1
|
Chan AE, Anderson JQ, Grigsby KB, Jensen BE, Ryabinin AE, Ozburn AR. Sex differences in nucleus accumbens core circuitry engaged by binge-like ethanol drinking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.15.608144. [PMID: 39229134 PMCID: PMC11370393 DOI: 10.1101/2024.08.15.608144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Growing parity in Alcohol Use Disorder (AUD) diagnoses in men and women necessitates consideration of sex as a biological variable. In humans and rodents, the nucleus accumbens core (NAcc) regulates alcohol binge drinking, a risk factor for developing AUD. We labeled NAcc inputs with a viral retrograde tracer and quantified whole-brain c-Fos to determine the regions and NAcc inputs differentially engaged in male and female mice during binge-like ethanol drinking. We found that binge-like ethanol drinking females had 129 brain areas with greater c-Fos than males. Moreover, ethanol engaged more NAcc inputs in binge-like ethanol drinking females (as compared with males), including GABAergic and glutamatergic inputs. Relative to water controls, ethanol increased network modularity and decreased connectivity in both sexes and did so more dramatically in males. These results demonstrate that early-stage binge-like ethanol drinking engages brain regions and NAcc-inputs and alters network dynamics in a sex-specific manner.
Collapse
Affiliation(s)
- Amy E Chan
- Oregon Health and Science University, Dept. of Behavioral Neuroscience, Portland Alcohol Research Center, Portland, OR, 97239, USA
- Veterans Affairs Portland Health Care System, Research and Development Service, Portland, OR, 97239, USA
| | - Justin Q Anderson
- Oregon Health and Science University, Dept. of Behavioral Neuroscience, Portland Alcohol Research Center, Portland, OR, 97239, USA
- Veterans Affairs Portland Health Care System, Research and Development Service, Portland, OR, 97239, USA
| | - Kolter B Grigsby
- Oregon Health and Science University, Dept. of Behavioral Neuroscience, Portland Alcohol Research Center, Portland, OR, 97239, USA
- Veterans Affairs Portland Health Care System, Research and Development Service, Portland, OR, 97239, USA
| | - Bryan E Jensen
- Veterans Affairs Portland Health Care System, Research and Development Service, Portland, OR, 97239, USA
| | - Andrey E Ryabinin
- Oregon Health and Science University, Dept. of Behavioral Neuroscience, Portland Alcohol Research Center, Portland, OR, 97239, USA
| | - Angela R Ozburn
- Oregon Health and Science University, Dept. of Behavioral Neuroscience, Portland Alcohol Research Center, Portland, OR, 97239, USA
- Veterans Affairs Portland Health Care System, Research and Development Service, Portland, OR, 97239, USA
| |
Collapse
|
2
|
Zhang X. Effects of Anesthesia on Cerebral Blood Flow and Functional Connectivity of Nonhuman Primates. Vet Sci 2022; 9:516. [PMID: 36288129 PMCID: PMC9609818 DOI: 10.3390/vetsci9100516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 02/07/2023] Open
Abstract
Nonhuman primates (NHPs) are the closest living relatives of humans and play a critical and unique role in neuroscience research and pharmaceutical development. General anesthesia is usually required in neuroimaging studies of NHPs to keep the animal from stress and motion. However, the adverse effects of anesthesia on cerebral physiology and neural activity are pronounced and can compromise the data collection and interpretation. Functional connectivity is frequently examined using resting-state functional MRI (rsfMRI) to assess the functional abnormality in the animal brain under anesthesia. The fMRI signal can be dramatically suppressed by most anesthetics in a dose-dependent manner. In addition, rsfMRI studies may be further compromised by inter-subject variations when the sample size is small (as seen in most neuroscience studies of NHPs). Therefore, proper use of anesthesia is strongly demanded to ensure steady and consistent physiology maintained during rsfMRI data collection of each subject. The aim of this review is to summarize typical anesthesia used in rsfMRI scans of NHPs and the effects of anesthetics on cerebral physiology and functional connectivity. Moreover, the protocols with optimal rsfMRI data acquisition and anesthesia procedures for functional connectivity study of macaque monkeys are introduced.
Collapse
Affiliation(s)
- Xiaodong Zhang
- EPC Imaging Center and Division of Neuropharmacology and Neurologic Diseases, Emory National Primate Research Center, Emory University, 954 Gatewood RD, Atlanta, GA 30329, USA
| |
Collapse
|
3
|
Rowland JA, Stapleton-Kotloski JR, Alberto GE, Davenport AT, Epperly PM, Godwin DW, Daunais JB. Rich Club Characteristics of Alcohol-Naïve Functional Brain Networks Predict Future Drinking Phenotypes in Rhesus Macaques. Front Behav Neurosci 2021; 15:673151. [PMID: 34149371 PMCID: PMC8206638 DOI: 10.3389/fnbeh.2021.673151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/28/2021] [Indexed: 11/30/2022] Open
Abstract
Purpose: A fundamental question for Alcohol use disorder (AUD) is how and when naïve brain networks are reorganized in response to alcohol consumption. The current study aimed to determine the progression of alcohol’s effect on functional brain networks during transition from the naïve state to chronic consumption. Procedures: Resting-state brain networks of six female rhesus macaque (Macaca mulatta) monkeys were acquired using magnetoencephalography (MEG) prior to alcohol exposure and after free-access to alcohol using a well-established model of chronic heavy alcohol consumption. Functional brain network metrics were derived at each time point. Results: The average connection frequency (p < 0.024) and membership of the Rich Club (p < 0.022) changed significantly over time. Metrics describing network topology remained relatively stable from baseline to free-access drinking. The minimum degree of the Rich Club prior to alcohol exposure was significantly predictive of future free-access drinking (r = −0.88, p < 0.001). Conclusions: Results suggest naïve brain network characteristics may be used to predict future alcohol consumption, and that alcohol consumption alters functional brain networks, shifting hubs and Rich Club membership away from previous regions in a non-systematic manner. Further work to refine these relationships may lead to the identification of a high-risk drinking phenotype.
Collapse
Affiliation(s)
- Jared A Rowland
- Research and Academic Affairs Service Line, Mid-Atlantic Mental Illness Research Education and Clinical Center, Salisbury VA Medical Center, Salisbury, NC, United States.,Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, United States.,Department of Psychiatry and Behavioral Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Jennifer R Stapleton-Kotloski
- Research and Academic Affairs Service Line, Mid-Atlantic Mental Illness Research Education and Clinical Center, Salisbury VA Medical Center, Salisbury, NC, United States.,Department of Neurology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Greg E Alberto
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - April T Davenport
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Phillip M Epperly
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Dwayne W Godwin
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, United States.,Department of Neurology, Wake Forest School of Medicine, Winston-Salem, NC, United States.,Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - James B Daunais
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
4
|
Dausch Ibañez D, Hernandez Salazar LT, Laska M. Taste Responsiveness of Spider Monkeys to Dietary Ethanol. Chem Senses 2020; 44:631-638. [PMID: 31400282 DOI: 10.1093/chemse/bjz049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recent studies suggest that frugivorous primates might display a preference for the ethanol produced by microbia in overripe, fermenting fruit as an additional source of calories. We, therefore, assessed the taste responsiveness of 8 spider monkeys (Ateles geoffroyi) to the range of ethanol concentrations found in overripe, fermenting fruit (0.05-3.0%) and determined taste preference thresholds as well as relative taste preferences for ethanol presented in sucrose solutions and in fruit matrices, respectively. Using a 2-bottle preference test of short duration (1 min), we found that spider monkeys are able to detect ethanol concentrations as low as 0.5%, that they prefer ethanol concentrations up to 3% over water, and that they prefer sucrose solutions and pureed fruit spiked with ethanol over equimolar sucrose solutions and pureed fruit without ethanol. However, when presented with an ethanol-spiked sucrose solution and a higher-concentrated sucrose solution without ethanol, the animals clearly preferred the latter, even when the sucrose-ethanol mixture contained 3 times more calories. These results demonstrate that spider monkeys are more sensitive to the taste of ethanol than rats and humans and that they prefer ecologically relevant suprathreshold concentrations of ethanol over water. Tests with sucrose solutions and pureed fruits that were either spiked with ethanol or not suggest that sweetness may be more important for the preferences displayed by the spider monkeys than the calories provided by ethanol. The present results, therefore, do not support the notion that dietary ethanol might be used by frugivorous primates as a supplemental source of calories.
Collapse
|
5
|
Karoly HC, Thayer RE, Hagerty SL, Hutchison KE. TLR4 Methylation Moderates the Relationship Between Alcohol Use Severity and Gray Matter Loss. J Stud Alcohol Drugs 2018; 78:696-705. [PMID: 28930057 DOI: 10.15288/jsad.2017.78.696] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Alcohol use disorders (AUDs) are associated with decreased gray matter, and neuroinflammation is one mechanism through which alcohol may confer such damage, given that heavy alcohol use may promote neural damage via activation of toll-like receptor 4 (TLR4)-mediated inflammatory signaling cascades. We previously demonstrated that TLR4 is differentially methylated in AUD compared with control subjects, and the present study aims to extend this work by examining whether TLR4 methylation moderates the relationship between alcohol use and gray matter. METHOD We examined TLR4 methylation and gray matter thickness in a large sample (N = 707; 441 males) of adults (ages 18-56) reporting a range of AUD severity (mean Alcohol Use Disorders Identification Test score = 13.18; SD = 8.02). We used a series of ordinary least squares multiple regression equations to regress gray matter in four bilateral brain regions (precuneus, lateral orbitofrontal, inferior parietal, and superior temporal) on alcohol use, TLR4 methylation, and their interaction, controlling for demographic, psychological, and other substance use variables. RESULTS After we corrected for multiple tests, a significant Alcohol × TLR4 Methylation interaction emerged in the equations modeling left precuneus and right inferior parietal gray matter. Follow-up analyses examining the nature of these interactions demonstrated a significant negative association between alcohol and precuneus and inferior parietal gray matter in individuals with low TLR4 methylation, but no relationship between alcohol and gray matter in the high methylation group. CONCLUSIONS These findings suggest that TLR4 methylation may be protective against the damage conferred by alcohol on precuneus and inferior parietal gray matter, thereby implicating TLR4 for further investigation as a possible AUD treatment target.
Collapse
Affiliation(s)
- Hollis C Karoly
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado
| | - Rachel E Thayer
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado
| | - Sarah L Hagerty
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado
| | - Kent E Hutchison
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado
| |
Collapse
|
6
|
Banks ML, Czoty PW, Negus SS. Utility of Nonhuman Primates in Substance Use Disorders Research. ILAR J 2017; 58:202-215. [PMID: 28531265 PMCID: PMC5886327 DOI: 10.1093/ilar/ilx014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 03/28/2017] [Accepted: 04/03/2017] [Indexed: 12/27/2022] Open
Abstract
Substance use disorders (i.e., drug addiction) constitute a global and insidious public health issue. Preclinical biomedical research has been invaluable in elucidating the environmental, biological, and pharmacological determinants of drug abuse and in the process of developing innovative pharmacological and behavioral treatment strategies. For more than 70 years, nonhuman primates have been utilized as research subjects in biomedical research related to drug addiction. There are already several excellent published reviews highlighting species differences in both pharmacodynamics and pharmacokinetics between rodents and nonhuman primates in preclinical substance abuse research. Therefore, the aim of this review is to highlight three advantages of nonhuman primates as preclinical substance abuse research subjects. First, nonhuman primates offer technical advantages in experimental design compared to other laboratory animals that afford unique opportunities to promote preclinical-to-clinical translational research. Second, these technical advantages, coupled with the relatively long lifespan of nonhuman primates, allows for pairing longitudinal drug self-administration studies and noninvasive imaging technologies to elucidate the biological consequences of chronic drug exposure. Lastly, nonhuman primates offer advantages in the patterns of intravenous drug self-administration that have potential theoretical implications for both the neurobiological mechanisms of substance use disorder etiology and in the drug development process of pharmacotherapies for substance use disorders. We conclude with potential future research directions in which nonhuman primates would provide unique and valuable insights into the abuse of and addiction to novel psychoactive substances.
Collapse
Affiliation(s)
- Matthew L Banks
- Matthew L. Banks, PharmD, PhD, is an assistant professor in the Department of Pharmacology and Toxicology in the School of Medicine at Virginia Commonwealth University in Richmond, Virginia and currently serves as a scientific member of the Institutional Animal Care and Use Committee. Paul W. Czoty, PhD, is an associate professor in the Department of Physiology and Pharmacology in the Wake Forest School of Medicine in Winston-Salem, North Carolina and currently serves as Vice-Chair of the Institutional Animal Care and Use Committee. Sidney S. Negus, PhD, is a professor in the Department of Pharmacology and Toxicology in the School of Medicine at Virginia Commonwealth University in Richmond, Virginia and has served as both a scientific member and chair of the Institutional Animal Care and Use Committee
| | - Paul W Czoty
- Matthew L. Banks, PharmD, PhD, is an assistant professor in the Department of Pharmacology and Toxicology in the School of Medicine at Virginia Commonwealth University in Richmond, Virginia and currently serves as a scientific member of the Institutional Animal Care and Use Committee. Paul W. Czoty, PhD, is an associate professor in the Department of Physiology and Pharmacology in the Wake Forest School of Medicine in Winston-Salem, North Carolina and currently serves as Vice-Chair of the Institutional Animal Care and Use Committee. Sidney S. Negus, PhD, is a professor in the Department of Pharmacology and Toxicology in the School of Medicine at Virginia Commonwealth University in Richmond, Virginia and has served as both a scientific member and chair of the Institutional Animal Care and Use Committee
| | - Sidney S Negus
- Matthew L. Banks, PharmD, PhD, is an assistant professor in the Department of Pharmacology and Toxicology in the School of Medicine at Virginia Commonwealth University in Richmond, Virginia and currently serves as a scientific member of the Institutional Animal Care and Use Committee. Paul W. Czoty, PhD, is an associate professor in the Department of Physiology and Pharmacology in the Wake Forest School of Medicine in Winston-Salem, North Carolina and currently serves as Vice-Chair of the Institutional Animal Care and Use Committee. Sidney S. Negus, PhD, is a professor in the Department of Pharmacology and Toxicology in the School of Medicine at Virginia Commonwealth University in Richmond, Virginia and has served as both a scientific member and chair of the Institutional Animal Care and Use Committee
| |
Collapse
|
7
|
Rowland JA, Stapleton-Kotloski JR, Alberto GE, Davenport AT, Kotloski RJ, Friedman DP, Godwin DW, Daunais JB. Changes in nonhuman primate brain function following chronic alcohol consumption in previously naïve animals. Drug Alcohol Depend 2017; 177. [PMID: 28622627 PMCID: PMC5540330 DOI: 10.1016/j.drugalcdep.2017.03.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Chronic alcohol abuse is associated with neurophysiological changes in brain activity; however, these changes are not well localized in humans. Non-human primate models of alcohol abuse enable control over many potential confounding variables associated with human studies. The present study utilized high-resolution magnetoencephalography (MEG) to quantify the effects of chronic EtOH self-administration on resting state (RS) brain function in vervet monkeys. METHODS Adolescent male vervet monkeys were trained to self-administer ethanol (n=7) or an isocaloric malto-dextrin solution (n=3). Following training, animals received 12 months of free access to ethanol. Animals then underwent RS magnetoencephalography (MEG) and subsequent power spectral analysis of brain activity at 32 bilateral regions of interest associated with the chronic effects of alcohol use. RESULTS demonstrate localized changes in brain activity in chronic heavy drinkers, including reduced power in the anterior cingulate cortex, hippocampus, and amygdala as well as increased power in the right medial orbital and parietal areas. DISCUSSION The current study is the first demonstration of whole-head MEG acquisition in vervet monkeys. Changes in brain activity were consistent with human electroencephalographic studies; however, MEG was able to extend these findings by localizing the observed changes in power to specific brain regions. These regions are consistent with those previously found to exhibit volume loss following chronic heavy alcohol use. The ability to use MEG to evaluate changes in brain activity following chronic ethanol exposure provides a potentially powerful tool to better understand both the acute and chronic effects of alcohol on brain function.
Collapse
Affiliation(s)
- Jared A Rowland
- Research and Academic Affairs Service Line, Mid-Atlantic Mental Illness Research Education and Clinical Center, W.G. "Bill" Hefner VA Medical Center, Salisbury, NC, USA; Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, USA; Department of Psychiatry and Behavioral Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| | | | - Greg E Alberto
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - April T Davenport
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Robert J Kotloski
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Neurology, William S. Middleton VA Medical Center, Madison, WI, USA
| | - David P Friedman
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Dwayne W Godwin
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - James B Daunais
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
8
|
Telesford QK, Ashourvan A, Wymbs NF, Grafton ST, Vettel JM, Bassett DS. Cohesive network reconfiguration accompanies extended training. Hum Brain Mapp 2017. [PMID: 28646563 PMCID: PMC5554863 DOI: 10.1002/hbm.23699] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Human behavior is supported by flexible neurophysiological processes that enable the fine‐scale manipulation of information across distributed neural circuits. Yet, approaches for understanding the dynamics of these circuit interactions have been limited. One promising avenue for quantifying and describing these dynamics lies in multilayer network models. Here, networks are composed of nodes (which represent brain regions) and time‐dependent edges (which represent statistical similarities in activity time series). We use this approach to examine functional connectivity measured by non‐invasive neuroimaging techniques. These multilayer network models facilitate the examination of changes in the pattern of statistical interactions between large‐scale brain regions that might facilitate behavior. In this study, we define and exercise two novel measures of network reconfiguration, and demonstrate their utility in neuroimaging data acquired as healthy adult human subjects learn a new motor skill. In particular, we identify putative functional modules in multilayer networks and characterize the degree to which nodes switch between modules. Next, we define cohesive switches, in which a set of nodes moves between modules together as a group, and we define disjoint switches, in which a single node moves between modules independently from other nodes. Together, these two concepts offer complementary yet distinct insights into the changes in functional connectivity that accompany motor learning. More generally, our work offers statistical tools that other researchers can use to better understand the reconfiguration patterns of functional connectivity over time. Hum Brain Mapp 38:4744–4759, 2017. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Qawi K Telesford
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104.,Human Research and Engineering Directorate, U.S. Army Research Laboratory, Aberdeen, Maryland, 21001
| | - Arian Ashourvan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104.,Human Research and Engineering Directorate, U.S. Army Research Laboratory, Aberdeen, Maryland, 21001
| | - Nicholas F Wymbs
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, 21218
| | - Scott T Grafton
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, California, 93106
| | - Jean M Vettel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104.,Human Research and Engineering Directorate, U.S. Army Research Laboratory, Aberdeen, Maryland, 21001.,Department of Psychological and Brain Sciences, University of California, Santa Barbara, California, 93106
| | - Danielle S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104.,Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| |
Collapse
|