1
|
Zortea JM, Baggio DF, da Luz FMR, Lejeune VBP, Spagnol FJ, Chichorro JG. Comparative study of the effects of ibuprofen, acetaminophen, and codeine in a model of orofacial postoperative pain in male and female rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03254-w. [PMID: 38935129 DOI: 10.1007/s00210-024-03254-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Pain management is a primary goal after oral surgeries, but little is known about sex differences in the sensitivity to analgesics. This study aimed to compare the efficacy of three drugs with analgesic potential on heat and mechanical hyperalgesia, spontaneous pain and locomotion on male and female rats subjected to a model of orofacial postoperative pain. Male and female Wistar rats were submitted to intraoral incision or sham surgery, and on postoperative day 3, the effect of the ibuprofen (30 and 100 mg/kg), acetaminophen (100 and 300 mg/kg) and codeine (3 and 10 mg/kg) was assessed on responses to heat and mechanical facial stimulation, facial grooming, and locomotion. Ibuprofen reduced heat and mechanical hyperalgesia and grooming behavior in male and female rats in a non-sedative dose; acetaminophen dose-dependently reduced the mechanical hyperalgesia and abolished the heat hyperalgesia and the grooming behavior but caused sedation in both sexes; codeine dose-dependently reduced the mechanical hyperalgesia in male and female rats, and reduced the heat hyperalgesia, but females were less sensitive than males. It reduced spontaneous facial grooming in both sexes, but induced hyperlocomotion in females. Ibuprofen presented the most favorable profile, since it reduced over 50% heat and mechanical hyperalgesia in male and female rats, and significantly reduced spontaneous pain, without causing sedation or affecting locomotion. The identification of sex differences in the sensitivity and safety profile of frequently used analgesics can help guide the choice of more effective individualized therapies for pain control.
Collapse
Affiliation(s)
- Julia Maria Zortea
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, PR, Brazil
| | - Darciane Favero Baggio
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, PR, Brazil
| | | | | | - Fernanddo José Spagnol
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, PR, Brazil
| | - Juliana Geremias Chichorro
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, PR, Brazil.
| |
Collapse
|
2
|
Graßl F, Bock L, Huete-Huerta González Á, Schiller M, Gmeiner P, König J, Fromm MF, Hübner H, Heinrich MR. Exploring Structural Determinants of Bias among D4 Subtype-Selective Dopamine Receptor Agonists. J Med Chem 2023. [PMID: 37450764 DOI: 10.1021/acs.jmedchem.3c00537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The high affinity dopamine D4 receptor ligand APH199 and derivatives thereof exhibit bias toward the Gi signaling pathway over β-arrestin recruitment compared to quinpirole. Based on APH199, two novel groups of D4 subtype selective ligands were designed and evaluated, in which the original benzyl phenylsemicarbazide substructure was replaced by either a biphenylmethyl urea or a biphenyl urea moiety. Functional assays revealed a range of different bias profiles among the newly synthesized compounds, namely, with regard to efficacy, potency, and GRK2 dependency, in which bias factors range from 1 to over 300 and activation from 15% to over 98% compared to quinpirole. These observations demonstrate that within bias, an even more precise tuning toward a particular profile is possible, which─in a general sense─could become an important aspect in future drug development. Docking studies enabled further insight into the role of the ECL2 and the EPB in the emergence of bias, thereby taking advantage of the diversity of functionally selective D4 agonists now available.
Collapse
Affiliation(s)
- Fabian Graßl
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Leonard Bock
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Álvaro Huete-Huerta González
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Martin Schiller
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Jörg König
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Martin F Fromm
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Markus R Heinrich
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| |
Collapse
|
3
|
Zhang R, Dang W, Zhang J, He R, Li G, Zhang L, Wang Z, Zong H, Liu N, Jia W. Methylation quantitative locus rs3758653 in the DRD4 gene is associated with duration from first heroin exposure to addiction. Brain Res 2022; 1775:147746. [PMID: 34864042 DOI: 10.1016/j.brainres.2021.147746] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/14/2021] [Accepted: 11/29/2021] [Indexed: 11/19/2022]
Abstract
Opioid addiction is a chronic brain disease with a high heritability. However, the genetic underpinnings remain uncertain. DNA methylation is involved in the adaptive changes in neuroplasticity after prolonged drug use. The dopamine receptor D4 (DRD4) has an essential role in the reward processes associated with addictive drugs. To further elucidate the potential role and mechanism of the DRD4 gene variants in heroin addiction, we detected the methylation level of 46 CpG sites in the promoter region and the genotypes of three SNPs in the DRD4 gene. Correlations between the SNPs and methylation levels of the CpG sites, i.e., the analysis of methylation quantitative trait loci (mQTLs) was conducted. Following the identification of mQTLs that are unique in the heroin addiction group, we performed an association study between the mQTLs and traits of heroin addiction. Our results revealed that there were several correlations of SNPs rs3758653 and rs11246226 with the methylation levels of some CpG sites in the DRD4 gene. Among these SNP-CpG pairs, rs3758653-DRD4_04, rs3758653-DRD4_05, rs3758653-DRD4_13 and rs3758653-DRD4_03 were unique in the heroin addiction group. Moreover, we found that mQTL rs3758653 was associated with duration from first heroin exposure to addiction, and the expression level of the DRD4 gene in human brain regions of the frontal cortex and hippocampus. Our findings suggested that some mQTLs in the genome may be associated with traits of opioid addiction through implicating the processes of DNA methylation and gene expression.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Psychiatry, Xi'an Mental Health Center, Xi'an, Shaanxi, China
| | - Wei Dang
- Department of Psychiatry, Xi'an Mental Health Center, Xi'an, Shaanxi, China.
| | - Jianbo Zhang
- Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ruifeng He
- Department of Psychiatry, Xi'an Mental Health Center, Xi'an, Shaanxi, China
| | - Guibin Li
- Department of Psychiatry, Xi'an Mental Health Center, Xi'an, Shaanxi, China
| | - Luying Zhang
- Department of Psychiatry, Xi'an Mental Health Center, Xi'an, Shaanxi, China
| | - Zhikang Wang
- Psychiatry Department, Xi'an Daxing Hospital, Xi'an, Shaanxi, China
| | - Hua Zong
- Department of Psychiatry, Xi'an Mental Health Center, Xi'an, Shaanxi, China
| | - Ning Liu
- Department of Psychiatry, Xi'an Mental Health Center, Xi'an, Shaanxi, China
| | - Wei Jia
- Department of Psychiatry, Xi'an Mental Health Center, Xi'an, Shaanxi, China
| |
Collapse
|
4
|
Rivera A, Suárez-Boomgaard D, Miguelez C, Valderrama-Carvajal A, Baufreton J, Shumilov K, Taupignon A, Gago B, Real MÁ. Dopamine D 4 Receptor Is a Regulator of Morphine-Induced Plasticity in the Rat Dorsal Striatum. Cells 2021; 11:31. [PMID: 35011592 PMCID: PMC8750869 DOI: 10.3390/cells11010031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 02/06/2023] Open
Abstract
Long-term exposition to morphine elicits structural and synaptic plasticity in reward-related regions of the brain, playing a critical role in addiction. However, morphine-induced neuroadaptations in the dorsal striatum have been poorly studied despite its key function in drug-related habit learning. Here, we show that prolonged treatment with morphine triggered the retraction of the dendritic arbor and the loss of dendritic spines in the dorsal striatal projection neurons (MSNs). In an attempt to extend previous findings, we also explored whether the dopamine D4 receptor (D4R) could modulate striatal morphine-induced plasticity. The combined treatment of morphine with the D4R agonist PD168,077 produced an expansion of the MSNs dendritic arbors and restored dendritic spine density. At the electrophysiological level, PD168,077 in combination with morphine altered the electrical properties of the MSNs and decreased their excitability. Finally, results from the sustantia nigra showed that PD168,077 counteracted morphine-induced upregulation of μ opioid receptors (MOR) in striatonigral projections and downregulation of G protein-gated inward rectifier K+ channels (GIRK1 and GIRK2) in dopaminergic cells. The present results highlight the key function of D4R modulating morphine-induced plasticity in the dorsal striatum. Thus, D4R could represent a valuable pharmacological target for the safety use of morphine in pain management.
Collapse
Affiliation(s)
- Alicia Rivera
- Facultad de Ciencias, Instituto de Investigación Biomédica, Universidad de Málaga, 29071 Málaga, Spain; (D.S.-B.); (A.V.-C.); (K.S.); (M.Á.R.)
| | - Diana Suárez-Boomgaard
- Facultad de Ciencias, Instituto de Investigación Biomédica, Universidad de Málaga, 29071 Málaga, Spain; (D.S.-B.); (A.V.-C.); (K.S.); (M.Á.R.)
| | - Cristina Miguelez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Alejandra Valderrama-Carvajal
- Facultad de Ciencias, Instituto de Investigación Biomédica, Universidad de Málaga, 29071 Málaga, Spain; (D.S.-B.); (A.V.-C.); (K.S.); (M.Á.R.)
| | - Jérôme Baufreton
- Institut des Maladies Neurodegeneratives, Université de Bordeaux, UMR 5293, 33000 Bordeaux, France; (J.B.); (A.T.)
- Institut des Maladies Neurodegeneratives, CNRS, UMR 5293, 33000 Bordeaux, France
| | - Kirill Shumilov
- Facultad de Ciencias, Instituto de Investigación Biomédica, Universidad de Málaga, 29071 Málaga, Spain; (D.S.-B.); (A.V.-C.); (K.S.); (M.Á.R.)
- School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Anne Taupignon
- Institut des Maladies Neurodegeneratives, Université de Bordeaux, UMR 5293, 33000 Bordeaux, France; (J.B.); (A.T.)
- Institut des Maladies Neurodegeneratives, CNRS, UMR 5293, 33000 Bordeaux, France
| | - Belén Gago
- Facultad de Medicina, Instituto de Investigación Biomédica, Universidad de Málaga, 29071 Málaga, Spain;
| | - M. Ángeles Real
- Facultad de Ciencias, Instituto de Investigación Biomédica, Universidad de Málaga, 29071 Málaga, Spain; (D.S.-B.); (A.V.-C.); (K.S.); (M.Á.R.)
| |
Collapse
|
5
|
Giorgioni G, Del Bello F, Pavletić P, Quaglia W, Botticelli L, Cifani C, Micioni Di Bonaventura E, Micioni Di Bonaventura MV, Piergentili A. Recent findings leading to the discovery of selective dopamine D 4 receptor ligands for the treatment of widespread diseases. Eur J Med Chem 2020; 212:113141. [PMID: 33422983 DOI: 10.1016/j.ejmech.2020.113141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/14/2022]
Abstract
Since its discovery, the dopamine D4 receptor (D4R) has been suggested to be an attractive target for the treatment of neuropsychiatric diseases. Novel findings have renewed the interest in such a receptor as an emerging target for the management of different diseases, including cancer, Parkinson's disease, alcohol or substance use disorders, eating disorders, erectile dysfunction and cognitive deficits. The recently resolved crystal structures of D4R in complexes with the potent ligands nemonapride and L-745870 strongly improved the knowledge on the molecular mechanisms involving the D4R functions and may help medicinal chemists in drug design. This review is focused on the recent development of the subtype selective D4R ligands belonging to classical or new chemotypes. Moreover, ligands showing functional selectivity toward G protein activation or β-arrestin recruitment and the effects of selective D4R ligands on the above-mentioned diseases are discussed.
Collapse
Affiliation(s)
- Gianfabio Giorgioni
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032, Camerino, Italy
| | - Fabio Del Bello
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032, Camerino, Italy.
| | - Pegi Pavletić
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032, Camerino, Italy
| | - Wilma Quaglia
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032, Camerino, Italy.
| | - Luca Botticelli
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna Delle Carceri 9, 62032, Camerino, Italy
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna Delle Carceri 9, 62032, Camerino, Italy
| | | | | | - Alessandro Piergentili
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032, Camerino, Italy
| |
Collapse
|
6
|
Underlying Susceptibility to Eating Disorders and Drug Abuse: Genetic and Pharmacological Aspects of Dopamine D4 Receptors. Nutrients 2020; 12:nu12082288. [PMID: 32751662 PMCID: PMC7468707 DOI: 10.3390/nu12082288] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
The dopamine D4 receptor (DRD4) has a predominant expression in the prefrontal cortex (PFC), brain area strictly involved in the modulation of reward processes related to both food and drug consumption. Additionally, the human DRD4 gene is characterized by a variable number of tandem repeats (VNTR) in the exon 3 and, among the polymorphic variants, the 7-repeat (7R) allele appears as a contributing factor in the neurobiological mechanisms underlying drug abuse, aberrant eating behaviors and related comorbidities. The 7R variant encodes for a receptor with a blunted intracellular response to dopamine, and carriers of this polymorphism might be more tempted to enhance dopamine levels in the brain, through the overconsumption of drugs of abuse or palatable food, considering their reinforcing properties. Moreover, the presence of this polymorphism seems to increase the susceptibility of individuals to engage maladaptive eating patterns in response to negative environmental stimuli. This review is focused on the role of DRD4 and DRD4 genetic polymorphism in these neuropsychiatric disorders in both clinical and preclinical studies. However, further research is needed to better clarify the complex DRD4 role, by using validated preclinical models and novel compounds more selective for DRD4.
Collapse
|
7
|
Abstract
This paper is the fortieth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2017 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY, 11367, United States.
| |
Collapse
|
8
|
Ahmad N, Robert CA, Jampa A, Ashraf S, Patel RS. Antepartum Drug Dependence and Pregnancy- or Birth-related Complications: A Cross-sectional Study of 19 Million Inpatients. Cureus 2019; 11:e6117. [PMID: 31886056 PMCID: PMC6903893 DOI: 10.7759/cureus.6117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/10/2019] [Indexed: 11/26/2022] Open
Abstract
Objective To evaluate the demographic characteristics, hospitalization outcomes [severity, length of stay (LOS), and total expense], and comorbidities in pregnant patients with antepartum drug dependence (ADD). Methods We used the national inpatient sample (NIS) and included 19,170,561 female patients (age: 12-40 years) hospitalized for pregnancy- or birth-related complications and grouped by co-diagnosis of ADD. We used descriptive statistics and Pearson's chi-square test for categorical data and independent sample T-test for the continuous data to measure the differences in demographic and hospital outcomes. A logistic regression model was used to evaluate the odds ratio (OR) for medical and psychiatric comorbidities. Results The hospitalizations with ADD declined initially, from 2010 to 2011, followed by an increase of 50% from 2011 to 2014. White pregnant females (77.5%), and those from low-income families (<25th percentile, 37.1 %) had comorbid ADD. Among medical comorbidities, iron-deficiency anemia was the most prevalent condition in pregnant inpatients (12.0% in ADD vs. 9.2% in non-ADD) followed by obesity and hypertension. Depression (12.9%) was the most prevalent psychiatric comorbidity in ADD inpatients followed by comorbid psychosis (three-fold higher odds). Among patients with substance use disorder (SUD), opioid abuse was the most prevalent one (67.3%) followed by cannabis (11.2%), cocaine (5.7%), amphetamine (4.0%), and alcohol (2.4%). Half of the pregnant inpatients with ADD had moderate severity of illness due to pregnancy or birth-related complications with four-fold higher odds [95% confidence interval (CI): 3.67-8.88]. They also had a higher LOS with a mean difference of 0.88 days (95% CI: 0.904-0.865) and had incurred higher total charges, by USD 3,797 (95% CI: 3,927-3,666), per inpatient admission for pregnancy- or birth-related complications compared to non-ADD inpatients Conclusion ADD is associated with the worsening of severity of illness in pregnancy- or birth-related complications and requires acute inpatient care that leads to increased healthcare-related economic burden. The integration of SUD services with primary or maternal care is required to improve outcomes in at-risk women in the reproductive age group.
Collapse
Affiliation(s)
| | | | - Alekhya Jampa
- Obstetrics and Gynecology, Jawaharlal Nehru Medical College, Belgaum, IND
| | | | | |
Collapse
|
9
|
Pirzer AS, Lasch R, Friedrich H, Hübner H, Gmeiner P, Heinrich MR. Benzyl Phenylsemicarbazides: A Chemistry-Driven Approach Leading to G Protein-Biased Dopamine D4 Receptor Agonists with High Subtype Selectivity. J Med Chem 2019; 62:9658-9679. [DOI: 10.1021/acs.jmedchem.9b01085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Anna S. Pirzer
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Roman Lasch
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Heike Friedrich
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Markus R. Heinrich
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| |
Collapse
|
10
|
Heterodimerization of Mu Opioid Receptor Protomer with Dopamine D 2 Receptor Modulates Agonist-Induced Internalization of Mu Opioid Receptor. Biomolecules 2019; 9:biom9080368. [PMID: 31416253 PMCID: PMC6722706 DOI: 10.3390/biom9080368] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 02/07/2023] Open
Abstract
The interplay between the dopamine (DA) and opioid systems in the brain is known to modulate the additive effects of substances of abuse. On one hand, opioids serve mankind by their analgesic properties, which are mediated via the mu opioid receptor (MOR), a Class A G protein-coupled receptor (GPCR), but on the other hand, they pose a potential threat by causing undesired side effects such as tolerance and dependence, for which the exact molecular mechanism is still unknown. Using human embryonic kidney 293T (HEK 293T) and HeLa cells transfected with MOR and the dopamine D2 receptor (D2R), we demonstrate that these receptors heterodimerize, using an array of biochemical and biophysical techniques such as coimmunoprecipitation (co-IP), bioluminescence resonance energy transfer (BRET1), Fӧrster resonance energy transfer (FRET), and functional complementation of a split luciferase. Furthermore, live cell imaging revealed that D2LR, when coexpressed with MOR, slowed down internalization of MOR, following activation with the MOR agonist [D-Ala2, N-MePhe4, Gly-ol]-enkephalin (DAMGO).
Collapse
|
11
|
Borroto-Escuela DO, Fuxe K. On the G Protein-Coupled Receptor Neuromodulation of the Claustrum. Neurochem Res 2019; 45:5-15. [PMID: 31172348 PMCID: PMC6942600 DOI: 10.1007/s11064-019-02822-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/20/2019] [Accepted: 05/29/2019] [Indexed: 01/22/2023]
Abstract
G protein-coupled receptors modulate the synaptic glutamate and GABA transmission of the claustrum. The work focused on the transmitter–receptor relationships in the claustral catecholamine system and receptor–receptor interactions between kappa opioid receptors (KOR) and SomatostatinR2 (SSTR2) in claustrum. Methods used involved immunohistochemistry and in situ proximity ligation assay (PLA) using confocal microscopy. Double immunolabeling studies on dopamine (DA) D1 receptor (D1R) and tyrosine hydroxylase (TH) immunoreactivities (IR) demonstrated that D1R IR existed in almost all claustral and dorsal endopiriform nucleus (DEn) nerve cell bodies, known as glutamate projection neurons, and D4R IR in large numbers of nerve cell bodies of the claustrum and DEn. However, only a low to moderate density of TH IR nerve terminals was observed in the DEn versus de few scattered TH IR terminals found in the claustrum. These results indicated that DA D1R and D4R transmission in the rat operated via long distance DA volume transmission in the rat claustrum and DEn to modulate claustral-sensory cortical glutamate transmission. Large numbers of these glutamate projection neurons also expressed KOR and SSTR2 which formed KOR-SSTR2 heteroreceptor complexes using PLA. Such receptor–receptor interactions can finetune the activity of the glutamate claustral-sensory cortex projections from inhibition to enhancement of their sensory cortex signaling. This can give the sensory cortical regions significant help in deciding on the salience to be given to various incoming sensory stimuli.
Collapse
Affiliation(s)
- Dasiel O Borroto-Escuela
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 17177, Stockholm, Sweden. .,Department of Biomolecular Science, Section of Physiology, University of Urbino, Campus Scientifico Enrico Mattei, via Ca' le Suore 2, 61029, Urbino, Italy. .,Observatorio Cubano de Neurociencias, Grupo Bohío-Estudio, Zayas 50, 62100, Yaguajay, Cuba. .,Biomedicum, Solnavagen 9, 17177, Stockholm, Sweden.
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 17177, Stockholm, Sweden.
| |
Collapse
|
12
|
Dopamine D1 and D3 receptor modulators restore morphine analgesia and prevent opioid preference in a model of neuropathic pain. Neuroscience 2019; 406:376-388. [DOI: 10.1016/j.neuroscience.2019.03.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/04/2019] [Accepted: 03/14/2019] [Indexed: 12/25/2022]
|
13
|
Keck T, Free RB, Day MM, Brown SL, Maddaluna MS, Fountain G, Cooper C, Fallon B, Holmes M, Stang CT, Burkhardt R, Bonifazi A, Ellenberger MP, Newman AH, Sibley DR, Wu C, Boateng CA. Dopamine D 4 Receptor-Selective Compounds Reveal Structure-Activity Relationships that Engender Agonist Efficacy. J Med Chem 2019; 62:3722-3740. [PMID: 30883109 PMCID: PMC6466480 DOI: 10.1021/acs.jmedchem.9b00231] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Indexed: 01/08/2023]
Abstract
The dopamine D4 receptor (D4R) plays important roles in cognition, attention, and decision making. Novel D4R-selective ligands have promise in medication development for neuropsychiatric conditions, including Alzheimer's disease and substance use disorders. To identify new D4R-selective ligands, and to understand the molecular determinants of agonist efficacy at D4R, we report a series of eighteen novel ligands based on the classical D4R agonist A-412997 (1, 2-(4-(pyridin-2-yl)piperidin-1-yl)- N-( m-tolyl)acetamide). Compounds were profiled using radioligand binding displacement assays, β-arrestin recruitment assays, cyclic AMP inhibition assays, and molecular dynamics computational modeling. We identified several novel D4R-selective ( Ki ≤ 4.3 nM and >100-fold vs other D2-like receptors) compounds with diverse partial agonist and antagonist profiles, falling into three structural groups. These compounds highlight receptor-ligand interactions that control efficacy at D2-like receptors and may provide insights into targeted drug discovery, leading to a better understanding of the role of D4Rs in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Thomas
M. Keck
- Department
of Chemistry & Biochemistry, Department of Molecular & Cellular
Biosciences, College of Science and Mathematics, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
- Cooper
Medical School of Rowan University, 401 Broadway, Camden, New
Jersey 08103, United
States
| | - R. Benjamin Free
- Molecular
Neuropharmacology Section, National Institute of Neurological Disorders
and Stroke-Intramural Research Program, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Marilyn M. Day
- Molecular
Neuropharmacology Section, National Institute of Neurological Disorders
and Stroke-Intramural Research Program, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Sonvia L. Brown
- Department
of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, One University Parkway, High Point, North Carolina 27268, United States
| | - Michele S. Maddaluna
- Department
of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, One University Parkway, High Point, North Carolina 27268, United States
| | - Griffin Fountain
- Department
of Chemistry & Biochemistry, Department of Molecular & Cellular
Biosciences, College of Science and Mathematics, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Charles Cooper
- Department
of Chemistry & Biochemistry, Department of Molecular & Cellular
Biosciences, College of Science and Mathematics, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Brooke Fallon
- Department
of Chemistry & Biochemistry, Department of Molecular & Cellular
Biosciences, College of Science and Mathematics, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Matthew Holmes
- Department
of Chemistry & Biochemistry, Department of Molecular & Cellular
Biosciences, College of Science and Mathematics, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Christopher T. Stang
- Molecular
Neuropharmacology Section, National Institute of Neurological Disorders
and Stroke-Intramural Research Program, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Russell Burkhardt
- Medicinal
Chemistry Section, Molecular Targets and Medications Discovery Branch,
National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Alessandro Bonifazi
- Medicinal
Chemistry Section, Molecular Targets and Medications Discovery Branch,
National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Michael P. Ellenberger
- Medicinal
Chemistry Section, Molecular Targets and Medications Discovery Branch,
National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Amy H. Newman
- Medicinal
Chemistry Section, Molecular Targets and Medications Discovery Branch,
National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - David R. Sibley
- Molecular
Neuropharmacology Section, National Institute of Neurological Disorders
and Stroke-Intramural Research Program, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Chun Wu
- Department
of Chemistry & Biochemistry, Department of Molecular & Cellular
Biosciences, College of Science and Mathematics, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Comfort A. Boateng
- Department
of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, One University Parkway, High Point, North Carolina 27268, United States
| |
Collapse
|
14
|
Borroto-Escuela DO, Fuxe K. Adenosine heteroreceptor complexes in the basal ganglia are implicated in Parkinson's disease and its treatment. J Neural Transm (Vienna) 2019; 126:455-471. [PMID: 30637481 PMCID: PMC6456481 DOI: 10.1007/s00702-019-01969-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/06/2019] [Indexed: 02/08/2023]
Abstract
The adenosine homo, iso and heteroreceptor complexes in the basal ganglia play a highly significant role in modulating the indirect and direct pathways and the striosomal projections to the nigro-striatal DA system. The major adenosine receptor complexes in the striato-pallidal GABA neurons can be the A2AR-D2R and A2AR-D2R-mGluR5 receptor complexes, in which A2AR protomers and mGluR5 protomers can allosterically interact to inhibit D2R protomer signaling. Through a reorganization of these heteroreceptor complexes upon chronic dopaminergic treatment a pathological and prolonged inhibition of D2R receptor protomer signaling can develop with motor inhibition and wearing off of the therapeutic effects of levodopa and dopamine receptor agonists. The direct pathway is enriched in D1R in and around glutamate synapses enhancing the ability of these GABA neurons to be activated and increase motor initiation. The brake on these GABA neurons is in this case exerted by A1R forming A1R-D1R heteroreceptor complexes in which they allosterically inhibit D1R signaling and thereby reduce motor initiation. Upon chronic levodopa treatment a reorganization of the D1R heteroreceptor complexes develops with the formation of putative A1R-D1R-D3 in addition to D1R-D3R complexes in which D3R enhances D1R protomer signaling and may make the A1R protomer brake less effective. Alpha-synuclein monomers-dimers are postulated to form complexes with A2AR homo and heteroprotomers in the plasma membrane enhancing alpha-synuclein aggregation and toxicity. The alpha-synuclein fibrils formed in the A2AR enriched dendritic spines of the striato-pallidal GABA neurons may reach the surrounding DA terminals via extracellular-vesicle-mediated volume transmission involving internalization of the vesicles and their cargo (alpha-synuclein fibrils) into the vulnerable DA terminals, enhancing their degeneration followed by retrograde flow of these fibrils in the DA axons to the vulnerable nigral DA nerve cells.
Collapse
Affiliation(s)
- Dasiel O. Borroto-Escuela
- Department of Neuroscience, Karolinska Institutet, Biomedicum, B0851, Solnavägen 9, 17177 Stockholm, Sweden
- Observatorio Cubano de Neurociencias, Grupo Bohío-Estudio, Zayas 50, 62100 Yaguajay, Cuba
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Biomedicum, B0851, Solnavägen 9, 17177 Stockholm, Sweden
| |
Collapse
|
15
|
Cunningham CW, Elballa WM, Vold SU. Bifunctional opioid receptor ligands as novel analgesics. Neuropharmacology 2019; 151:195-207. [PMID: 30858102 DOI: 10.1016/j.neuropharm.2019.03.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/30/2019] [Accepted: 03/02/2019] [Indexed: 12/12/2022]
Abstract
Prolonged treatment of chronic severe pain with opioid analgesics is frought with problematic adverse effects including tolerance, dependence, and life-threatening respiratory depression. Though these effects are mediated predominately through preferential activation of μ opioid peptide (μOP) receptors, there is an emerging appreciation that actions at κOP and δOP receptors contribute to the observed pharmacologic and behavioral profile of μOP receptor agonists and may be targeted simultaneously to afford improved analgesic effects. Recent developments have also identified the related nociceptin opioid peptide (NOP) receptor as a key modulator of the effects of μOP receptor signaling. We review here the available literature describing OP neurotransmitter systems and highlight recent drug and probe design strategies.
Collapse
Affiliation(s)
| | - Waleed M Elballa
- Department of Pharmaceutical Sciences, Concordia University Wisconsin, Mequon, WI, USA.
| | - Stephanie U Vold
- Department of Pharmaceutical Sciences, Concordia University Wisconsin, Mequon, WI, USA.
| |
Collapse
|
16
|
Negrete-Díaz JV, Shumilov K, Real MÁ, Medina-Luque J, Valderrama-Carvajal A, Flores G, Rodríguez-Moreno A, Rivera A. Pharmacological activation of dopamine D 4 receptor modulates morphine-induced changes in the expression of GAD 65/67 and GABA B receptors in the basal ganglia. Neuropharmacology 2019; 152:22-29. [PMID: 30682345 DOI: 10.1016/j.neuropharm.2019.01.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/19/2018] [Accepted: 01/21/2019] [Indexed: 11/27/2022]
Abstract
Dopamine D4 receptor (D4R) stimulation, in a putative D4R/μ opioid heteroreceptor (MOR) complex, counteracts the molecular, cellular and behavioural actions of morphine which are associated with morphine addiction, without any effect on its analgesic properties. In the present work, we have evaluated the role of D4R in modulating the effects of a continuous treatment with morphine on the GABAergic system in the basal ganglia. It has been demonstrated that the co-administration of a D4R agonist together with morphine leads to a restoration of GABA signaling by preventing drug-induced changes in GAD65/67 expression in the caudate putamen, globus palidus and substantia nigra. Results from GABABR1 and GABABR2 expression suggest a role of D4R in modulation of the GABAB heteroreceptor complexes along the basal ganglia, especially in the functional divisions of the caudate putamen. These results provide a new proof of the functional interaction between D4R and MOR and we postulate this putative heteroreceptor complex as a key target for the development of a new strategy to prevent the addictive effects of morphine in the treatment of pain. This article is part of the Special Issue entitled 'Receptor heteromers and their allosteric receptor-receptor interactions'.
Collapse
Affiliation(s)
- José Vicente Negrete-Díaz
- Universidad de Málaga, Instituto de Investigación Biomédica, Málaga, Spain; División de Ciencias de la Salud e Ingenierías, Campus Celaya-Salvatierra, Universidad de Guanajuato, Guanajuato, Mexico (permanent address)
| | - Kirill Shumilov
- Universidad de Málaga, Instituto de Investigación Biomédica, Málaga, Spain
| | - M Ángeles Real
- Universidad de Málaga, Instituto de Investigación Biomédica, Málaga, Spain
| | - José Medina-Luque
- Universidad de Málaga, Instituto de Investigación Biomédica, Málaga, Spain; German Center for Neurodegenerative Diseases (DZNE) Munich, German (permanent address)
| | | | - Gonzalo Flores
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Universidad Autónoma de Puebla, Puebla, Mexico
| | | | - Alicia Rivera
- Universidad de Málaga, Instituto de Investigación Biomédica, Málaga, Spain.
| |
Collapse
|
17
|
Ugur M, Derouiche L, Massotte D. Heteromerization Modulates mu Opioid Receptor Functional Properties in vivo. Front Pharmacol 2018; 9:1240. [PMID: 30483121 PMCID: PMC6244869 DOI: 10.3389/fphar.2018.01240] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/11/2018] [Indexed: 01/28/2023] Open
Abstract
Mu opioid receptors modulate a large number of physiological functions. They are in particular involved in the control of pain perception and reward properties. They are also the primary molecular target of opioid drugs and mediate their beneficial analgesic effects, euphoric properties as well as negative side effects such as tolerance and physical dependence. Importantly, mu opioid receptors can physically associate with another receptor to form a novel entity called heteromer that exhibits specific ligand binding, signaling, and trafficking properties. As reviewed here, in vivo physical proximity has now been evidenced for several receptor pairs, subsequent impact of heteromerization on native mu opioid receptor signaling and trafficking identified and a link to behavioral changes established. Selective targeting of heteromers as a tool to modulate mu opioid receptor activity is therefore attracting growing interest and raises hopes for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Muzeyyen Ugur
- Centre de la Recherche Nationale Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, Strasbourg, France
| | - Lyes Derouiche
- Centre de la Recherche Nationale Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, Strasbourg, France
| | - Dominique Massotte
- Centre de la Recherche Nationale Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
18
|
Shumilov K, Real MÁ, Valderrama-Carvajal A, Rivera A. Selective ablation of striatal striosomes produces the deregulation of dopamine nigrostriatal pathway. PLoS One 2018; 13:e0203135. [PMID: 30157254 PMCID: PMC6114927 DOI: 10.1371/journal.pone.0203135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/15/2018] [Indexed: 11/26/2022] Open
Abstract
The striatum is a complex structure in which the organization in two compartments (striosomes and matrix) have been defined by their neurochemical profile and their input-output connections. The striosomes receive afferences from the limbic brain areas and send projections to the dopamine neurons of the substantia nigra pars compacta. Thereby, it has been suggested that the striosomes exert a limbic control over the motor function mediated by the surrounding matrix. However, the functionality of the striosomes are not completely understood. To elucidate the role of the striosomes on the regulation of the nigral dopamine neurons, we have induced specific ablation of this compartment by striatal injections of the neurotoxin dermorphin-saporin (DS) and dopamine neurotransmission markers have been analyzed by immunohistochemistry. The degeneration of the striosomes resulted in a nigrostriatal projections imbalance between the two striatal compartments, with an increase of the dopamine neurotransmission in the striosomes and a decrease in the matrix. The present results highlight the key function of the striosomes for the maintenance of the striatal dopamine tone and would contribute to the understanding of their involvement in some neurological disorders such as Huntington’s disease.
Collapse
Affiliation(s)
- Kirill Shumilov
- Department of Cell Biology, Universidad de Málaga, Instituto de Investigación Biomédica, Málaga, Spain
| | - M Ángeles Real
- Department of Cell Biology, Universidad de Málaga, Instituto de Investigación Biomédica, Málaga, Spain
| | | | - Alicia Rivera
- Department of Cell Biology, Universidad de Málaga, Instituto de Investigación Biomédica, Málaga, Spain
| |
Collapse
|
19
|
Borroto-Escuela DO, Perez De La Mora M, Manger P, Narváez M, Beggiato S, Crespo-Ramírez M, Navarro G, Wydra K, Díaz-Cabiale Z, Rivera A, Ferraro L, Tanganelli S, Filip M, Franco R, Fuxe K. Brain Dopamine Transmission in Health and Parkinson's Disease: Modulation of Synaptic Transmission and Plasticity Through Volume Transmission and Dopamine Heteroreceptors. Front Synaptic Neurosci 2018; 10:20. [PMID: 30042672 PMCID: PMC6048293 DOI: 10.3389/fnsyn.2018.00020] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 06/19/2018] [Indexed: 01/04/2023] Open
Abstract
This perspective article provides observations supporting the view that nigro-striatal dopamine neurons and meso-limbic dopamine neurons mainly communicate through short distance volume transmission in the um range with dopamine diffusing into extrasynaptic and synaptic regions of glutamate and GABA synapses. Based on this communication it is discussed how volume transmission modulates synaptic glutamate transmission onto the D1R modulated direct and D2R modulated indirect GABA pathways of the dorsal striatum. Each nigro-striatal dopamine neuron was first calculated to form large numbers of neostriatal DA nerve terminals and then found to give rise to dense axonal arborizations spread over the neostriatum, from which dopamine is released. These neurons can through DA volume transmission directly influence not only the striatal GABA projection neurons but all the striatal cell types in parallel. It includes the GABA nerve cells forming the island-/striosome GABA pathway to the nigral dopamine cells, the striatal cholinergic interneurons and the striatal GABA interneurons. The dopamine modulation of the different striatal nerve cell types involves the five dopamine receptor subtypes, D1R to D5R receptors, and their formation of multiple extrasynaptic and synaptic dopamine homo and heteroreceptor complexes. These features of the nigro-striatal dopamine neuron to modulate in parallel the activity of practically all the striatal nerve cell types in the dorsal striatum, through the dopamine receptor complexes allows us to understand its unique and crucial fine-tuning of movements, which is lost in Parkinson's disease. Integration of striatal dopamine signals with other transmitter systems in the striatum mainly takes place via the receptor-receptor interactions in dopamine heteroreceptor complexes. Such molecular events also participate in the integration of volume transmission and synaptic transmission. Dopamine modulation of the glutamate synapses on the dorsal striato-pallidal GABA pathway involves D2R heteroreceptor complexes such as D2R-NMDAR, A2AR-D2R, and NTSR1-D2R heteroreceptor complexes. The dopamine modulation of glutamate synapses on the striato-entopeduncular/nigral pathway takes place mainly via D1R heteroreceptor complexes such as D1R-NMDAR, A2R-D1R, and D1R-D3R heteroreceptor complexes. Dopamine modulation of the island/striosome compartment of the dorsal striatum projecting to the nigral dopamine cells involve D4R-MOR heteroreceptor complexes. All these receptor-receptor interactions have relevance for Parkinson's disease and its treatment.
Collapse
Affiliation(s)
- Dasiel O. Borroto-Escuela
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Section of Physiology, Department of Biomolecular Science, University of Urbino, Urbino, Italy
- Observatorio Cubano de Neurociencias, Grupo Bohío-Estudio, Yaguajay, Cuba
| | - Miguel Perez De La Mora
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Paul Manger
- Faculty of Health Sciences, School of Anatomical Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Manuel Narváez
- Facultad de Medicina, Instituto de Investigación Biomédica de Málaga, Málaga, Spain
| | - Sarah Beggiato
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Minerva Crespo-Ramírez
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gemma Navarro
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biomedicine, University of Barcelona, Barcelona, Spain
| | - Karolina Wydra
- Laboratory of Drug Addiction Pharmacology, Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Zaida Díaz-Cabiale
- Facultad de Medicina, Instituto de Investigación Biomédica de Málaga, Málaga, Spain
| | - Alicia Rivera
- Department of Cell Biology, Faculty of Sciences, University of Málaga, Málaga, Spain
| | - Luca Ferraro
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Sergio Tanganelli
- Department of Life Sciences and Biotechnology (SVEB), University of Ferrara, Ferrara, Italy
| | - Małgorzata Filip
- Laboratory of Drug Addiction Pharmacology, Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Rafael Franco
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biomedicine, University of Barcelona, Barcelona, Spain
- CiberNed: Centro de Investigación en Red Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
20
|
Valderrama-Carvajal A, Irizar H, Gago B, Jiménez-Urbieta H, Fuxe K, Rodríguez-Oroz MC, Otaegui D, Rivera A. Transcriptomic integration of D 4R and MOR signaling in the rat caudate putamen. Sci Rep 2018; 8:7337. [PMID: 29743514 PMCID: PMC5943359 DOI: 10.1038/s41598-018-25604-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 04/20/2018] [Indexed: 12/19/2022] Open
Abstract
Morphine binding to opioid receptors, mainly to μ opioid receptor (MOR), induces alterations in intracellular pathways essential to the initial development of addiction. The activation of the dopamine D4 receptor (D4R), which is expressed in the caudate putamen (CPu), mainly counteracts morphine-induced alterations in several molecular networks. These involve transcription factors, adaptive changes of MOR signaling, activation of the nigrostriatal dopamine pathway and behavioural effects, underlining functional D4R/MOR interactions. To shed light on the molecular mechanisms implicated, we evaluated the transcriptome alterations following acute administration of morphine and/or PD168,077 (D4R agonist) using whole-genome microarrays and a linear regression-based differential expression analysis. The results highlight the development of a unique transcriptional signature following the co-administration of both drugs that reflects a countereffect of PD168,077 on morphine effects. A KEGG pathway enrichment analysis using GSEA identified 3 pathways enriched positively in morphine vs control and negatively in morphine + PD168,077 vs morphine (Ribosome, Complement and Coagulation Cascades, Systemic Lupus Erythematosus) and 3 pathways with the opposite enrichment pattern (Alzheimer’s Disease, Neuroactive Ligand Receptor Interaction, Oxidative Phosphorilation). This work supports the massive D4R/MOR functional integration at the CPu and provides a gateway to further studies on the use of D4R drugs to modulate morphine-induced effects.
Collapse
Affiliation(s)
| | - Haritz Irizar
- Neuroscience Area, Biodonostia Institute, San Sebastián, Spain.,Division of Psychiatry, University College London, London, England, United Kingdom
| | - Belén Gago
- Neuroscience Area, Biodonostia Institute, San Sebastián, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain. .,Universidad de Málaga, Instituto de Investigación Biomédica, Facultad de Medicina, Málaga, Spain.
| | - Haritz Jiménez-Urbieta
- Neuroscience Area, Biodonostia Institute, San Sebastián, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Kjell Fuxe
- Neuroscience Department, Karolinska Institute, Stockholm, Sweden
| | - María C Rodríguez-Oroz
- Neuroscience Area, Biodonostia Institute, San Sebastián, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Neurology Department, Donostia University Hospital, San Sebastián, Spain.,Ikerbasque Foundation, Bilbao, Spain
| | - David Otaegui
- Neuroscience Area, Biodonostia Institute, San Sebastián, Spain
| | - Alicia Rivera
- Universidad de Málaga, Instituto de Investigación Biomédica, Facultad de Ciencias, Málaga, Spain.
| |
Collapse
|