1
|
Kröner L, Lötters S, Hopp MT. Insights into caudate amphibian skin secretions with a focus on the chemistry and bioactivity of derived peptides. Biol Chem 2024; 0:hsz-2024-0035. [PMID: 38766708 DOI: 10.1515/hsz-2024-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024]
Abstract
Amphibians are well-known for their ability to produce and secrete a mixture of bioactive substances in specialized skin glands for the purpose of antibiotic self-protection and defense against predators. Some of these secretions contain various small molecules, such as the highly toxic batrachotoxin, tetrodotoxin, and samandarine. For some time, the presence of peptides in amphibian skin secretions has attracted researchers, consisting of a diverse collection of - to the current state of knowledge - three to 104 amino acid long sequences. From these more than 2000 peptides many are known to exert antimicrobial effects. In addition, there are some reports on amphibian skin peptides that can promote wound healing, regulate immunoreactions, and may serve as antiparasitic and antioxidative substances. So far, the focus has mainly been on skin peptides from frogs and toads (Anura), eclipsing the research on skin peptides of the ca. 700 salamanders and newts (Caudata). Just recently, several novel observations dealing with caudate peptides and their structure-function relationships were reported. This review focuses on the chemistry and bioactivity of caudate amphibian skin peptides and their potential as novel agents for clinical applications.
Collapse
Affiliation(s)
- Lorena Kröner
- Department of Chemistry, Institute for Integrated Natural Sciences, 38899 University of Koblenz , D-56070 Koblenz, Germany
| | - Stefan Lötters
- Department of Biogeography, University of Trier, D-54286 Trier, Germany
| | - Marie-T Hopp
- Department of Chemistry, Institute for Integrated Natural Sciences, 38899 University of Koblenz , D-56070 Koblenz, Germany
| |
Collapse
|
2
|
Pereira KE, Bletz MC, McCartney JA, Woodhams DC, Woodley SK. Effects of exogenous elevation of corticosterone on immunity and the skin microbiome of eastern newts ( Notophthalmus viridescens). Philos Trans R Soc Lond B Biol Sci 2023; 378:20220120. [PMID: 37305906 PMCID: PMC10258667 DOI: 10.1098/rstb.2022.0120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/15/2022] [Indexed: 06/13/2023] Open
Abstract
The amphibian chytrid fungus, Batrachochytrium salamandrivorans (Bsal) threatens salamander biodiversity. The factors underlying Bsal susceptibility may include glucocorticoid hormones (GCs). The effects of GCs on immunity and disease susceptibility are well studied in mammals, but less is known in other groups, including salamanders. We used Notophthalmus viridescens (eastern newts) to test the hypothesis that GCs modulate salamander immunity. We first determined the dose required to elevate corticosterone (CORT; primary GC in amphibians) to physiologically relevant levels. We then measured immunity (neutrophil lymphocyte ratios, plasma bacterial killing ability (BKA), skin microbiome, splenocytes, melanomacrophage centres (MMCs)) and overall health in newts following treatment with CORT or an oil vehicle control. Treatments were repeated for a short (two treatments over 5 days) or long (18 treatments over 26 days) time period. Contrary to our predictions, most immune and health parameters were similar for CORT and oil-treated newts. Surprisingly, differences in BKA, skin microbiome and MMCs were observed between newts subjected to short- and long-term treatments, regardless of treatment type (CORT, oil vehicle). Taken together, CORT does not appear to be a major factor contributing to immunity in eastern newts, although more studies examining additional immune factors are necessary. This article is part of the theme issue 'Amphibian immunity: stress, disease and ecoimmunology'.
Collapse
Affiliation(s)
- Kenzie E. Pereira
- Department of Biology, Duquesne University, Pittsburgh, PA 15282, USA
| | - Molly C. Bletz
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Julia A. McCartney
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Douglas C. Woodhams
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Sarah K. Woodley
- Department of Biology, Duquesne University, Pittsburgh, PA 15282, USA
| |
Collapse
|
3
|
Pereira KE, Deslouches JT, Deslouches B, Woodley SK. In Vitro Investigation of the Antibacterial Activity of Salamander Skin Peptides. Curr Microbiol 2023; 80:214. [PMID: 37195436 DOI: 10.1007/s00284-023-03320-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 05/02/2023] [Indexed: 05/18/2023]
Abstract
Given the current and future costs of antibiotic-resistant bacteria to human health and economic productivity, there is an urgent need to develop new antimicrobial compounds. Antimicrobial peptides are a promising alternative to conventional antibiotics and other antimicrobials. Amphibian skin is a rich source of bioactive compounds, but the antibacterial properties of salamander skin peptides have been neglected. Here, we examined the in vitro ability of skin peptides from 9 species of salamander representing 6 salamander families to inhibit the growth of ESKAPE pathogens, which are bacteria that have developed resistance to conventional antibiotics. We also examined whether the skin peptides caused lysis of human red blood cells. Skin peptides from Amphiuma tridactylum had the greatest antimicrobial properties, completely inhibiting the growth of all bacterial strains except for Enterococcus faecium. Likewise, skin peptides from Cryptobranchus alleganiensis completely inhibited the growth of several of the bacterial strains. In contrast, skin peptide mixtures from Ambystoma maculatum, Desmognathus fuscus, Eurycea bislineata, E. longicauda, Necturus beyeri, N. maculosus, and Siren intermedia did not completely inhibit bacterial growth even at the highest concentrations. Finally, none of the skin peptide mixtures caused lysis of human red blood cells. Together, we demonstrate that salamander skin produces peptides with potent antibacterial properties. It remains to elucidate the peptide sequences and their antibacterial mechanisms.
Collapse
Affiliation(s)
- Kenzie E Pereira
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA
| | | | - Berthony Deslouches
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sarah K Woodley
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Rollins-Smith LA. The importance of antimicrobial peptides (AMPs) in amphibian skin defense. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 142:104657. [PMID: 36754220 DOI: 10.1016/j.dci.2023.104657] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/20/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Antimicrobial peptides (AMPs) are produced for defense in nearly all taxa from simple bacteria to complex mammalian species. Some amphibian families have developed this defensive strategy to a high level of sophistication by loading the AMPs into specialized granular glands within the dermis. Enervated by the sympathetic nervous system, the granular glands are poised to deliver an array of AMPs to cleanse the wound and facilitate healing. There have been a number of excellent review publications in recent years that describe amphibian AMPs with an emphasis on their possible uses for human medicine. Instead, my aim here is to review what is known about the nature of amphibian AMPs, the diversity of amphibian AMPs, regulation of their production, and to provide the accumulated evidence that they do, indeed, play an important role in the protection of amphibian skin, vital for survival. While much has been learned about amphibian AMPs, there are still important gaps in our understanding of peptide synthesis, storage, and functions.
Collapse
Affiliation(s)
- Louise A Rollins-Smith
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
5
|
Hardman RH, Reinert LK, Irwin KJ, Oziminski K, Rollins-Smith L, Miller DL. Disease state associated with chronic toe lesions in hellbenders may alter anti-chytrid skin defenses. Sci Rep 2023; 13:1982. [PMID: 36737574 PMCID: PMC9898527 DOI: 10.1038/s41598-023-28334-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Hellbenders (Cryptobranchus alleganiensis) are large, aquatic salamanders from the eastern United States. Both subspecies, eastern and Ozark hellbenders, have experienced declines resulting in federal listing of Ozark hellbenders. The globally distributed chytrid fungus, Batrachochytrium dendrobatidis (Bd) has been detected in both subspecies, and Batrachochytrium salamandrivorans (Bsal) poses a new threat if introduced into North America. Ozark hellbenders also suffer a high prevalence of toe lesions of unknown etiology, with changes in host immunocompetence hypothesized to contribute. Antimicrobial peptides (AMPs) secreted from dermal granular glands may play a role in hellbender health. We collected skin secretions from free-ranging hellbenders and enriched them for small cationic peptides used for growth inhibition assays against Bd and Bsal. Generalized linear mixed models revealed the presence of active toe lesions as the strongest and only significant predictor of decreased Bd inhibition by skin peptides. We also found skin secretions were more inhibitory of Bsal than Bd. MALDI-TOF mass spectrometry revealed candidate peptides responsible for anti-chytrid activity. Results support the hypothesis that hellbender skin secretions are important for innate immunity against chytrid pathogens, and decreased production or release of skin peptides may be linked to other sub-lethal effects of disease associated with toe lesions.
Collapse
Affiliation(s)
- Rebecca H Hardman
- Department of Biomedical and Diagnostic Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN, 37996, USA. .,Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, St. Petersburg, FL, 33701, USA.
| | - Laura K Reinert
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Kelly J Irwin
- Arkansas Game and Fish Commission, Benton, AR, 72015, USA
| | - Kendall Oziminski
- Department of Biomedical and Diagnostic Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN, 37996, USA
| | - Louise Rollins-Smith
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Debra L Miller
- Department of Biomedical and Diagnostic Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN, 37996, USA.,School of Natural of Resources, University of Tennessee, Knoxville, Tennessee, 37996, USA
| |
Collapse
|
6
|
Loudon AH, Terrell KA, Davis RW, Umile TP, Lipps GJ, Greathouse J, Chapman E, Roblee K, Kleopfer JD, Bales EK, Hyman OJ, Harris RN, Minbiole KPC. Metabolite compositions on skins of eastern hellbenders Cryptobranchus alleganiensis alleganiensis differ with location and captivity. DISEASES OF AQUATIC ORGANISMS 2023; 153:9-16. [PMID: 36727687 DOI: 10.3354/dao03715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Eastern hellbenders Cryptobranchus alleganiensis alleganiensis, large aquatic salamanders, are declining over most of their range. The amphibian-killing fungus Batrachochytrium dendrobatidis (Bd) has contributed to global amphibian declines and has been detected on eastern hellbenders, but infection intensities were lower than those of species that are more susceptible to Bd. The factors limiting Bd on hellbenders may include antifungal metabolites produced by their skin microbiota. We used a metabolite fingerprinting technique to noninvasively identify the presence, but not identity, of metabolites associated with eastern hellbenders. We surveyed the skin of wild eastern hellbenders to test whether the composition and richness (i.e. number of metabolites) of their metabolites are explained by Bd status or location. Furthermore, we surveyed for metabolites on captive eastern hellbenders to test whether metabolite compositions were different between captive and wild eastern hellbenders. Bd detection was not associated with either metabolite richness or composition. Both metabolite composition and richness differed significantly on hellbenders from different locations (i.e. states). For metabolite composition, there was a statistical interaction between location and Bd status. Metabolite richness was greater on captive eastern hellbenders compared to wild hellbenders, and metabolite compositions differed between wild and captive eastern hellbenders. The methods we employed to detect metabolite profiles effectively grouped individuals by location even though metabolite composition and richness have high levels of intraspecific variation. Understanding the drivers and functional consequences of assemblages of skin metabolites on amphibian health will be an important step toward understanding the mechanisms that result in disease vulnerability.
Collapse
Affiliation(s)
- Andrew H Loudon
- Biology Department, Vancouver Island University, Nanaimo, British Columbia V9R 5S5, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Basanta MD, Anaya‐Morales SL, Martínez‐Ugalde E, González Martínez TM, Ávila‐Akerberg VD, Trejo MV, Rebollar EA. Metamorphosis and seasonality are major determinants of chytrid infection in a paedomorphic salamander. Anim Conserv 2022. [DOI: 10.1111/acv.12824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- M. D. Basanta
- Centro de Ciencias Genómicas Universidad Nacional Autónoma de México Cuernavaca Morelos Mexico
- Department of Biology University of Nevada Reno Reno NV USA
| | - S. L. Anaya‐Morales
- Centro de Ciencias Genómicas Universidad Nacional Autónoma de México Cuernavaca Morelos Mexico
| | - E. Martínez‐Ugalde
- Centro de Ciencias Genómicas Universidad Nacional Autónoma de México Cuernavaca Morelos Mexico
| | - T. M. González Martínez
- Facultad de Ciencias Universidad Nacional Autónoma de México, Ciudad Universitaria Ciudad de México Mexico
| | - V. D. Ávila‐Akerberg
- Instituto de Ciencias Agropecuarias y Rurales Universidad Autónoma del Estado de México Toluca Estado de México Mexico
| | - M. V. Trejo
- Facultad de Ciencias Universidad Nacional Autónoma de México, Ciudad Universitaria Ciudad de México Mexico
| | - E. A. Rebollar
- Centro de Ciencias Genómicas Universidad Nacional Autónoma de México Cuernavaca Morelos Mexico
| |
Collapse
|
8
|
Inhibitory Bacterial Diversity and Mucosome Function Differentiate Susceptibility of Appalachian Salamanders to Chytrid Fungal Infection. Appl Environ Microbiol 2022; 88:e0181821. [PMID: 35348389 PMCID: PMC9040618 DOI: 10.1128/aem.01818-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Mucosal defenses are crucial in animals for protection against pathogens and predators. Host defense peptides (antimicrobial peptides, AMPs) as well as skin-associated microbes are key components of mucosal immunity, particularly in amphibians. We integrate microbiology, molecular biology, network-thinking, and proteomics to understand how host and microbially derived products on amphibian skin (referred to as the mucosome) serve as pathogen defenses. We studied defense mechanisms against chytrid pathogens, Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans (Bsal), in four salamander species with different Batrachochytrium susceptibilities. Bd infection was quantified using qPCR, mucosome function (i.e., ability to kill Bd or Bsal zoospores in vitro), skin bacterial communities using 16S rRNA gene amplicon sequencing, and the role of Bd-inhibitory bacteria in microbial networks across all species. We explored the presence of candidate-AMPs in eastern newts and red-backed salamanders. Eastern newts had the highest Bd prevalence and mucosome function, while red-back salamanders had the lowest Bd prevalence and mucosome function, and two-lined salamanders and seal salamanders were intermediates. Salamanders with highest Bd infection intensity showed greater mucosome function. Bd infection prevalence significantly decreased as putative Bd-inhibitory bacterial richness and relative abundance increased on hosts. In co-occurrence networks, some putative Bd-inhibitory bacteria were found as hub-taxa, with red-backs having the highest proportion of protective hubs and positive associations related to putative Bd-inhibitory hub bacteria. We found more AMP candidates on salamanders with lower Bd susceptibility. These findings suggest that salamanders possess distinct innate mechanisms that affect chytrid fungi. IMPORTANCE How host mucosal defenses interact, and influence disease outcome is critical in understanding host defenses against pathogens. A more detailed understanding is needed of the interactions between the host and the functioning of its mucosal defenses in pathogen defense. This study investigates the variability of chytrid susceptibility in salamanders and the innate defenses each species possesses to mediate pathogens, thus advancing the knowledge toward a deeper understanding of the microbial ecology of skin-associated bacteria and contributing to the development of bioaugmentation strategies to mediate pathogen infection and disease. This study improves the understanding of complex immune defense mechanisms in salamanders and highlights the potential role of the mucosome to reduce the probability of Bd disease development and that putative protective bacteria may reduce likelihood of Bd infecting skin.
Collapse
|
9
|
Crawshaw L, Buchanan T, Shirose L, Palahnuk A, Cai HY, Bennett AM, Jardine CM, Davy CM. Widespread occurrence of
Batrachochytrium dendrobatidis
in Ontario, Canada, and predicted habitat suitability for the emerging
Batrachochytrium salamandrivorans. Ecol Evol 2022; 12:e8798. [PMID: 35475183 PMCID: PMC9020443 DOI: 10.1002/ece3.8798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 03/06/2022] [Accepted: 03/16/2022] [Indexed: 12/30/2022] Open
Abstract
Chytridiomycosis, caused by the fungi Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans, is associated with massive amphibian mortality events worldwide and with some species’ extinctions. Previous ecological niche models suggest that B. dendrobatidis is not well‐suited to northern, temperate climates, but these predictions have often relied on datasets in which northern latitudes are underrepresented. Recent northern detections of B. dendrobatidis suggest that these models may have underestimated the suitability of higher latitudes for this fungus. We used qPCR to test for B. dendrobatidis in 1,041 non‐invasive epithelial swab samples from 18 species of amphibians collected across 735,345 km2 in Ontario and Akimiski Island (Nunavut), Canada. We detected the pathogen in 113 samples (10.9%) from 11 species. Only one specimen exhibited potential clinical signs of disease. We used these data to produce six Species Distribution Models of B. dendrobatidis, which classified half of the study area as potential habitat for the fungus. We also tested each sample for B. salamandrivorans, an emerging pathogen that is causing alarming declines in European salamanders, but is not yet detected in North America. We did not detect B. salamandrivorans in any of the samples, providing a baseline for future surveillance. We assessed the potential risk of future introduction by comparing salamander richness to temperature‐dependent mortality, predicted by a previous exposure study. Areas with the highest species diversity and predicted mortality risk extended 60,530 km2 across southern Ontario, highlighting the potential threat B. salamandrivorans poses to northern Nearctic amphibians. Preventing initial introduction will require coordinated, transboundary regulation of trade in amphibians (including frogs that can carry and disperse B. salamandrivorans), and surveillance of the pathways of introduction (e.g., water and wildlife). Our results can inform surveillance for both pathogens and efforts to mitigate the spread of chytridiomycosis through wild populations.
Collapse
Affiliation(s)
- Lauren Crawshaw
- Ontario Ministry of Northern Development, Mines, Natural Resources and Forestry Wildlife Research and Monitoring Section Trent University Peterborough ON Canada
| | - Tore Buchanan
- Ontario Ministry of Northern Development, Mines, Natural Resources and Forestry Wildlife Research and Monitoring Section Trent University Peterborough ON Canada
| | - Leonard Shirose
- Canadian Wildlife Health Cooperative Department of Pathobiology University of Guelph Guelph ON Canada
- Department of Pathobiology University of Guelph Guelph ON Canada
| | - Amanda Palahnuk
- Ontario Ministry of Northern Development, Mines, Natural Resources and Forestry Wildlife Research and Monitoring Section Trent University Peterborough ON Canada
| | - Hugh Y. Cai
- Animal Health Laboratory University of Guelph Guelph ON Canada
| | | | - Claire M. Jardine
- Canadian Wildlife Health Cooperative Department of Pathobiology University of Guelph Guelph ON Canada
- Department of Pathobiology University of Guelph Guelph ON Canada
| | - Christina M. Davy
- Ontario Ministry of Northern Development, Mines, Natural Resources and Forestry Wildlife Research and Monitoring Section Trent University Peterborough ON Canada
- Department of Biology Trent University Peterborough ON Canada
| |
Collapse
|
10
|
An Evaluation of Immersive and Handling Methods for Collecting Salamander Skin Peptides. J HERPETOL 2021. [DOI: 10.1670/20-122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|