1
|
Lesniak A, Poznański P, Religa P, Nawrocka A, Bujalska-Zadrozny M, Sacharczuk M. Loss of Brain-Derived Neurotrophic Factor (BDNF) Resulting From Congenital- Or Mild Traumatic Brain Injury-Induced Blood-Brain Barrier Disruption Correlates With Depressive-Like Behaviour. Neuroscience 2021; 458:1-10. [PMID: 33465406 DOI: 10.1016/j.neuroscience.2021.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 12/08/2020] [Accepted: 01/04/2021] [Indexed: 12/19/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) plays an important role in processes associated with neuroplasticity and neuroprotection. Evidence suggests that decreased BDNF levels in the central nervous system (CNS) represent a mechanism underlying the development of mood disorders. We hypothesize that both congenital and traumatic brain injury (mTBI)-induced blood-brain barrier (BBB) breakdown are responsible for brain BDNF depletion that contributes to the development of depressive-like symptoms. We employed a mouse model of innate differences in BBB integrity with high (HA) and low (LA) permeability. Depressive-like behaviours were determined under chronic mild stress (CMS) conditions or following mTBI using the tail suspension test (TST). Microvascular leakage of the BBB was evaluated using the Evans Blue Dye (EBD) extravasation method. BDNF concentrations in the brain and plasma were measured using the ELISA. Control HA mice with congenitally high BBB permeability showed exacerbated depressive-like behaviours compared with LA mice. In LA mice, with normal BBB function, mTBI, but not CMS, facilitated depressive-like behaviours, which correlated with enhanced BDNF efflux from the brain. In addition, mTBI triggered upregulation of the Bdnf gene in LA mice to compensate for BDNF loss. No alterations in BDNF levels were observed in mTBI and CMS-exposed HA mice. Moreover, CMS did not induce BBB damage or affect depressive-like behaviours in HA mice despite downregulating Bdnf gene expression. To conclude, BDNF efflux through the mTBI-disrupted BBB is strongly linked to the development of depressive-like behaviours, while the depressive phenotype in mice with congenital BBB dysfunction is independent of BDNF leakage.
Collapse
Affiliation(s)
- Anna Lesniak
- Faculty of Pharmacy with the Laboratory Medicine Division, Department of Pharmacodynamics, Medical University of Warsaw, Centre for Preclinical Research and Technology, Warsaw, Poland
| | - Piotr Poznański
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzebiec, Poland
| | - Piotr Religa
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzebiec, Poland
| | - Agata Nawrocka
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzebiec, Poland
| | - Magdalena Bujalska-Zadrozny
- Faculty of Pharmacy with the Laboratory Medicine Division, Department of Pharmacodynamics, Medical University of Warsaw, Centre for Preclinical Research and Technology, Warsaw, Poland
| | - Mariusz Sacharczuk
- Faculty of Pharmacy with the Laboratory Medicine Division, Department of Pharmacodynamics, Medical University of Warsaw, Centre for Preclinical Research and Technology, Warsaw, Poland; Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzebiec, Poland.
| |
Collapse
|
2
|
Cucinello-Ragland JA, Edwards S. Neurobiological aspects of pain in the context of alcohol use disorder. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 157:1-29. [PMID: 33648668 DOI: 10.1016/bs.irn.2020.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Alcohol is an effective and widely utilized analgesic. However, the chronic use of alcohol can actually facilitate nociceptive sensitivity over time, a condition known as hyperalgesia. Excessive and uncontrollable alcohol drinking is also a hallmark feature of alcohol use disorder (AUD). Both AUD and chronic pain are typically accompanied by negative affective states that may underlie reinforcement mechanisms contributing to AUD maintenance or progression. Frequent utilization of alcohol to relieve pain in individuals suffering from AUD or other chronic pain conditions may thus represent a powerful negative reinforcement construct. This chapter will describe ties between alcohol-mediated pain relief and potential exacerbation of AUD. We describe neurobiological systems engaged in alcohol analgesia as well as systems recruited in the development and maintenance of AUD and hyperalgesia. Although few effective therapies exist for either chronic pain or AUD, the common interaction of these conditions will likely lead the way for promising new discoveries of more effective and even simultaneous treatment of AUD and co-morbid hyperalgesia. An abundance of neurobiological findings from multiple laboratories has implicated a potentiation of central amygdala (CeA) signaling in both pain and AUD, and these data also suggest that attenuation of stress-related systems (including corticotropin-releasing factor, vasopressin, and glucocorticoid receptor activity) would be particularly effective and comprehensive therapeutic strategies targeting the critical intersection of somatic and motivational mechanisms driving AUD, including alcohol-induced hyperalgesia.
Collapse
Affiliation(s)
- Jessica A Cucinello-Ragland
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, LSU Health Sciences Center, New Orleans, LA, United States
| | - Scott Edwards
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, LSU Health Sciences Center, New Orleans, LA, United States.
| |
Collapse
|
3
|
Poznanski P, Lesniak A, Korostynski M, Sacharczuk M. Ethanol consumption following mild traumatic brain injury is related to blood-brain barrier permeability. Addict Biol 2020; 25:e12683. [PMID: 30334599 DOI: 10.1111/adb.12683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 12/21/2022]
Abstract
Several preclinical and clinical studies that deal with the neuropathological consequences of mild traumatic brain injury (mTBI) have focused on unraveling its effect on ethanol drinking behavior. Previous reports describe changes in ethanol consumption, both in animal models of mTBI as well as in patients, after concussive brain injury. However, the neurobiological mechanisms underlying this phenomenon are still poorly understood. In the present study, we used a unique model of mouse lines divergently selected for high (HA) or low (LA) swim stress-induced analgesia to examine the effect of mTBI on ethanol drinking behavior. In comparison with LA mice, their HA counterparts exhibited increased blood-brain barrier (BBB) permeability, lower basal alcohol preference, and lower level of stress-induced ethanol intake. Here, we showed that mTBI attenuates voluntary ethanol intake in LA, but not in HA mice. Interestingly, BBB disruption after mannitol infusion also decreases the level of ethanol drinking behavior in this line. We conclude that in alcohol-preferring LA mice, BBB disruption as a consequence of mTBI attenuates ethanol consumption. Our results suggest that the innate level of BBB integrity plays a pivotal role in regulation of ethanol consumption in mice showing differential endogenous opioid system activity.
Collapse
Affiliation(s)
- Piotr Poznanski
- Laboratory of NeurogenomicsInstitute of Genetics and Animal Breeding, Polish Academy of Sciences Magdalenka Poland
| | - Anna Lesniak
- Department of Pharmacodynamics, Centre for Preclinical Research and TechnologyMedical University of Warsaw Warsaw Poland
| | - Michal Korostynski
- Department of Molecular NeuropharmacologyInstitute of Pharmacology Krakow Poland
| | - Mariusz Sacharczuk
- Laboratory of NeurogenomicsInstitute of Genetics and Animal Breeding, Polish Academy of Sciences Magdalenka Poland
- Department of Pharmacodynamics, Centre for Preclinical Research and TechnologyMedical University of Warsaw Warsaw Poland
- Department of Internal Medicine, Hypertension and Vascular DiseasesMedical University of Warsaw Warsaw Poland
| |
Collapse
|
4
|
Neasta J, Darcq E, Jeanblanc J, Carnicella S, Ben Hamida S. GPCR and Alcohol-Related Behaviors in Genetically Modified Mice. Neurotherapeutics 2020; 17:17-42. [PMID: 31919661 PMCID: PMC7007453 DOI: 10.1007/s13311-019-00828-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
G protein-coupled receptors (GPCRs) constitute the largest class of cell surface signaling receptors and regulate major neurobiological processes. Accordingly, GPCRs represent primary targets for the treatment of brain disorders. Several human genetic polymorphisms affecting GPCRs have been associated to different components of alcohol use disorder (AUD). Moreover, GPCRs have been reported to contribute to several features of alcohol-related behaviors in animal models. Besides traditional pharmacological tools, genetic-based approaches mostly aimed at deleting GPCR genes provided substantial information on how key GPCRs drive alcohol-related behaviors. In this review, we summarize the alcohol phenotypes that ensue from genetic manipulation, in particular gene deletion, of key GPCRs in rodents. We focused on GPCRs that belong to fundamental neuronal systems that have been shown as potential targets for the development of AUD treatment. Data are reviewed with particular emphasis on alcohol reward, seeking, and consumption which are behaviors that capture essential aspects of AUD. Literature survey indicates that in most cases, there is still a gap in defining the intracellular transducers and the functional crosstalk of GPCRs as well as the neuronal populations in which their signaling regulates alcohol actions. Further, the implication of only a few orphan GPCRs has been so far investigated in animal models. Combining advanced pharmacological technologies with more specific genetically modified animals and behavioral preclinical models is likely necessary to deepen our understanding in how GPCR signaling contributes to AUD and for drug discovery.
Collapse
Affiliation(s)
- Jérémie Neasta
- Laboratoire de Pharmacologie, Faculté de Pharmacie, University of Montpellier, 34093, Montpellier, France
| | - Emmanuel Darcq
- Douglas Hospital Research Center, Department of Psychiatry, McGill University, 6875 Boulevard LaSalle, Montreal, Quebec, H4H 1R3, Canada
| | - Jérôme Jeanblanc
- Research Group on Alcohol and Pharmacodependences-INSERM U1247, University of Picardie Jules Verne, 80025, Amiens, France
| | - Sebastien Carnicella
- INSERM U1216, Grenoble Institut des Neurosciences (GIN), University of Grenoble Alpes, 38000, Grenoble, France
| | - Sami Ben Hamida
- Douglas Hospital Research Center, Department of Psychiatry, McGill University, 6875 Boulevard LaSalle, Montreal, Quebec, H4H 1R3, Canada.
| |
Collapse
|
5
|
Poznanski P, Lesniak A, Korostynski M, Szklarczyk K, Lazarczyk M, Religa P, Bujalska-Zadrozny M, Sadowski B, Sacharczuk M. Delta-opioid receptor antagonism leads to excessive ethanol consumption in mice with enhanced activity of the endogenous opioid system. Neuropharmacology 2017; 118:90-101. [PMID: 28322978 DOI: 10.1016/j.neuropharm.2017.03.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 03/12/2017] [Accepted: 03/13/2017] [Indexed: 11/19/2022]
Abstract
The opioid system modulates the central reinforcing effects of ethanol and participates in the etiology of addiction. However, the pharmacotherapy of ethanol dependence targeted on the opioid system is little effective and varies due to individual patients' sensitivity. In the present study, we used two mouse lines with high (HA) and low (LA) activity of the endogenous opioid system to analyze the effect of opioid receptor blockade on ethanol drinking behavior. We found that LA and HA lines characterized by divergent magnitudes of swim stress-induced analgesia also differ in ethanol intake and preference. Downregulation of the opioid system in LA mice was associated with increased ethanol consumption. Treatment with a non-selective opioid receptor antagonist (naloxone) had no effect on ethanol intake in this line. Surprisingly, in HA mice, the blockage of opioid receptors led to excessive ethanol consumption. Moreover, naloxone selectively induced high levels of anxiety- and depressive-like behaviors in HA mice which was attenuated by ethanol. With the use of specific opioid receptor antagonists we showed that the naloxone-induced increase in ethanol drinking in HA mice is mediated mainly by δ and to a lower extent by μ opioid receptors. The effect of δ-opioid receptor antagonism was abolished in HA mice carrying a C320T transition in the δ-opioid receptor gene (EU446125.1), which impairs this receptor's function. Our results indicate that high activity of the opioid system plays a protective role against ethanol dependence. Therefore, its blockage with opioid receptor antagonists may lead to a profound increase in ethanol consumption.
Collapse
Affiliation(s)
- Piotr Poznanski
- Laboratory of Neurogenomics and Department of Animal Behaviour, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, Postepu 36A Str., 05-552 Magdalenka, Poland
| | - Anna Lesniak
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| | - Michal Korostynski
- Department of Molecular Neuropharmacology, Institute of Pharmacology, 12 Smetna Str., 31-343 Krakow, Poland
| | - Klaudia Szklarczyk
- Department of Molecular Neuropharmacology, Institute of Pharmacology, 12 Smetna Str., 31-343 Krakow, Poland
| | - Marzena Lazarczyk
- Department of Internal Medicine, Hypertension and Vascular Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Religa
- Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Magdalena Bujalska-Zadrozny
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| | - Bogdan Sadowski
- Laboratory of Neurogenomics and Department of Animal Behaviour, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, Postepu 36A Str., 05-552 Magdalenka, Poland
| | - Mariusz Sacharczuk
- Laboratory of Neurogenomics and Department of Animal Behaviour, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, Postepu 36A Str., 05-552 Magdalenka, Poland; Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland; Department of Internal Medicine, Hypertension and Vascular Diseases, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
6
|
Lesniak A, Leszczynski P, Bujalska-Zadrozny M, Pick CG, Sacharczuk M. Naloxone exacerbates memory impairments and depressive-like behavior after mild traumatic brain injury (mTBI) in mice with upregulated opioid system activity. Behav Brain Res 2017; 326:209-216. [PMID: 28284950 DOI: 10.1016/j.bbr.2017.03.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/02/2017] [Accepted: 03/07/2017] [Indexed: 12/13/2022]
Abstract
The neuroprotective role of the endogenous opioid system in the pathophysiological sequelae of brain injury remains largely ambiguous. Noteworthy, almost no data is available on how its genetically determined activity influences the outcome of mild traumatic brain injury. Thus, the aim of our study was to examine the effect of opioid receptor blockage on cognitive impairments produced by mild traumatic brain injury in mice selectively bred for high (HA) and low (LA) swim-stress induced analgesia that show innate divergence in opioid system activity. Mild traumatic brain injury was induced with a weight-drop device on anaesthetized mice. Naloxone (5mg/kg) was intraperitoneally delivered twice a day for 7days to non-selectively block opioid receptors. Spatial memory performance and manifestations of depressive-like behavior were assessed using the Morris Water Maze and tail suspension tests, respectively. Mild traumatic brain injury resulted in a significant deterioration of spatial memory performance and severity of depressive-like behavior in the LA mouse line as opposed to HA mice. Opioid receptor blockage with naloxone unmasked cognitive deficits in HA mice but was without effect in the LA line. The results suggest a protective role of genetically predetermined enhanced opioid system activity in suppression of mild brain trauma-induced cognitive impairments. Mice selected for high and low swim stress-induced analgesia might therefore be a useful model to study the involvement of the opioid system in the pathophysiology and neurological outcome of traumatic brain injury.
Collapse
Affiliation(s)
- Anna Lesniak
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical University of Warsaw, Centre for Preclinical Research and Technology (CePT), Banacha 1B, 02-097 Warsaw, Poland
| | - Pawel Leszczynski
- Department of Genomics, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, Postepu 36A, 05-552 Magdalenka, Poland
| | - Magdalena Bujalska-Zadrozny
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical University of Warsaw, Centre for Preclinical Research and Technology (CePT), Banacha 1B, 02-097 Warsaw, Poland
| | - Chaim G Pick
- Department of Anatomy, and Anthropology, Sackler Faculty of Medicine, and Sagol School of Neuroscience, Tel Aviv University, Ramat-Aviv, 69978 Tel Aviv, Israel
| | - Mariusz Sacharczuk
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical University of Warsaw, Centre for Preclinical Research and Technology (CePT), Banacha 1B, 02-097 Warsaw, Poland; Department of Internal Medicine, Hypertension and Vascular Diseases, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland; Department of Genomics, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, Postepu 36A, 05-552 Magdalenka, Poland.
| |
Collapse
|
7
|
Wasilewski A, Lesniak A, Bujalska-Zadrozny M, Sadowski B, Fichna J, Sacharczuk M. The effect of opioid agonists and antagonists on gastrointestinal motility in mice selected for high and low swim stress-induced analgesia. Neurogastroenterol Motil 2016; 28:175-85. [PMID: 26510904 DOI: 10.1111/nmo.12704] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 09/16/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND The opioid system in the gastrointestinal (GI) tract plays an important physiological role, but is also responsible for the side effect of opioid drugs, including troublesome constipation in chronic pain treatment. The aim of this study was to characterize and validate a new mouse model to study the effects of opioid agonists and antagonists in the GI tract. METHODS Six-week-old male Swiss-Webster mice, divergently bred for high (HA) and low (LA) swim stress-induced analgesia (SSIA), were used in the study. To assess the influence of opioid agonists (morphine and loperamide) and antagonists (naloxone hydrochloride, NLX and naloxone methiodide, NLXM) on GI motility, whole GI transit (whole GIT) and upper GIT assays were conducted. To evaluate the expression of opioid receptors in the ileum and colon of HA and LA mice, immune staining was performed. KEY RESULTS The effect of morphine was more pronounced in HA line, whereas loperamide exerted a stronger effect in LA mice. Furthermore, NLX and NLXM differentially abolished the inhibitory action of the central and peripheral opioid system on whole and upper GIT in HA and LA mice. The differences in GI motility between HA and LA mice coexisted with parallel changes in the expression of opioid receptors in the ileum and colon. CONCLUSIONS & INFERENCES Differences in the activity of the endogenous opioid system are responsible for the vulnerability to changes in GI motility during treatment with opioids. Our findings validate the HA/LA model for further studies on opioids in the GI tract.
Collapse
Affiliation(s)
- A Wasilewski
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - A Lesniak
- Department of Neuropeptide Laboratory, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.,Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - M Bujalska-Zadrozny
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| | - B Sadowski
- Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Magdalenka, Poland
| | - J Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - M Sacharczuk
- Department of Neuropeptide Laboratory, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.,Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Magdalenka, Poland
| |
Collapse
|
8
|
Lesniak A, Pick CG, Misicka A, Lipkowski AW, Sacharczuk M. Biphalin protects against cognitive deficits in a mouse model of mild traumatic brain injury (mTBI). Neuropharmacology 2016; 101:506-18. [DOI: 10.1016/j.neuropharm.2015.10.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 10/07/2015] [Accepted: 10/08/2015] [Indexed: 11/29/2022]
|
9
|
Abstract
This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (endogenous opioids and receptors), and the roles of these opioid peptides and receptors in pain and analgesia (pain and analgesia); stress and social status (human studies); tolerance and dependence (opioid mediation of other analgesic responses); learning and memory (stress and social status); eating and drinking (stress-induced analgesia); alcohol and drugs of abuse (emotional responses in opioid-mediated behaviors); sexual activity and hormones, pregnancy, development and endocrinology (opioid involvement in stress response regulation); mental illness and mood (tolerance and dependence); seizures and neurologic disorders (learning and memory); electrical-related activity and neurophysiology (opiates and conditioned place preferences (CPP)); general activity and locomotion (eating and drinking); gastrointestinal, renal and hepatic functions (alcohol and drugs of abuse); cardiovascular responses (opiates and ethanol); respiration and thermoregulation (opiates and THC); and immunological responses (opiates and stimulants). This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (endogenous opioids and receptors), and the roles of these opioid peptides and receptors in pain and analgesia (pain and analgesia); stress and social status (human studies); tolerance and dependence (opioid mediation of other analgesic responses); learning and memory (stress and social status); eating and drinking (stress-induced analgesia); alcohol and drugs of abuse (emotional responses in opioid-mediated behaviors); sexual activity and hormones, pregnancy, development and endocrinology (opioid involvement in stress response regulation); mental illness and mood (tolerance and dependence); seizures and neurologic disorders (learning and memory); electrical-related activity and neurophysiology (opiates and conditioned place preferences (CPP)); general activity and locomotion (eating and drinking); gastrointestinal, renal and hepatic functions (alcohol and drugs of abuse); cardiovascular responses (opiates and ethanol); respiration and thermoregulation (opiates and THC); and immunological responses (opiates and stimulants).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
10
|
Alongkronrusmee D, Chiang T, van Rijn RM. Delta Opioid Pharmacology in Relation to Alcohol Behaviors. Handb Exp Pharmacol 2016; 247:199-225. [PMID: 27316912 DOI: 10.1007/164_2016_30] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Delta opioid receptors (DORs) are heavily involved in alcohol-mediated processes in the brain. In this chapter we provide an overview of studies investigating how alcohol directly impacts DOR pharmacology and of early studies indicating DOR modulation of alcohol behavior. We will offer a brief summary of the different animal species used in alcohol studies investigating DORs followed by a broader overview of the types of alcohol behaviors modulated by DORs. We will highlight a small set of studies investigating the relationship between alcohol and DORs in analgesia. We will then provide an anatomical overview linking DOR expression in specific brain regions to different alcohol behaviors. In this section, we will provide two models that try to explain how endogenous opioids acting at DORs may influence alcohol behaviors. Next, we will provide an overview of studies investigating certain new aspects of DOR pharmacology, including the formation of heteromers and biased signaling. Finally, we provide a short overview of the genetics of the DORs in relation to alcohol use disorders (AUDs) and a short statement on the potential of using DOR-based therapeutics for treatment of AUDs.
Collapse
Affiliation(s)
- Doungkamol Alongkronrusmee
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Terrance Chiang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Richard M van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
11
|
Eisenhardt M, Leixner S, Spanagel R, Bilbao A. Quantification of alcohol drinking patterns in mice. Addict Biol 2015; 20:1001-11. [PMID: 26515884 DOI: 10.1111/adb.12325] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 09/18/2015] [Accepted: 09/30/2015] [Indexed: 01/29/2023]
Abstract
The use of mice in alcohol research provides an excellent model system for a better understanding of the genetics and neurobiology of alcohol addiction. Almost 60 years ago, alcohol researchers began to test strains of mice for alcohol preference and intake. In particular, various voluntary alcohol drinking paradigms in the home cage were developed. In mouse models of voluntary oral alcohol consumption, animals have concurrent access to water and either one or several concentrated alcohol solutions in their home cages. Although these models have high face validity, many experimental conditions require a more precise monitoring of alcohol consumption in mice in order to capture the role of specific strains or genes, or any other manipulation on alcohol drinking behavior. Therefore, we have developed a fully automated, highly precise monitoring system for alcohol drinking in mice in the home cage. This system is now commercially available. We show that this drinkometer system allows for detecting differences in drinking behavior (i) in transgenic mice, (ii) following alcohol deprivation, and (iii) following stress applications that are usually not detected by classical home-cage drinking paradigms. In conclusion, our drinkometer system allows disturbance-free and high resolution monitoring of alcohol drinking behavior. In particular, micro-drinking and circadian drinking patterns can be monitored in genetically modified and inbred strains of mice after environmental and pharmacological manipulation, and therefore this system represents an improvement in measuring behavioral features that are of relevance for the development of alcohol use disorders.
Collapse
Affiliation(s)
- Manuela Eisenhardt
- Institute of Psychopharmacology
- Behavioral Genetics Research Group, Central Institute of Mental Health, Medical Faculty of Mannheim; University of Heidelberg; Germany
| | - Sarah Leixner
- Institute of Psychopharmacology
- Behavioral Genetics Research Group, Central Institute of Mental Health, Medical Faculty of Mannheim; University of Heidelberg; Germany
| | | | - Ainhoa Bilbao
- Institute of Psychopharmacology
- Behavioral Genetics Research Group, Central Institute of Mental Health, Medical Faculty of Mannheim; University of Heidelberg; Germany
| |
Collapse
|
12
|
Abstract
This paper is the thirty-sixth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2013 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|