1
|
Park S, Perumalsamy H, Kim JE, Kim HY, Jun DW, Yoon TH. The impact of G-CSF on mouse immune cells in alcoholic liver disease, focusing on variations in T cells and their subsets. Biomed Pharmacother 2024; 178:117175. [PMID: 39074426 DOI: 10.1016/j.biopha.2024.117175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024] Open
Abstract
Alcoholic liver disease (ALD) significantly affects immune cell function and leads to immunological dysregulation. This study explored the potential of granulocyte colony-stimulating factor (G-CSF) to mitigate the negative effects of alcohol on immune cells in a mouse model of ALD. To investigate the capacity of G-CSF, ALD was induced using a 17-day alcohol-enriched diet, followed by a single G-CSF dose prior to sampling. We focused on the dynamics of peripheral blood mononuclear cells using high-dimensional mass cytometry to detect subtle changes. Alcohol intake reduced the number of B cells, monocytes, dendritic cells, and NK cells while increasing the number of T cells. Notably, G-CSF treatment reversed the alcohol-induced increase in total CD4+ and CD8+ T cell populations. This effect was remarkable in naïve, effector CD4+ T cells and naïve CD8+ T cells. PhenoGraph and FlowSOM analysis further revealed the recovery effect of G-CSF on specific T cell subgroups, including central memory CD8+ T cells and double-negative T cells expressing Ly6chighCD44high, which are adversely affected by alcohol. These results enhance our understanding of the effect of ALD on immune function and suggest that G-CSF is a potential therapeutic agent, laying the foundation for future clinical research.
Collapse
Affiliation(s)
- Sehee Park
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Haribalan Perumalsamy
- Center for Creative Convergence Education, Hanyang University, Seoul 04763, Republic of Korea; Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Ji Eun Kim
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Hye Young Kim
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Republic of Korea
| | - Dae Won Jun
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea; Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Republic of Korea; Department of Internal Medicine, College of Medicine, Hanyang University, Seoul 04763, Republic of Korea; Department of Medical and Digital Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| | - Tae Hyun Yoon
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea; Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea; Department of Medical and Digital Engineering, Hanyang University, Seoul 04763, Republic of Korea; Institute for Next Generation Material Design, Hanyang University, Seoul 04763, Republic of Korea; Yoon Idea Lab. Co. Ltd., Seoul 04763, Republic of Korea.
| |
Collapse
|
2
|
Warner JB, Hardesty JE, Song YL, Floyd AT, Deng Z, Jebet A, He L, Zhang X, McClain CJ, Hammock BD, Warner DR, Kirpich IA. Hepatic Transcriptome and Its Regulation Following Soluble Epoxide Hydrolase Inhibition in Alcohol-Associated Liver Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:71-84. [PMID: 37925018 PMCID: PMC10768534 DOI: 10.1016/j.ajpath.2023.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 09/02/2023] [Accepted: 09/27/2023] [Indexed: 11/06/2023]
Abstract
Alcohol-associated liver disease (ALD) is a serious public health problem with limited pharmacologic options. The goal of the current study was to investigate the efficacy of pharmacologic inhibition of soluble epoxide hydrolase (sEH), an enzyme involved in lipid metabolism, in experimental ALD, and to examine the underlying mechanisms. C57BL/6J male mice were subjected to acute-on-chronic ethanol (EtOH) feeding with or without the sEH inhibitor 4-[[trans-4-[[[[4-trifluoromethoxy phenyl]amino]carbonyl]-amino]cyclohexyl]oxy]-benzoic acid (TUCB). Liver injury was assessed by multiple end points. Liver epoxy fatty acids and dihydroxy fatty acids were measured by targeted metabolomics. Whole-liver RNA sequencing was performed, and free modified RNA bases were measured by mass spectrometry. EtOH-induced liver injury was ameliorated by TUCB treatment as evidenced by reduced plasma alanine aminotransferase levels and was associated with attenuated alcohol-induced endoplasmic reticulum stress, reduced neutrophil infiltration, and increased numbers of hepatic M2 macrophages. TUCB altered liver epoxy and dihydroxy fatty acids and led to a unique hepatic transcriptional profile characterized by decreased expression of genes involved in apoptosis, inflammation, fibrosis, and carcinogenesis. Several modified RNA bases were robustly changed by TUCB, including N6-methyladenosine and 2-methylthio-N6-threonylcarbamoyladenosine. These findings show the beneficial effects of sEH inhibition by TUCB in experimental EtOH-induced liver injury, warranting further mechanistic studies to explore the underlying mechanisms, and highlighting the translational potential of sEH as a drug target for this disease.
Collapse
Affiliation(s)
- Jeffrey B Warner
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Josiah E Hardesty
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Ying L Song
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky
| | - Alison T Floyd
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky
| | - Zhongbin Deng
- Division of Immunotherapy, Department of Surgery, University of Louisville, Louisville, Kentucky; Brown Cancer Center, University of Louisville, Louisville, Kentucky
| | - Audriy Jebet
- Department of Chemistry, University of Louisville, Louisville, Kentucky
| | - Liqing He
- Department of Chemistry, University of Louisville, Louisville, Kentucky
| | - Xiang Zhang
- Department of Chemistry, University of Louisville, Louisville, Kentucky
| | - Craig J McClain
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky; University of Louisville Alcohol Center, University of Louisville School of Medicine, Louisville, Kentucky; University of Louisville Hepatobiology & Toxicology Center, University of Louisville School of Medicine, Louisville, Kentucky; Robley Rex Veterans Medical Center, Louisville, Kentucky
| | - Bruce D Hammock
- Department of Entomology and Nematology, Comprehensive Cancer Center, University of California, Davis, California
| | - Dennis R Warner
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky
| | - Irina A Kirpich
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky; University of Louisville Alcohol Center, University of Louisville School of Medicine, Louisville, Kentucky; University of Louisville Hepatobiology & Toxicology Center, University of Louisville School of Medicine, Louisville, Kentucky; Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky.
| |
Collapse
|
3
|
Yang M, Massad K, Kimchi ET, Staveley-O’Carroll KF, Li G. Gut microbiota and metabolite interface-mediated hepatic inflammation. IMMUNOMETABOLISM (COBHAM, SURREY) 2024; 6:e00037. [PMID: 38283696 PMCID: PMC10810350 DOI: 10.1097/in9.0000000000000037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/20/2023] [Indexed: 01/30/2024]
Abstract
Immunologic and metabolic signals regulated by gut microbiota and relevant metabolites mediate bidirectional interaction between the gut and liver. Gut microbiota dysbiosis, due to diet, lifestyle, bile acids, and genetic and environmental factors, can advance the progression of chronic liver disease. Commensal gut bacteria have both pro- and anti-inflammatory effects depending on their species and relative abundance in the intestine. Components and metabolites derived from gut microbiota-diet interaction can regulate hepatic innate and adaptive immune cells, as well as liver parenchymal cells, significantly impacting liver inflammation. In this mini review, recent findings of specific bacterial species and metabolites with functions in regulating liver inflammation are first reviewed. In addition, socioeconomic and environmental factors, hormones, and genetics that shape the profile of gut microbiota and microbial metabolites and components with the function of priming or dampening liver inflammation are discussed. Finally, current clinical trials evaluating the factors that manipulate gut microbiota to treat liver inflammation and chronic liver disease are reviewed. Overall, the discussion of microbial and metabolic mediators contributing to liver inflammation will help direct our future studies on liver disease.
Collapse
Affiliation(s)
- Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO, USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial VA Hospital, Columbia, MO, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO, USA
| | - Katina Massad
- Department of Surgery, University of Missouri, Columbia, MO, USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
| | - Eric T. Kimchi
- Department of Surgery, University of Missouri, Columbia, MO, USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial VA Hospital, Columbia, MO, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO, USA
| | - Kevin F. Staveley-O’Carroll
- Department of Surgery, University of Missouri, Columbia, MO, USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial VA Hospital, Columbia, MO, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO, USA
| | - Guangfu Li
- Department of Surgery, University of Missouri, Columbia, MO, USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial VA Hospital, Columbia, MO, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO, USA
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA
| |
Collapse
|
4
|
Patel AM, Liu YS, Davies SP, Brown RM, Kelly DA, Scheel-Toellner D, Reynolds GM, Stamataki Z. The Role of B Cells in Adult and Paediatric Liver Injury. Front Immunol 2021; 12:729143. [PMID: 34630404 PMCID: PMC8495195 DOI: 10.3389/fimmu.2021.729143] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022] Open
Abstract
B lymphocytes are multitasking cells that direct the immune response by producing pro- or anti-inflammatory cytokines, by presenting processed antigen for T cell activation and co-stimulation, and by turning into antibody-secreting cells. These functions are important to control infection in the liver but can also exacerbate tissue damage and fibrosis as part of persistent inflammation that can lead to end stage disease requiring a transplant. In transplantation, immunosuppression increases the incidence of lymphoma and often this is of B cell origin. In this review we bring together information on liver B cell biology from different liver diseases, including alcohol-related and metabolic fatty liver disease, autoimmune hepatitis, primary biliary and primary sclerosing cholangitis, viral hepatitis and, in infants, biliary atresia. We also discuss the impact of B cell depletion therapy in the liver setting. Taken together, our analysis shows that B cells are important in the pathogenesis of liver diseases and that further research is necessary to fully characterise the human liver B cell compartment.
Collapse
Affiliation(s)
- Arzoo M. Patel
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Yuxin S. Liu
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Scott P. Davies
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Rachel M. Brown
- Department of Histopathology, Queen Elizabeth Hospital, Birmingham Women’s and Children’s National Health Service (NHS) Foundation Trust, Birmingham, United Kingdom
| | - Deirdre A. Kelly
- The Liver Unit, Birmingham Women’s and Children’s Hospital and the University of Birmingham, Birmingham, United Kingdom
| | - Dagmar Scheel-Toellner
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Gary M. Reynolds
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- The Liver Unit, Birmingham Women’s and Children’s Hospital and the University of Birmingham, Birmingham, United Kingdom
| | - Zania Stamataki
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
5
|
Costa Matos L. What About Lymphocytes? Alcohol Clin Exp Res 2015; 39:1901-3. [PMID: 26332618 DOI: 10.1111/acer.12852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 07/08/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Luís Costa Matos
- Faculty of Health Sciences, Beira Interior University, Covilhã, Portugal
| |
Collapse
|