine blood exchange can be generated. Herein, we review emerging knowledge of abnormal placenta linked to pregnancy complications and FASD produced by gestational alcohol ingestion and provide evidence of the early abnormal placental angiogenesis-vascularization and growth associated to decidual-trophoblastic dysregulation of VEGF system after periconceptional alcohol consumption up to mid-gestation, in a mouse model.
Collapse
|
7
|
LO JO, SCHABEL MC, ROBERTS VH, MORGAN TK, FEI SS, GAO L, RAY KG, LEWANDOWSKI KS, NEWMAN NP, BOHN JA, GRANT KA, FRIAS AE, KROENKE CD. Effects of early daily alcohol exposure on placental function and fetal growth in a rhesus macaque model. Am J Obstet Gynecol 2022; 226:130.e1-130.e11. [PMID: 34364844 PMCID: PMC8748286 DOI: 10.1016/j.ajog.2021.07.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/07/2021] [Accepted: 07/27/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Prenatal alcohol exposure is the most common cause of birth defects and intellectual disabilities and can increase the risk of stillbirth and negatively impact fetal growth. OBJECTIVE To determine the effect of early prenatal alcohol exposure on nonhuman primate placental function and fetal growth. We hypothesized that early chronic prenatal alcohol would alter placental perfusion and oxygen availability that adversely affects fetal growth. STUDY DESIGN Rhesus macaques self-administered 1.5 g/kg/d of ethanol (n=12) or isocaloric maltose-dextrin (n=12) daily before conception through the first 60 days of gestation (term is approximately 168 days). All animals were serially imaged with Doppler ultrasound to measure fetal biometry, uterine artery volume blood flow, and placental volume blood flow. Following Doppler ultrasound, all animals underwent both blood oxygenation level-dependent magnetic resonance imaging to characterize placental blood oxygenation and dynamic contrast-enhanced magnetic resonance imaging to quantify maternal placental perfusion. Animals were delivered by cesarean delivery for placental collection and fetal necropsy at gestational days 85 (n=8), 110 (n=8), or 135 (n=8). Histologic and RNA-sequencing analyses were performed on collected placental tissue. RESULTS Placental volume blood flow was decreased at all gestational time points in ethanol-exposed vs control animals, but most significantly at gestational day 110 by Doppler ultrasound (P<.05). A significant decrease in total volumetric blood flow occurred in ethanol-exposed vs control animals on dynamic contrast-enhanced magnetic resonance imaging at both gestation days 110 and 135 (P<.05); moreover, a global reduction in T2∗, high blood deoxyhemoglobin concentration, occurred throughout gestation (P<.05). Similarly, evidence of placental ischemic injury was notable by histologic analysis, which revealed a significant increase in microscopic infarctions in ethanol-exposed, not control, animals, largely present at middle to late gestation. Fetal biometry and weight were decreased in ethanol-exposed vs control animals, but the decrease was not significant. Analysis with RNA sequencing suggested the involvement of the inflammatory and extracellular matrix response pathways. CONCLUSION Early chronic prenatal alcohol exposure significantly diminished placental perfusion at mid to late gestation and also significantly decreased the oxygen supply to the fetal vasculature throughout pregnancy, these findings were associated with the presence of microscopic placental infarctions in the nonhuman primate. Although placental adaptations may compensate for early environmental perturbations to fetal growth, placental blood flow and oxygenation were reduced, consistent with the evidence of placental ischemic injury.
Collapse
Affiliation(s)
- Jamie O. LO
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, USA,Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA,Corresponding Author: Jamie Lo, MD, Department of Obstetrics and Gynecology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Mail Code L458, Portland, Oregon 97239, Work Phone: (503) 494-2101, Home Phone: (503) 679-2025, Fax: (503) 494-5296,
| | - Matthias C. SCHABEL
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Victoria H.J. ROBERTS
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Terry K. MORGAN
- Department of Pathology, Oregon Health & Science University, Portland, OR, USA
| | - Suzanne S. FEI
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Lina GAO
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Karina G. RAY
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Katherine S. LEWANDOWSKI
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Natali P. NEWMAN
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Jacqueline A. BOHN
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, USA
| | - Kathleen A. GRANT
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Antonio E. FRIAS
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, USA,Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Christopher D. KROENKE
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA,Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| |
Collapse
|
8
|
Kwan STC, Ricketts DK, Presswood BH, Smith SM, Mooney SM. Prenatal choline supplementation during mouse pregnancy has differential effects in alcohol-exposed fetal organs. Alcohol Clin Exp Res 2021; 45:2471-2484. [PMID: 34697823 DOI: 10.1111/acer.14730] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Fetal alcohol spectrum disorders (FASD) are preventable adverse outcomes consequent to prenatal alcohol exposure. Supplemental choline confers neuroprotection to the alcohol-exposed offspring, but its actions outside the brain are unclear. We previously reported that prenatal exposure of mice to 4.5 g/kg of alcohol decreased placental weight in females only, but decreased body weight and liver-to-body weight ratio and increased brain-to-body weight ratio in both sexes. Here we test the hypotheses that a lower alcohol dose will elicit similar outcomes, and that concurrent choline treatment will mitigate these outcomes. METHODS Pregnant C57BL/6J mice were gavaged with alcohol (3 g/kg; Alc) or maltodextrin (MD) from embryonic day (E) 8.5-17.5. Some also received a subcutaneous injection of 100 mg/kg choline chloride (Alc + Cho, MD + Cho). Outcomes were evaluated on E17.5. RESULTS Alc dams had lower gestational weight gain than MD; this was normalized by choline. In males, Alc decreased placental weight whereas choline increased placental efficiency, and Alc + Cho (vs. MD) tended to further reduce placental weight and increase efficiency. Despite no significant alcohol effects on these measures, choline increased fetal body weight but not brain weight, thus reducing brain-to-body weight ratio in both sexes. This ratio was also lower in the Alc + Cho (vs. MD) fetuses. Alc reduced liver weight and the liver-to-body weight ratio; choline did not improve these. Placental weight and efficiency correlated with litter size, whereas placental efficiency correlated with fetal morphometric measurements. CONCLUSIONS Choline prevents an alcohol-induced reduction in gestational weight gain and fetal body weight and corrects fetal brain sparing, consistent with clinical findings of improvements in alcohol-exposed children born to mothers receiving choline supplementation. Importantly, we show that choline enhances placental efficiency in the alcohol-exposed offspring but does not normalize fetal liver growth. Our findings support choline supplementation during pregnancy to mitigate the severity of FASD and emphasize the need to examine choline's actions in different organ systems.
Collapse
Affiliation(s)
- Sze Ting Cecilia Kwan
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, USA
| | - Dane K Ricketts
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, USA
| | - Brandon H Presswood
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, USA
| | - Susan M Smith
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, USA.,Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sandra M Mooney
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, USA.,Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
9
|
Lee J, Naik V, Orzabal M, Lunde-Young R, Ramadoss J. Morphological alteration in rat hippocampal neuronal dendrites following chronic binge prenatal alcohol exposure. Brain Res 2021; 1768:147587. [PMID: 34297994 DOI: 10.1016/j.brainres.2021.147587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/15/2021] [Accepted: 07/16/2021] [Indexed: 10/20/2022]
Abstract
Prenatal alcohol exposure (PAE) may result in Fetal Alcohol Spectrum Disorders (FASD). The hippocampus has been recognized as a vulnerable target to alcohol-induced developmental damage. However, the effect of prenatal exposure to alcohol on dendritic morphological adaptations throughout the hippocampal fields in the developing brain still remains largely unknown in the context of FASD. We hypothesized that chronic binge alcohol exposure during pregnancy alters dendrite arborization throughout the developing rat hippocampus. Pregnant Sprague-Dawley rats were assigned to either a pair-fed control (PF-Cont) or a binge alcohol (Alcohol) treatment group. Alcohol dams were acclimatized via a once-daily orogastric gavage of 4.5 g/kg alcohol from gestational day (GD) 5-10 and progressed to 6 g/kg alcohol from GD 11-21. Pair-fed dams similarly received isocaloric maltose dextrin. After parturition, all dams received an ad libitum diet and nursed their offspring until postnatal day (PND) 10 when the pup brains were collected for morphological analysis. PAE increased dendritic arborization and complexities of CA1, CA2/3, and DG neurons in the PND 10 rat hippocampus. The number of primary dendrites, total dendritic length, and number of dendritic branches were significantly increased following PAE, and Sholl analysis revealed significantly more intersections of the dendritic processes in PND 10 offspring following PAE compared with those in the PF-Cont group. We conclude that chronic binge PAE significantly alters hippocampal dendritic morphology in the developing hippocampus. We conjecture that this morphological alteration in postnatal rat hippocampal dendrites following chronic binge prenatal alcohol exposure may play a critical role in FASD neurobiological phenotypes.
Collapse
Affiliation(s)
- Jehoon Lee
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Vishal Naik
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Marcus Orzabal
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Raine Lunde-Young
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Jayanth Ramadoss
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
10
|
Raghunathan R, Liu CH, Kouka A, Singh M, Miranda RC, Larin KV. Dose-response analysis of microvasculature changes in the murine fetal brain and the maternal extremities due to prenatal ethanol exposure. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:JBO-200176RR. [PMID: 33244919 PMCID: PMC7689263 DOI: 10.1117/1.jbo.25.12.126001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 11/06/2020] [Indexed: 05/29/2023]
Abstract
SIGNIFICANCE Prenatal exposure to ethanol causes several morphological and neurobehavioral deficits. While there are some studies on the effects of ethanol exposure on blood flow, research focusing on acute changes in the microvasculature is limited. AIM The first aim of this study was to assess the dose-dependent changes in murine fetal brain microvasculature of developing fetuses in response to maternal alcohol consumption. The second aim was to quantify changes in vasculature occurring concurrently in the mother's hindlimb and the fetus's brain after maternal exposure to alcohol. APPROACH Correlation mapping optical coherence angiography was used to evaluate the effects of prenatal exposure to different doses of ethanol (3, 1.5, and 0.75 g / kg) on murine fetal brain vasculature in utero. Additionally, simultaneous imaging of maternal peripheral vessels and the fetal brain vasculature was performed to assess changes of the vasculature occurring concurrently in response to ethanol consumption. RESULTS The fetal brain vessel diameters (VDs) decreased by ∼47 % , 30%, and 14% in response to ethanol doses of 3, 1.5, and 0.75 g / kg, respectively. However, the mother's hindlimb VD increased by 63% in response to ethanol at a dose of 3 g / kg. CONCLUSIONS Results showed a dose-dependent reduction in vascular blood flow in fetal brain vessels when the mother was exposed to ethanol, whereas vessels in the maternal hindlimb exhibited concurrent vasodilation.
Collapse
Affiliation(s)
- Raksha Raghunathan
- University of Houston, Department of Biomedical Engineering, Houston, Texas, United States
| | - Chih-Hao Liu
- University of Houston, Department of Biomedical Engineering, Houston, Texas, United States
| | - Amur Kouka
- University of Houston, Department of Biomedical Engineering, Houston, Texas, United States
| | - Manmohan Singh
- University of Houston, Department of Biomedical Engineering, Houston, Texas, United States
| | - Rajesh C. Miranda
- Texas A&M University Health Science Center College of Medicine, Department of Neuroscience and Experimental Therapeutics, Bryan, Texas, United States
| | - Kirill V. Larin
- University of Houston, Department of Biomedical Engineering, Houston, Texas, United States
| |
Collapse
|
11
|
Lee J, Lunde-Young R, Naik V, Ramirez J, Orzabal M, Ramadoss J. Chronic Binge Alcohol Exposure During Pregnancy Alters mTOR System in Rat Fetal Hippocampus. Alcohol Clin Exp Res 2020; 44:1329-1336. [PMID: 32333810 DOI: 10.1111/acer.14348] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 04/10/2020] [Accepted: 04/19/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Gestational alcohol exposure can contribute to fetal alcohol spectrum disorders (FASD), an array of cognitive, behavioral, and physical developmental impairments. Mammalian target of rapamycin (mTOR) plays a key role in regulating protein synthesis in response to neuronal activity, thereby modulating synaptic plasticity and long-term memory formation in the brain. Based on our previous quantitative mass spectrometry proteomic studies, we hypothesized that gestational chronic binge alcohol exposure alters mTOR signaling and downstream pathways in the fetal hippocampus. METHODS Pregnant Sprague-Dawley rats were assigned to either a pair-fed control (PF-Cont) or a binge alcohol (Alcohol) treatment group. Alcohol dams were acclimatized via a once-daily orogastric gavage of 4.5 g/kg alcohol (peak BAC, 216 mg/dl) from GD 5-10 and progressed to 6 g/kg alcohol (peak BAC, 289 mg/dl) from GD 11-21. Pair-fed dams similarly received isocaloric maltose dextrin. RESULTS In the Alcohol group, following this exposure paradigm, fetal body weight and crown-rump length were decreased. The phosphorylation level of mTOR (P-mTOR) in the fetal hippocampus was decreased in the Alcohol group compared with controls. Alcohol exposure resulted in dysregulation of fetal hippocampal mTORC1 signaling, as evidenced by an increase in total 4E-BP1 expression. Phosphorylation levels of 4E-BP1 and p70 S6K were also increased following alcohol exposure. P-mTOR and P-4E-BP1 were exclusively detected in the dentate gyrus and oriens layer of the fetal hippocampus, respectively. DEPTOR and RICTOR expression levels in the fetal hippocampus were increased; however, RAPTOR was not altered by chronic binge alcohol exposure. CONCLUSION We conclude that chronic binge alcohol exposure during pregnancy alters mTORC1 signaling pathway in the fetal hippocampus. We conjecture that this dysregulation of mTOR protein expression, its activity, and downstream proteins may play a critical role in FASD neurobiological phenotypes.
Collapse
Affiliation(s)
- Jehoon Lee
- From the, Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Raine Lunde-Young
- From the, Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Vishal Naik
- From the, Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Josue Ramirez
- From the, Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Marcus Orzabal
- From the, Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Jayanth Ramadoss
- From the, Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
12
|
Naik V, Lunde-Young R, Ramirez J, Lee J, Ramadoss J. Distribution of Phosphatidylethanol in Maternal and Fetal Compartments After Chronic Gestational Binge Alcohol Exposure. Alcohol Clin Exp Res 2020; 44:264-271. [PMID: 31758563 PMCID: PMC6980962 DOI: 10.1111/acer.14250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 11/15/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Phosphatidylethanol (PEth) is a promising biomarker for gestational alcohol exposure. Studies show PEth accumulation in maternal and fetal blood following alcohol exposure; however, distribution of specific PEth homologues (16:0/18:1, 16:0/18:2, 16:0/20:4) in maternal and fetal blood is unknown. Additionally, PEth levels in highly vulnerable FASD targets in maternal and fetal compartments remain unexplored. We hypothesized that all 3 major PEth homologues will be detectable in the maternal and fetal blood, the maternal uterine artery (a reproductive tissue that delivers oxygen and nutrients to fetoplacental unit), and fetal brain regions following gestational binge alcohol exposure and that homologue distribution profiles will be tissue-specific. METHODS Pregnant rats received once-daily orogastric gavage of alcohol (Alcohol; BAC 216 mg/dl@4.5g/kg/d; BAC 289 mg/dl@6g/kg/d) or iso-caloric maltose dextrin (Pair-fed control) from gestation days (GD) 5 to 20 or 21. Following chronic exposure, maternal and fetal tissues were analyzed for PEth homologue concentrations utilizing LC-MS/MS technology. RESULTS All 3 PEth homologues were detected in alcohol-exposed maternal blood, fetal blood, maternal uterine artery, and fetal brain regions (hippocampus, cerebral cortex, and cerebellum). In both maternal and fetal blood, respectively, PEth 16:0/18:2 was more abundant compared to 16:0/18:1 (p < 0.0001,~66%,↑; p = 0.0159, 20.4%↑) and 16:0/20:4 (p = 0.0072,~25%↑; p = 0.0187, 19.4%↑). Maternal PEth 16:0/20:4 was ~ 42% higher than 16:0/18:1 (p = 0.0015). Maternal PEth 16:0/18:2 and 16:0/20:4 were ~ 25%↑ and ~ 20%↑ higher than in fetal blood (p < 0.05). No homologue differences were detected in the maternal uterine artery. In all fetal brain regions, PEth 16:0/18:1 was significantly higher (p < 0.0001) than 16:0/18:2 (~48 to 78%↑) and 16:0/20:4 (~31 to 62%↑) concentrations. PEth 16:0/20:4 was ~ 18% higher than 16:0/18:1 (p < 0.05) in the fetal hippocampus and cortex. CONCLUSION All major PEth homologues were detected in maternal and fetal blood following chronic gestational binge alcohol exposure; homologue distribution profiles were tissue-specific. This study also provides insights into PEth accumulation in critical FASD targets, specifically the maternal uterine artery and fetal brain.
Collapse
Affiliation(s)
- Vishal Naik
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Raine Lunde-Young
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Josue Ramirez
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Jehoon Lee
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Jayanth Ramadoss
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
13
|
Orzabal MR, Lunde-Young ER, Ramirez JI, Naik VD, Hillhouse A, Konganti K, Threadgill DW, Ramadoss J. Gestational binge alcohol-induced alterations in maternal uterine artery transcriptome. Reprod Toxicol 2019; 87:42-49. [PMID: 31078653 PMCID: PMC6628922 DOI: 10.1016/j.reprotox.2019.05.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/02/2019] [Accepted: 05/08/2019] [Indexed: 12/13/2022]
Abstract
Binge alcohol exposure during pregnancy results in diminished vessel function and altered proteome in the maternal uterine artery. We aimed to utilize high throughput RNA-seq deep-sequencing to characterize specific effects of binge alcohol exposure during pregnancy on the uterine artery transcriptome, and gain insight into mechanisms underlying alcohol-mediated uterine artery dysfunction. Pregnant Sprague-Dawley rats assigned to Pair-Fed Control or Alcohol groups, received a once-daily orogastric gavage in a binge paradigm. RNA-sequencing using Illumina NextSeq 500, identified 13,941 genes; 40 significantly altered genes were altered by log2(fold change) > 2; 27 genes were upregulated and 13 were downregulated in the Alcohol group. Transcripts altered included those which encode for aldehyde dehydrogenases, matrix metalloproteases, and molecules vital for vasodilation and vascular remodeling. Biological pathways that were disproportionally altered by alcohol were proline and citrulline biosynthesis/metabolism. Disruption of these pathways suggests candidate mechanism(s) for alcohol-mediated impairments to the proteome and vascular function.
Collapse
Affiliation(s)
- Marcus R Orzabal
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Emilie R Lunde-Young
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Josue I Ramirez
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Vishal D Naik
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Andrew Hillhouse
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, and the Texas A&M Institute of Genome Sciences, TX, USA
| | - Kranti Konganti
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, and the Texas A&M Institute of Genome Sciences, TX, USA
| | - David W Threadgill
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, and the Texas A&M Institute of Genome Sciences, TX, USA
| | - Jayanth Ramadoss
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
14
|
Yu L, Zhou J, Zhang G, Huang W, Pei L, Lv F, Zhang Y, Zhang W, Wang H. cAMP/PKA/EGR1 signaling mediates the molecular mechanism of ethanol-induced inhibition of placental 11β-HSD2 expression. Toxicol Appl Pharmacol 2018; 352:77-86. [PMID: 29802914 DOI: 10.1016/j.taap.2018.05.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 05/20/2018] [Accepted: 05/21/2018] [Indexed: 02/08/2023]
Abstract
It is known that inhibiting 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) expression in the placenta can cause fetal over-exposure to maternal glucocorticoids and induce intrauterine growth restriction (IUGR); these effects ultimately increase the risk of adult chronic diseases. This study aimed to investigate the molecular mechanism of the prenatal ethanol exposure (PEE)-induced inhibition of placental 11β-HSD2 expression. Pregnant Wistar rats were intragastrically administered ethanol (4 g/kg/d) from gestational days 9 to 20. The levels of maternal and fetal serum corticosterone and placental 11β-HSD2-related gene expression were analyzed. Furthermore, we investigated the mechanism of reduced placental 11β-HSD2 expression induced by ethanol treatment (15-60 mM) in HTR-8/SVneo cells. In vivo, PEE decreased fetal body weights and increased maternal and fetal serum corticosterone and early growth response factor 1 (EGR1) expression levels. Moreover, histone modification changes (decreased acetylation and increased di-methylation of H3K9) to the HSD11B2 promoter and lower 11β-HSD2 expression levels were observed. In vitro, ethanol decreased cAMP/PKA signaling and 11β-HSD2 expression and increased EGR1 expression in a concentration-dependent manner. A cAMP agonist and EGR1 siRNA reversed the ethanol-induced inhibition of 11β-HSD2 expression. Together, PEE reduced placental 11β-HSD2 expression, and the underlying mechanism is associated with ethanol-induced histone modification changes to the HSD11B2 promoter through the cAMP/PKA/EGR1 pathway.
Collapse
Affiliation(s)
- Luting Yu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Jin Zhou
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Guohui Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wen Huang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Linguo Pei
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Feng Lv
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Yuanzhen Zhang
- Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China; Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wei Zhang
- Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China; Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China; Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
15
|
Naik VD, Davis-Anderson K, Subramanian K, Lunde-Young R, Nemec MJ, Ramadoss J. Mechanisms Underlying Chronic Binge Alcohol Exposure-Induced Uterine Artery Dysfunction in Pregnant Rat. Alcohol Clin Exp Res 2018; 42:682-690. [PMID: 29363778 DOI: 10.1111/acer.13602] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/16/2018] [Indexed: 01/17/2023]
Abstract
BACKGROUND A cardinal feature of fetal alcohol syndrome is growth restriction. Maternal uterine artery adaptations to pregnancy correlate with birthweight and survival. We hypothesized that gestational binge alcohol exposure impairs maternal uterine vascular function, affecting endothelial nitric oxide (NO)-mediated vasodilation. METHODS Pregnant rats grouped as pair-fed control or binge alcohol exposed received a once-daily, orogastric gavage of isocaloric maltose-dextrin or alcohol, respectively. On gestational day 20, primary uterine arteries were isolated, cannulated, and connected to a pressure transducer, and functional studies were conducted by dual-chamber arteriography. Uterine arteries maintained at constant intramural pressure (90 mm Hg) were maximally constricted with thromboxane, and a dose-response for acetylcholine (Ach) was recorded. RESULTS The alcohol group exhibited significantly impaired endothelium-dependent, Ach-induced uterine artery relaxation (↓∼30%). Subsequently, a dose-response was recorded following inhibition of endothelium-derived hyperpolarizing factor (apamin and TRAM-34) and prostacyclin (indomethacin). Ach-induced relaxation in the pair-fed control decreased by ~46%, and interestingly, relaxation in alcohol group further decreased by an additional ~48%, demonstrating that gestational binge alcohol impairs the NO system in the primary uterine artery. An endothelium-independent sodium nitroprusside effect was not observed. Immunoblotting indicated that alcohol decreased the level of endothelial excitatory P-Ser1177 endothelial NO synthase (eNOS) (p < 0.05) and total eNOS expression (p < 0.05) compared to both the normal and pair-fed controls. P-Ser1177 eNOS level was also confirmed by immunofluorescence imaging. CONCLUSIONS This is the first study to demonstrate maternal binge alcohol consumption during pregnancy disrupts uterine artery vascular function via impairment of the eNOS vasodilatory system.
Collapse
Affiliation(s)
- Vishal D Naik
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Katie Davis-Anderson
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Kaviarasan Subramanian
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas
| | - Raine Lunde-Young
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Matthew J Nemec
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Jayanth Ramadoss
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| |
Collapse
|
16
|
Davis-Anderson KL, Wesseling H, Siebert LM, Lunde-Young ER, Naik VD, Steen H, Ramadoss J. Fetal regional brain protein signature in FASD rat model. Reprod Toxicol 2018; 76:84-92. [PMID: 29408587 DOI: 10.1016/j.reprotox.2018.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 01/24/2018] [Accepted: 01/26/2018] [Indexed: 12/30/2022]
Abstract
Fetal alcohol spectrum disorders (FASD) describe neurodevelopmental deficits in children exposed to alcohol in utero. We hypothesized that gestational alcohol significantly alters fetal brain regional protein signature. Pregnant rats were binge-treated with alcohol or pair-fed and nutritionally-controlled. Mass spectrometry identified 1806, 2077, and 1456 quantifiable proteins in the fetal hippocampus, cortex, and cerebellum, respectively. A stronger effect of alcohol exposure on the hippocampal proteome was noted: over 600 hippocampal proteins were significantly (P < .05) altered, including annexin A2, nucleobindin-1, and glypican-4, regulators of cellular growth and developmental morphogenesis. In the cerebellum, cadherin-13, reticulocalbin-2, and ankyrin-2 (axonal growth regulators) were significantly (P < .05) altered; altered cortical proteins were involved in autophagy (endophilin-B1, synaptotagmin-1). Ingenuity analysis identified proteins involved in protein homeostasis, oxidative stress, mitochondrial dysfunction, and mTOR as major pathways in the cortex and hippocampus significantly (P < .05) affected by alcohol. Thus, neurodevelopmental protein changes may directly relate to FASD neuropathology.
Collapse
Affiliation(s)
- Katie L Davis-Anderson
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4466, USA
| | - Hendrik Wesseling
- Departments of Pathology, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| | - Lara M Siebert
- Departments of Pathology, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| | - Emilie R Lunde-Young
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4466, USA
| | - Vishal D Naik
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4466, USA
| | - Hanno Steen
- Departments of Pathology, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| | - Jayanth Ramadoss
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4466, USA.
| |
Collapse
|
17
|
|
18
|
Naik VD, Lunde-Young ER, Davis-Anderson KL, Orzabal M, Ivanov I, Ramadoss J. Chronic binge alcohol consumption during pregnancy alters rat maternal uterine artery pressure response. Alcohol 2016; 56:59-64. [PMID: 27793545 DOI: 10.1016/j.alcohol.2016.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/28/2016] [Accepted: 10/04/2016] [Indexed: 01/10/2023]
Abstract
We aimed to investigate pressure-dependent maternal uterine artery responses and vessel remodeling following gestational binge alcohol exposure. Two groups of pregnant rats were used: the alcohol group (28.5% wt/v, 6.0 g/kg, once-daily orogastric gavage in a binge paradigm between gestational day (GD) 5-19) and pair-fed controls (isocalorically matched). On GD20, excised, pressurized primary uterine arteries were studied following equilibration (60 mm Hg) using dual chamber arteriograph. The uterine artery diameter stabilized at 20 mm Hg, showed passive distension at 40 mm Hg, and redeveloped tone at 60 mm Hg. An alcohol effect (P = 0.0025) was observed on the percent constriction of vessel diameter with greater pressure-dependent myogenic constriction. Similar alcohol effect was noted with lumen diameter response (P = 0.0020). The percent change in media:lumen ratio was higher in the alcohol group (P < 0.0001). Thus, gestational alcohol affects pressure-induced uterine artery reactivity, inward-hypotrophic remodeling, and adaptations critical for nutrient delivery to the fetus.
Collapse
|
19
|
Le Duc D, Spataru A, Ceanga M, Zagrean L, Schöneberg T, Toescu EC, Zagrean AM. Developmental exposure to ethanol increases the neuronal vulnerability to oxygen-glucose deprivation in cerebellar granule cell cultures. Brain Res 2015; 1614:1-13. [PMID: 25881894 DOI: 10.1016/j.brainres.2015.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 03/18/2015] [Accepted: 04/04/2015] [Indexed: 01/01/2023]
Abstract
Prenatal alcohol exposure is associated with microencephaly, cognitive and behavioral deficits, and growth retardation. Some of the mechanisms of ethanol-induced injury, such as high level oxidative stress and overexpression of pro-apoptotic genes, can increase the sensitivity of fetal neurons towards hypoxic/ischemic stress associated with normal labor. Thus, alcohol-induced sequelae may be the cumulative result of direct ethanol toxicity and increased neuronal vulnerability towards metabolic stressors, including hypoxia. We examined the effects of ethanol exposure on the fetal cerebellar granular neurons' susceptibility to hypoxic/hypoglycemic damage. A chronic ethanol exposure covered the entire prenatal period and 5 days postpartum through breastfeeding, a time interval partially extending into the third-trimester equivalent in humans. After a binge-like alcohol exposure at postnatal day 5, glutamatergic cerebellar granule neurons were cultured and grown for 7 days in vitro, then exposed to a 3-h oxygen-glucose deprivation to mimic a hypoxic/ischemic condition. Cellular viability was monitored by dynamic recording of propidium iodide fluorescence over 20 h reoxygenation. We explored differentially expressed genes on microarray data from a mouse embryonic ethanol-exposure model and validated these by real-time PCR on the present model. In the ethanol-treated cerebellar granule neurons we find an increased expression of genes related to apoptosis (Mapk8 and Bax), but also of genes previously described as neuroprotective (Dhcr24 and Bdnf), which might suggest an actively maintained viability. Our data suggest that neurons exposed to ethanol during development are more vulnerable to in vitro hypoxia/hypoglycemia and have higher intrinsic death susceptibility than unexposed neurons.
Collapse
Affiliation(s)
- Diana Le Duc
- Division of Physiology and Fundamental Neuroscience, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; Molecular Biochemistry, Institute of Biochemistry, Medical Faculty, University of Leipzig, Johannisallee 30, 04103 Leipzig, Germany.
| | - Ana Spataru
- Division of Physiology and Fundamental Neuroscience, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Mihai Ceanga
- Division of Physiology and Fundamental Neuroscience, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Leon Zagrean
- Division of Physiology and Fundamental Neuroscience, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Torsten Schöneberg
- Molecular Biochemistry, Institute of Biochemistry, Medical Faculty, University of Leipzig, Johannisallee 30, 04103 Leipzig, Germany
| | - Emil C Toescu
- Translational Neuroscience, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Ana-Maria Zagrean
- Division of Physiology and Fundamental Neuroscience, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| |
Collapse
|
20
|
Maternal l-glutamine supplementation prevents prenatal alcohol exposure-induced fetal growth restriction in an ovine model. Amino Acids 2015; 47:1183-92. [DOI: 10.1007/s00726-015-1945-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 02/16/2015] [Indexed: 12/13/2022]
|
21
|
Gundogan F, Gilligan J, Qi W, Chen E, Naram R, de la Monte SM. Dose effect of gestational ethanol exposure on placentation and fetal growth. Placenta 2015; 36:523-30. [PMID: 25745824 DOI: 10.1016/j.placenta.2015.02.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 01/02/2015] [Accepted: 02/16/2015] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Prenatal ethanol exposure compromises fetal growth by impairing placentation. Invasive trophoblastic cells, which mediate placentation, express the insulin-IGF regulated gene, aspartyl-asparaginyl β-hydroxylase (ASPH), which has a critical role in cell motility and invasion. The aims of this study were to characterize effects of ethanol on trophoblastic cell motility, and assess ethanol dose-dependent impairments in placentation and fetal development. METHODS Pregnant Long Evans dams were fed with isocaloric liquid diets containing 0%, 8%, 18% or 37% ethanol (caloric content) from gestation day (GD) 6 to GD18. Fetal development, placental morphology, density of invasive trophoblasts at the mesometrial triangle, as well as placental and mesometrial ASPH and Notch-1 protein expression were evaluated. Directional motility of control and ethanol-exposed HTR-8/SVneo cells was assessed by ATP Luminescence-Based assay. RESULTS Severity of fetal growth impairment correlated with increasing doses of ethanol. Ethanol exposure produced dose-dependent alterations in branching morphogenesis at the labyrinthine zone, and inhibited physiological transformation of maternal arteries. ASPH and Notch-1 protein expression levels were reduced, corresponding with impairments in placentation. DISCUSSION Prenatal ethanol exposure compromises fetal growth and placentation in a dose-responsive manner. Ethanol's adverse effects on placental development are mediated by: (1) altered branching morphogenesis in labyrinthine zone; (2) suppression of invasive trophoblastic precursor cells; and (3) inhibition of trophoblastic cell adhesion and motility, corresponding with reduced ASPH and Notch-1 protein expression.
Collapse
Affiliation(s)
- F Gundogan
- Department of Pathology, Women and Infants Hospital, Providence, RI, 02905, USA; Alpert Medical School at Brown University, Providence, RI, 02905, USA
| | - J Gilligan
- Department of Medicine, Liver Research Center, Rhode Island Hospital, Providence, RI, 02905, USA
| | - W Qi
- Department of Medicine, Liver Research Center, Rhode Island Hospital, Providence, RI, 02905, USA
| | - E Chen
- Department of Medicine, Liver Research Center, Rhode Island Hospital, Providence, RI, 02905, USA
| | - R Naram
- Department of Pathology, Women and Infants Hospital, Providence, RI, 02905, USA
| | - S M de la Monte
- Department of Pathology, Rhode Island Hospital, Providence, RI, 02905, USA; Department of Medicine, Liver Research Center, Rhode Island Hospital, Providence, RI, 02905, USA; Alpert Medical School at Brown University, Providence, RI, 02905, USA.
| |
Collapse
|