1
|
Stojiljković AS, Čupić Ž, Maćešić S, Ivanović-Šašić A, Kolar-Anić L. Influence of arginine vasopressin on the ultradian dynamics of Hypothalamic-Pituitary-Adrenal axis. Front Endocrinol (Lausanne) 2022; 13:976323. [PMID: 36277700 PMCID: PMC9581400 DOI: 10.3389/fendo.2022.976323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/09/2022] [Indexed: 11/22/2022] Open
Abstract
Numerous studies on humans and animals have indicated that the corticotrophin-releasing hormone (CRH) and arginine vasopressin (AVP) stimulate both individually and synergistically secretion of adrenocorticotropic hormone (ACTH) by corticotropic cells in anterior pituitary. With aim to characterize and better comprehend the mechanisms underlying the effects of AVP on Hypothalamic-Pituitary-Adrenal (HPA) axis ultradian dynamics, AVP is here incorporated into our previously proposed stoichiometric model of HPA axis in humans. This extended nonlinear network reaction model took into account AVP by: reaction steps associated with two separate inflows of AVP into pituitary portal system, that is synthesized and released from hypothalamic parvocellular and magnocellular neuronal populations, as well as summarized reaction steps related to its individual and synergistic action with CRH on corticotropic cells. To explore the properties of extended model and its capacity to emulate the effects of AVP, nonlinear dynamical systems theory and bifurcation analyses based on numerical simulations were utilized to determine the dependence of ultradian oscillations on rate constants of the inflows of CRH and AVP from parvocellular neuronal populations, the conditions under which dynamical transitions occur due to their synergistic action and, moreover, the types of these transitions. The results show that under certain conditions, HPA system could enter into oscillatory dynamic states from stable steady state and vice versa under the influence of synergy reaction rate constant. Transitions between these dynamical states were always through supercritical Andronov-Hopf bifurcation point. Also, results revealed the conditions under which amplitudes of ultradian oscillations could increase several-fold due to CRH and AVP synergistic stimulation of ACTH secretion in accordance with results reported in the literature. Moreover, results showed experimentally observed superiority of CRH as a stimulator of ACTH secretion compared to AVP in humans. The proposed model can be very useful in studies related to the role of AVP and its synergistic action with CRH in life-threatening circumstances such as acute homeostasis dynamic crisis, autoimmune inflammations or severe hypovolemia requiring instant or several-days sustained corticosteroid excess levels. Moreover, the model can be helpful for investigations of indirect AVP-induced HPA activity by exogenously administered AVP used in therapeutic treatment.
Collapse
Affiliation(s)
- Aleksandra S. Stojiljković
- Institute of General and Physical Chemistry, University of Belgrade, Belgrade, Serbia
- *Correspondence: Aleksandra S. Stojiljković, ; Željko Čupić,
| | - Željko Čupić
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
- *Correspondence: Aleksandra S. Stojiljković, ; Željko Čupić,
| | - Stevan Maćešić
- Faculty of Physical Chemistry, University of Belgrade, Belgrade, Serbia
| | - Ana Ivanović-Šašić
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ljiljana Kolar-Anić
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
- Faculty of Physical Chemistry, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
2
|
Luz DA, Cartágenes SDC, da Silveira CCSDM, Pinheiro BG, Ferraro KMMM, Fernandes LDMP, Fontes-Júnior EA, Maia CDSF. Methylmercury plus Ethanol Exposure: How Much Does This Combination Affect Emotionality? Int J Mol Sci 2021; 22:ijms222313131. [PMID: 34884935 PMCID: PMC8658096 DOI: 10.3390/ijms222313131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022] Open
Abstract
Mercury is a heavy metal found in organic and inorganic forms that represents an important toxicant with impact on human health. Mercury can be released in the environment by natural phenoms (i.e., volcanic eruptions), industrial products, waste, or anthropogenic actions (i.e., mining activity). Evidence has pointed to mercury exposure inducing neurological damages related to emotional disturbance, such as anxiety, depression, and insomnia. The mechanisms that underlie these emotional disorders remain poorly understood, although an important role of glutamatergic pathways, alterations in HPA axis, and disturbance in activity of monoamines have been suggested. Ethanol (EtOH) is a psychoactive substance consumed worldwide that induces emotional alterations that have been strongly investigated, and shares common pathophysiological mechanisms with mercury. Concomitant mercury and EtOH intoxication occur in several regions of the world, specially by communities that consume seafood and fish as the principal product of nutrition (i.e., Amazon region). Such affront appears to be more deleterious in critical periods of life, such as the prenatal and adolescence period. Thus, this review aimed to discuss the cellular and behavioral changes displayed by the mercury plus EtOH exposure during adolescence, focused on emotional disorders, to answer the question of whether mercury plus EtOH exposure intensifies depression, anxiety, and insomnia observed by the toxicants in isolation.
Collapse
Affiliation(s)
- Diandra Araújo Luz
- Laboratório de Farmacologia da Inflamação e do Comportamento, Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém 66075-110, PA, Brazil; (D.A.L.); (S.d.C.C.); (C.C.S.d.M.d.S.); (B.G.P.); (K.M.M.M.F.); (E.A.F.-J.)
| | - Sabrina de Carvalho Cartágenes
- Laboratório de Farmacologia da Inflamação e do Comportamento, Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém 66075-110, PA, Brazil; (D.A.L.); (S.d.C.C.); (C.C.S.d.M.d.S.); (B.G.P.); (K.M.M.M.F.); (E.A.F.-J.)
| | - Cinthia Cristina Sousa de Menezes da Silveira
- Laboratório de Farmacologia da Inflamação e do Comportamento, Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém 66075-110, PA, Brazil; (D.A.L.); (S.d.C.C.); (C.C.S.d.M.d.S.); (B.G.P.); (K.M.M.M.F.); (E.A.F.-J.)
| | - Bruno Gonçalves Pinheiro
- Laboratório de Farmacologia da Inflamação e do Comportamento, Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém 66075-110, PA, Brazil; (D.A.L.); (S.d.C.C.); (C.C.S.d.M.d.S.); (B.G.P.); (K.M.M.M.F.); (E.A.F.-J.)
| | - Kissila Márvia Matias Machado Ferraro
- Laboratório de Farmacologia da Inflamação e do Comportamento, Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém 66075-110, PA, Brazil; (D.A.L.); (S.d.C.C.); (C.C.S.d.M.d.S.); (B.G.P.); (K.M.M.M.F.); (E.A.F.-J.)
| | - Luanna de Melo Pereira Fernandes
- Departamento de Ciências Morfológicas e Fisiológicas, Centro das Ciências Biológicas e da Saúde (CCBS), Universidade Estadual do Pará, Belém 66095-100, PA, Brazil;
| | - Enéas Andrade Fontes-Júnior
- Laboratório de Farmacologia da Inflamação e do Comportamento, Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém 66075-110, PA, Brazil; (D.A.L.); (S.d.C.C.); (C.C.S.d.M.d.S.); (B.G.P.); (K.M.M.M.F.); (E.A.F.-J.)
| | - Cristiane do Socorro Ferraz Maia
- Laboratório de Farmacologia da Inflamação e do Comportamento, Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém 66075-110, PA, Brazil; (D.A.L.); (S.d.C.C.); (C.C.S.d.M.d.S.); (B.G.P.); (K.M.M.M.F.); (E.A.F.-J.)
- Correspondence:
| |
Collapse
|
3
|
Karin O, Raz M, Alon U. An opponent process for alcohol addiction based on changes in endocrine gland mass. iScience 2021; 24:102127. [PMID: 33665551 PMCID: PMC7903339 DOI: 10.1016/j.isci.2021.102127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/17/2020] [Accepted: 01/27/2021] [Indexed: 12/03/2022] Open
Abstract
Consuming addictive drugs is often initially pleasurable, but escalating drug intake eventually recruits physiological anti-reward systems called opponent processes that cause tolerance and withdrawal symptoms. Opponent processes are fundamental for the addiction process, but their physiological basis is not fully characterized. Here, we propose an opponent processes mechanism centered on the endocrine stress response, the hypothalamic-pituitary-adrenal (HPA) axis. We focus on alcohol addiction, where the HPA axis is activated and secretes β-endorphin, causing euphoria and analgesia. Using a mathematical model, we show that slow changes in the functional mass of HPA glands act as an opponent process for β-endorphin secretion. The model explains hormone dynamics in alcohol addiction and experiments on alcohol preference in rodents. The opponent process is based on fold-change detection (FCD) where β-endorphin responses are relative rather than absolute; FCD confers vulnerability to addiction but has adaptive roles for learning. Our model suggests gland mass changes as potential targets for intervention in addiction. Addiction involves tolerance and withdrawal over weeks Model of the HPA-axis and β-endorphins explains tolerance and withdrawal Effects due to changes in the functional mass of endocrine glands Fold-change detection makes circuit prone to addiction but boosts learning
Collapse
Affiliation(s)
- Omer Karin
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Moriya Raz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Uri Alon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
4
|
Stanojević A, Marković VM, Čupić Ž, Kolar-Anić L, Vukojević V. Advances in mathematical modelling of the hypothalamic–pituitary–adrenal (HPA) axis dynamics and the neuroendocrine response to stress. Curr Opin Chem Eng 2018. [DOI: 10.1016/j.coche.2018.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Anić SR, Čupić ŽD. Dynamics and kinetics of complex reaction systems. Contributions of the Professor emeritus Ljiljana Kolar-Anić. REACTION KINETICS MECHANISMS AND CATALYSIS 2018. [DOI: 10.1007/s11144-017-1290-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Stanojević A, Marković VM, Maćešić S, Kolar-Anić L, Vukojević V. Kinetic modelling of testosterone-related differences in the hypothalamic–pituitary–adrenal axis response to stress. REACTION KINETICS MECHANISMS AND CATALYSIS 2017. [DOI: 10.1007/s11144-017-1315-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Abulseoud OA, Ho MC, Choi DS, Stanojević A, Čupić Ž, Kolar-Anić L, Vukojević V. Corticosterone oscillations during mania induction in the lateral hypothalamic kindled rat-Experimental observations and mathematical modeling. PLoS One 2017; 12:e0177551. [PMID: 28542167 PMCID: PMC5436765 DOI: 10.1371/journal.pone.0177551] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 04/28/2017] [Indexed: 01/03/2023] Open
Abstract
Changes in the hypothalamic-pituitary-adrenal (HPA) axis activity constitute a key component of bipolar mania, but the extent and nature of these alterations are not fully understood. We use here the lateral hypothalamic-kindled (LHK) rat model to deliberately induce an acute manic-like episode and measure serum corticosterone concentrations to assess changes in HPA axis activity. A mathematical model is developed to succinctly describe the entwined biochemical transformations that underlay the HPA axis and emulate by numerical simulations the considerable increase in serum corticosterone concentration induced by LHK. Synergistic combination of the LHK rat model and dynamical systems theory allows us to quantitatively characterize changes in HPA axis activity under controlled induction of acute manic-like states and provides a framework to study in silico how the dynamic integration of neurochemical transformations underlying the HPA axis is disrupted in these states.
Collapse
Affiliation(s)
- Osama A. Abulseoud
- Department of Psychiatry and Psychology; Mayo Clinic, Rochester, Minnesota, United States of America
- Chemistry and Drug Metabolism, IRP, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Man Choi Ho
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Doo-Sup Choi
- Department of Psychiatry and Psychology; Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Ana Stanojević
- University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12–16, Belgrade, Serbia
| | - Željko Čupić
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Catalysis and Chemical Engineering, Njegoševa 12, Belgrade, Serbia
| | - Ljiljana Kolar-Anić
- University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12–16, Belgrade, Serbia
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Catalysis and Chemical Engineering, Njegoševa 12, Belgrade, Serbia
| | - Vladana Vukojević
- Karolinska Institute, Department of Clinical Neuroscience, Center for Molecular Medicine CMM L8:01, Stockholm, Sweden
| |
Collapse
|