1
|
Yao H, Zhang D, Yu H, Shen H, Lan X, Liu H, Chen X, Wu X, Zhang G, Wang X. Chronic ethanol exposure induced anxiety‐like behaviour by altering gut microbiota and GABA system. Addict Biol 2022; 27:e13203. [DOI: 10.1111/adb.13203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/23/2022] [Accepted: 06/09/2022] [Indexed: 12/16/2022]
Affiliation(s)
- Hui Yao
- Department of Forensic Pathology China Medical University School of Forensic Medicine Shenyang Liaoning China
- Liaoning Province Key Laboratory of Forensic Bio‐evidence Sciences Shenyang Liaoning China
- China Medical University Center of Forensic Investigation Shenyang Liaoning China
| | - Dalin Zhang
- Department of Thyroid Surgery The 1st Affiliated Hospital of China Medical University Shenyang China
| | - Hao Yu
- Department of Forensic Pathology China Medical University School of Forensic Medicine Shenyang Liaoning China
- Liaoning Province Key Laboratory of Forensic Bio‐evidence Sciences Shenyang Liaoning China
- China Medical University Center of Forensic Investigation Shenyang Liaoning China
| | - Hui Shen
- Department of Forensic Pathology China Medical University School of Forensic Medicine Shenyang Liaoning China
- Liaoning Province Key Laboratory of Forensic Bio‐evidence Sciences Shenyang Liaoning China
- China Medical University Center of Forensic Investigation Shenyang Liaoning China
| | - Xinze Lan
- Department of Forensic Pathology China Medical University School of Forensic Medicine Shenyang Liaoning China
- Liaoning Province Key Laboratory of Forensic Bio‐evidence Sciences Shenyang Liaoning China
- China Medical University Center of Forensic Investigation Shenyang Liaoning China
| | - Hao Liu
- Department of Forensic Pathology China Medical University School of Forensic Medicine Shenyang Liaoning China
- Liaoning Province Key Laboratory of Forensic Bio‐evidence Sciences Shenyang Liaoning China
- China Medical University Center of Forensic Investigation Shenyang Liaoning China
| | - Xiaohuan Chen
- Department of Forensic Pathology China Medical University School of Forensic Medicine Shenyang Liaoning China
- Liaoning Province Key Laboratory of Forensic Bio‐evidence Sciences Shenyang Liaoning China
- China Medical University Center of Forensic Investigation Shenyang Liaoning China
| | - Xu Wu
- Department of Forensic Pathology China Medical University School of Forensic Medicine Shenyang Liaoning China
- Liaoning Province Key Laboratory of Forensic Bio‐evidence Sciences Shenyang Liaoning China
- China Medical University Center of Forensic Investigation Shenyang Liaoning China
| | - Guohua Zhang
- Department of Forensic Pathology China Medical University School of Forensic Medicine Shenyang Liaoning China
- Liaoning Province Key Laboratory of Forensic Bio‐evidence Sciences Shenyang Liaoning China
- China Medical University Center of Forensic Investigation Shenyang Liaoning China
| | - Xiaolong Wang
- Department of Forensic Pathology China Medical University School of Forensic Medicine Shenyang Liaoning China
- Liaoning Province Key Laboratory of Forensic Bio‐evidence Sciences Shenyang Liaoning China
- China Medical University Center of Forensic Investigation Shenyang Liaoning China
| |
Collapse
|
2
|
Anjos PAR, Marchette RCN, Kremer R, Granzotto N, Alves TM, Fadanni GP, Mazur FG, Anton EL, da Silva-Santos JE, Linder ÁE, Izídio GS. The influence of chromosome 4 on high ethanol consumption and blood pressure. Alcohol 2022; 102:1-10. [PMID: 35500756 DOI: 10.1016/j.alcohol.2022.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 04/06/2022] [Accepted: 04/18/2022] [Indexed: 11/16/2022]
Abstract
The Spontaneously Hypertensive Rats (SHR) strain was developed through selective breeding for high systolic blood pressure. In our laboratory, we established a congenic rat strain named SHR.Lewis-Anxrr16 (SLA16). The SLA16 rat strain is genetically identical to the SHR except for the inserted Anxrr16 region in chromosome 4. Our objective was to evaluate the influence of this genomic region on ethanol consumption and blood pressure. First, we exposed SHR and SLA16 male and female rats to ethanol consumption. Results showed that, regardless of strain, females consumed more ethanol than males during forced (10% v/v) and spontaneous ethanol consumption (SEC; 2.5-20% v/v). Then, females from both strains were used to evaluate sensitivity to ethanol. No strain differences in the loss of righting reflex were observed after ethanol treatment (3 g/kg, 20% w/v, intraperitoneal [i.p.]). But, in the triple test, female SHR rats presented lower sensitivity to the ethanol (1.2 g/kg, 14% w/v, i.p.). Surprisingly, female SHR rats also presented higher blood pressure after SEC (10% v/v). Finally, losartan treatment was effective in decreasing the blood pressure of female rats of both strains, but had specific effects on SHR ethanol consumption. Our data suggest that SLA16 female rats consume less ethanol (10%), are more sensitive to its effects, and present lower blood pressure than SHR female rats. We demonstrated that the Anxrr16 locus in chromosome 4 is a genetic candidate to explain high ethanol consumption and blood pressure, at least in females.
Collapse
Affiliation(s)
| | - Renata Cristina Nunes Marchette
- Department of Pharmacology - Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil; Neurobiology of Addiction Section, Integrative Neuroscience Branch, National Institute on Drug Abuse Intramural Program, Baltimore, MD, United States
| | - Rafael Kremer
- Department of Cellular Biology, Embryology, and Genetics - Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil; Department of Medicine - Federal University of Fronteira Sul, Passo Fundo, Rio Grande do Sul, Brazil
| | - Natalli Granzotto
- Department of Pharmacology - Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Thalita Mello Alves
- Department of Cellular Biology, Embryology, and Genetics - Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Guilherme Pasetto Fadanni
- Department of Pharmacology - Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil; Department of Cellular Biology, Embryology, and Genetics - Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Fernando Gabriel Mazur
- Department of Cellular Biology, Embryology, and Genetics - Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Elaine Leocádia Anton
- Department of Pharmacology - Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | | | - Áurea Elizabeth Linder
- Department of Pharmacology - Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Geison Souza Izídio
- Department of Pharmacology - Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil; Department of Cellular Biology, Embryology, and Genetics - Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
3
|
Cahill CM, Aleyadeh R, Gao J, Wang C, Rogers JT. Alpha-Synuclein in Alcohol Use Disorder, Connections with Parkinson's Disease and Potential Therapeutic Role of 5' Untranslated Region-Directed Small Molecules. Biomolecules 2020; 10:E1465. [PMID: 33096655 PMCID: PMC7589448 DOI: 10.3390/biom10101465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/28/2020] [Accepted: 10/09/2020] [Indexed: 12/23/2022] Open
Abstract
Alpha-synuclein (α-Syn) is a 140-amino acid (aa) protein encoded by the Synuclein alpha SNCA gene. It is the synaptic protein associated with Parkinson's disease (PD) and is the most highly expressed protein in the Lewy bodies associated with PD and other alpha synucleopathies, including Lewy body dementia (LBD) and multiple system atrophy (MSA). Iron deposits are present in the core of Lewy bodies, and there are reports suggesting that divalent metal ions including Cu2+ and Fe2+ enhance the aggregation of α-Syn. Differential expression of α-Syn is associated with alcohol use disorder (AUD), and specific genetic variants contribute to the risk for alcoholism, including alcohol craving. Spliced variants of α-Syn, leading to the expression of several shorter forms which are more prone to aggregation, are associated with both PD and AUD, and common transcript variants may be able to predict at-risk populations for some movement disorders or subtypes of PD, including secondary Parkinsonism. Both PD and AUD are associated with liver and brain iron dyshomeostasis. Research over the past decade has shown that α-Syn has iron import functions with an ability to oxidize the Fe3+ form of iron to Fe2+ to facilitate its entry into cells. Our prior research has identified an iron-responsive element (IRE) in the 5' untranslated region (5'UTR) of α-Syn mRNA, and we have used the α-Syn 5'UTR to screen for small molecules that modulate its expression in the H4 neuronal cell line. These screens have led us to identify several interesting small molecules capable of both decreasing and increasing α-Syn expression and that may have the potential, together with the recently described mesenchymal stem cell therapies, to normalize α-Syn expression in different regions of the alcoholic and PD brain.
Collapse
Affiliation(s)
- Catherine M. Cahill
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA;
| | | | - Jin Gao
- Department of Clinical Psychology, Qilu Hospital of Shandong University, Qingdao 266011, China;
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA;
| | - Jack T. Rogers
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA;
| |
Collapse
|