1
|
Thomas M, G R, V RT, V AT. Genomic profiling of selective sweeps through haplotype differentiation unravelled genes associated with production and reproduction traits in Indian goat breeds. Trop Anim Health Prod 2024; 56:296. [PMID: 39340615 DOI: 10.1007/s11250-024-04136-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024]
Abstract
A comprehensive genomic scan of selective sweeps was conducted in autochthonous Attappady Black and improved dual-purpose Malabari goat breeds in south India. High-throughput single nucleotide polymorphism (SNP) marker data, obtained through Illumina goat SNP50 BeadChip genotyping of 48 goats (24 each of Attappady Black and Malabari goats), were utilized for the analysis. Selection signature analysis, employing hapFLK analysis based on haplotype differentiation, identified seven significant sweep regions (p < 0.005). Notably, one of these regions encompassed the genomic area housing the casein cluster and quantitative trait loci associated with milk production on chromosome 6. Gene ontology enrichment analysis of 166 putative selective genes associated with these sweep regions revealed 13 significantly over-represented Panther pathways (p ≤ 0.05), including the TGF-beta signalling pathway and GNRHR pathway. The selective sweeps detected in this study contributed significantly to the phenotypic divergence observed between Attappady Black and Malabari goats in south India.
Collapse
Affiliation(s)
- Marykutty Thomas
- Centre for Advanced Studies in Animal Breeding and Genetics, Kerala Veterinary and Animal Sciences University, Mannuthy, Thrissur, 680 651, Kerala, India.
| | - Radhika G
- College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Mannuthy, Thrissur, 680 651, Kerala, India
| | - R Thirupathy V
- Centre for Pig Production and Research, Kerala Veterinary and Animal Sciences University, Mannuthy, Thrissur, Kerala, India
| | - Aravindakshan T V
- Centre for Advanced Studies in Animal Breeding and Genetics, Kerala Veterinary and Animal Sciences University, Mannuthy, Thrissur, 680 651, Kerala, India
| |
Collapse
|
2
|
Mukherjee A, Gali J, Kar I, Datta S, Roy M, Acharya AP, Patra AK. Candidate genes and proteins regulating bull semen quality: a review. Trop Anim Health Prod 2023; 55:212. [PMID: 37208528 DOI: 10.1007/s11250-023-03617-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/09/2023] [Indexed: 05/21/2023]
Abstract
Poor semen profile reflected by suboptimum fertility statistics is a concern in bulls reared for breeding purpose. A critical review of research on candidate genes and proteins associated with semen quality traits will be useful to understand the progress of molecular marker development for bull semen quality traits. Here, we have tabulated and classified candidate genes and proteins associated with bull semen quality based on a literature survey. A total of 175 candidate genes are associated with semen quality traits in various breeds of cattle. Several studies using candidate gene approach have identified 26 genes carrying a total of 44 single nucleotide polymorphisms. Furthermore, nine genome-wide association studies (GWASes) have identified 150 candidate genes using bovine single nucleotide polymorphisms (SNP) chips. Three genes, namely membrane-associated ring-CH-type finger 1 (MARCH1), platelet-derived growth factor receptor beta, and phosphodiesterase type 1, were identified commonly in two GWASes, which, especially MARCH1, are required to explore their regulatory roles in bull semen quality in in-depth studies. With the advancement of high-throughput-omic technologies, more candidate genes associated with bull semen quality may be identified in the future. Therefore, the functional significance of candidate genes and proteins need to be delved further into future investigations to augment bull semen quality.
Collapse
Affiliation(s)
- Ayan Mukherjee
- Department of Veterinary Biotechnology, West Bengal University of Animal and Fishery Sciences, Mohanpur, Nadia, West Bengal, India
| | - Jaganmohanarao Gali
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Sciences and Animal Husbandry, Central Agricultural University, Selesih, Aizawl, Mizoram, India
| | - Indrajit Kar
- Department of Avian Science, West Bengal University of Animal and Fishery Sciences, Mohanpur, Nadia, West Bengal, India
| | - Sanjoy Datta
- Department of Animal Genetics and Breeding, West Bengal University of Animal and Fishery Sciences, Mohanpur, Nadia, West Bengal, India
| | - Manoranjan Roy
- Department of Animal Genetics and Breeding, West Bengal University of Animal and Fishery Sciences, Mohanpur, Nadia, West Bengal, India
| | - Aditya Pratap Acharya
- Department of Veterinary Biotechnology, West Bengal University of Animal and Fishery Sciences, Mohanpur, Nadia, West Bengal, India
| | - Amlan Kumar Patra
- Department of Animal Nutrition, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, India.
- American Institute for Goat Research, Langston University, Langston, Oklahoma, USA.
| |
Collapse
|
3
|
Cerván-Martín M, Bossini-Castillo L, Guzmán-Jiménez A, Rivera-Egea R, Garrido N, Lujan S, Romeu G, Santos-Ribeiro S, Group I, Group LC, Castilla JA, Gonzalvo MC, Clavero A, Maldonado V, Vicente FJ, Burgos M, Jiménez R, González-Muñoz S, Sánchez-Curbelo J, López-Rodrigo O, Pereira-Caetano I, Marques PI, Carvalho F, Barros A, Bassas L, Seixas S, Gonçalves J, Larriba S, Lopes AM, Palomino-Morales RJ, Carmona FD. Common genetic variation in KATNAL1 non-coding regions is involved in the susceptibility to severe phenotypes of male infertility. Andrology 2022; 10:1339-1350. [PMID: 35752927 PMCID: PMC9546047 DOI: 10.1111/andr.13221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/23/2022] [Accepted: 06/21/2022] [Indexed: 12/03/2022]
Abstract
Background Previous studies in animal models evidenced that genetic mutations of KATNAL1, resulting in dysfunction of its encoded protein, lead to male infertility through disruption of microtubule remodelling and premature germ cell exfoliation. Subsequent studies in humans also suggested a possible role of KATNAL1 single‐nucleotide polymorphisms in the development of male infertility as a consequence of severe spermatogenic failure. Objectives The main objective of the present study is to evaluate the effect of the common genetic variation of KATNAL1 in a large and phenotypically well‐characterised cohort of infertile men because of severe spermatogenic failure. Materials and methods A total of 715 infertile men because of severe spermatogenic failure, including 210 severe oligospermia and 505 non‐obstructive azoospermia patients, as well as 1058 unaffected controls were genotyped for three KATNAL1 single‐nucleotide polymorphism taggers (rs2077011, rs7338931 and rs2149971). Case–control association analyses by logistic regression assuming different models and in silico functional characterisation of risk variants were conducted. Results Genetic associations were observed between the three analysed taggers and different severe spermatogenic failure groups. However, in all cases, the haplotype model (rs2077011*C | rs7338931*T | rs2149971*A) better explained the observed associations than the three risk alleles independently. This haplotype was associated with non‐obstructive azoospermia (adjusted p = 4.96E‐02, odds ratio = 2.97), Sertoli‐cell only syndrome (adjusted p = 2.83E‐02, odds ratio = 5.16) and testicular sperm extraction unsuccessful outcomes (adjusted p = 8.99E‐04, odds ratio = 6.13). The in silico analyses indicated that the effect on severe spermatogenic failure predisposition could be because of an alteration of the KATNAL1 splicing pattern. Conclusions Specific allelic combinations of KATNAL1 genetic polymorphisms may confer a risk of developing severe male infertility phenotypes by favouring the overrepresentation of a short non‐functional transcript isoform in the testis.
Collapse
Affiliation(s)
- Miriam Cerván-Martín
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, de Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Lara Bossini-Castillo
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, de Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Andrea Guzmán-Jiménez
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, de Granada, Spain
| | - Rocío Rivera-Egea
- Andrology Laboratory and Sperm Bank, IVIRMA Valencia, Valencia, Spain.,IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Nicolás Garrido
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain.,Servicio de Urología, Hospital Universitari i Politecnic La Fe e Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Saturnino Lujan
- Servicio de Urología, Hospital Universitari i Politecnic La Fe e Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Gema Romeu
- Servicio de Urología, Hospital Universitari i Politecnic La Fe e Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Samuel Santos-Ribeiro
- IVI-RMA Lisbon, Lisbon, Portugal.,Department of Obstetrics and Gynecology, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | | | | | - José A Castilla
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.,Unidad de Reproducción, UGC Obstetricia y Ginecología, HU Virgen de las Nieves, Granada, Spain.,CEIFER Biobanco - NextClinics, Granada, Spain
| | - M Carmen Gonzalvo
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.,Unidad de Reproducción, UGC Obstetricia y Ginecología, HU Virgen de las Nieves, Granada, Spain
| | - Ana Clavero
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.,Unidad de Reproducción, UGC Obstetricia y Ginecología, HU Virgen de las Nieves, Granada, Spain
| | - Vicente Maldonado
- UGC de Obstetricia y Ginecología, Complejo Hospitalario de Jaén, Jaén, Spain
| | - F Javier Vicente
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.,UGC de Urología, HU Virgen de las Nieves, Granada, Spain
| | - Miguel Burgos
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, de Granada, Spain
| | - Rafael Jiménez
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, de Granada, Spain
| | - Sara González-Muñoz
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, de Granada, Spain
| | - Josvany Sánchez-Curbelo
- Laboratory of Seminology and Embryology, Andrology Service-Fundació Puigvert, Barcelona, Spain
| | - Olga López-Rodrigo
- Laboratory of Seminology and Embryology, Andrology Service-Fundació Puigvert, Barcelona, Spain
| | - Iris Pereira-Caetano
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisbon, Portugal
| | - Patricia I Marques
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Filipa Carvalho
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal.,Serviço de Genética, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Alberto Barros
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal.,Serviço de Genética, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Lluís Bassas
- Laboratory of Seminology and Embryology, Andrology Service-Fundació Puigvert, Barcelona, Spain
| | - Susana Seixas
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - João Gonçalves
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisbon, Portugal.,ToxOmics - Centro de Toxicogenómica e Saúde Humana, Nova Medical School, Lisbon, Portugal
| | - Sara Larriba
- Human Molecular Genetics Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Alexandra M Lopes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Rogelio J Palomino-Morales
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.,Departamento de Bioquímica y Biología Molecular I, Universidad de Granada, Granada, Spain
| | - F David Carmona
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, de Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| |
Collapse
|
4
|
Sperm Methylome Profiling Can Discern Fertility Levels in the Porcine Biomedical Model. Int J Mol Sci 2021; 22:ijms22052679. [PMID: 33800945 PMCID: PMC7961483 DOI: 10.3390/ijms22052679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 12/20/2022] Open
Abstract
A combined Genotyping By Sequencing (GBS) and methylated DNA immunoprecipitation (MeDIP) protocol was used to identify—in parallel—genetic variation (Genomic-Wide Association Studies (GWAS) and epigenetic differences of Differentially Methylated Regions (DMR) in the genome of spermatozoa from the porcine animal model. Breeding boars with good semen quality (n = 11) and specific and well-documented differences in fertility (farrowing rate, FR) and prolificacy (litter size, LS) (n = 7) in artificial insemination programs, using combined FR and LS, were categorized as High Fertile (HF, n = 4) or Low Fertile (LF, n = 3), and boars with Unknown Fertility (UF, n = 4) were tested for eventual epigenetical similarity with those fertility-proven. We identified 165,944 Single Nucleotide Polymorphisms (SNPs) that explained 14–15% of variance among selection lines. Between HF and LF individuals (n = 7, 4 HF and 3 LF), we identified 169 SNPs with p ≤ 0.00015, which explained 58% of the variance. For the epigenetic analyses, we considered fertility and period of ejaculate collection (late-summer and mid-autumn). Approximately three times more DMRs were observed in HF than in LF boars across these periods. Interestingly, UF boars were clearly clustered with one of the other HF or LF groups. The highest differences in DMRs between HF and LF experimental groups across the pig genome were located in the chr 3, 9, 13, and 16, with most DMRs being hypermethylated in LF boars. In both HF and LF boars, DMRs were mostly hypermethylated in late-summer compared to mid-autumn. Three overlaps were detected between SNPs (p ≤ 0.0005, n = 1318) and CpG sites within DMRs. In conclusion, fertility levels in breeding males including FR and LS can be discerned using methylome analyses. The findings in this biomedical animal model ought to be applied besides sire selection for andrological diagnosis of idiopathic sub/infertility.
Collapse
|
5
|
Hatakeyama E, Hayashi K. KATNAL1 is a more active and stable isoform of katanin, and is expressed dominantly in neurons. Biochem Biophys Res Commun 2018; 507:389-394. [DOI: 10.1016/j.bbrc.2018.11.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 11/09/2018] [Indexed: 11/26/2022]
|
6
|
Qin C, Yin H, Zhang X, Sun D, Zhang Q, Liu J, Ding X, Zhang Y, Zhang S. Genome-wide association study for semen traits of the bulls in Chinese Holstein. Anim Genet 2016; 48:80-84. [PMID: 27610941 DOI: 10.1111/age.12433] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2016] [Indexed: 11/30/2022]
Abstract
A genome-wide association study (GWAS) was performed to identify markers and candidate genes for five semen traits in the Holstein bull population in China. The analyzed dataset consisted of records from 692 bulls from eight bull stations; each bull was genotyped using the Illumina BovineSNP50 BeadChip. Association tests between each trait and the 41 188 informative high-quality SNPs were achieved with gapit software. In total, 19 suggestive significant SNPs, partly located within the reported QTL regions or within or close to the reported candidate genes, associated with five semen traits were detected. By combining our GWAS results with the biological functions of these genes, eight novel promising candidate genes, including ETNK1, PDE3A, PDGFRB, CSF1R, WT1, DSCAML1, SOD1 and RUNX2, were identified that potentially relate to semen traits. Our findings may provide a basis for further research on the genetic mechanism of semen traits and marker-assisted selection of such traits in Holstein bulls.
Collapse
Affiliation(s)
- Chunhua Qin
- College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, China Agricultural University, Beijing, 100193, China
| | - Hongwei Yin
- College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, China Agricultural University, Beijing, 100193, China
| | - Xu Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, China Agricultural University, Beijing, 100193, China
| | - Dongxiao Sun
- College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, China Agricultural University, Beijing, 100193, China
| | - Qin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, China Agricultural University, Beijing, 100193, China
| | - Jianfeng Liu
- College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, China Agricultural University, Beijing, 100193, China
| | - Xiangdong Ding
- College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, China Agricultural University, Beijing, 100193, China
| | - Yi Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, China Agricultural University, Beijing, 100193, China
| | - Shengli Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
7
|
Cui X, Sun Y, Wang X, Yang C, Ju Z, Jiang Q, Zhang Y, Huang J, Zhong J, Yin M, Wang C. A g.-1256 A>C in the promoter region of CAPN1 is associated with semen quality traits in Chinese Holstein bulls. Reproduction 2016; 152:101-9. [PMID: 27107033 DOI: 10.1530/rep-15-0535] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 04/21/2016] [Indexed: 02/04/2023]
Abstract
The micromolar calcium-activated neutral protease gene (CAPN1) is a physiological candidate gene for sperm motility. However, the molecular mechanisms involved in regulating the expression of the CAPN1 gene in bulls remain unknown. In this study, we investigated the expression pattern of CAPN1 in testis, epididymis, and sperm at the RNA and protein levels by qRT-PCR, western blot, immunohistochemistry, and immunofluorescence assay. Results revealed that the expression of CAPN1 levels was higher in the sperm head compared with that in other tissues. Moreover, we identified a novel single-nucleotide polymorphism (g.-1256 A>C, ss 1917715340) in the noncanonical core promoter of the CAPN1 gene between base g.-1306 and g.-1012. Additionally, we observed greater sperm motility in bulls with the genotype CC than in those with the genotype AA (P<0.01), indicating that different genotypes were associated with the bovine semen trait. Furthermore, a higher fluorescence intensity of the C allele than that of the A allele at g. -1256 A>C was revealed by transient transfection in MLTC-1 cells and luciferase report assay. Finally, CAPN1 was highly expressed in the spermatozoa with the CC genotype compared with that with the AA genotype by qRT-PCR. This study is the first report on genetic variant g.-1256 A>C in the promoter region of CAPN1 gene association with the semen quality of Chinese Holstein bulls by influencing its expression. g.-1256 A>C can be a functional molecular marker in cattle breeding.
Collapse
Affiliation(s)
- Xiaohui Cui
- Dairy Cattle Research CenterShandong Academy of Agricultural Science, Jinan, People's Republic of China College of Life ScienceShandong Normal University, Jinan, People's Republic of China
| | - Yan Sun
- Dairy Cattle Research CenterShandong Academy of Agricultural Science, Jinan, People's Republic of China
| | - Xiuge Wang
- Dairy Cattle Research CenterShandong Academy of Agricultural Science, Jinan, People's Republic of China
| | - Chunhong Yang
- Dairy Cattle Research CenterShandong Academy of Agricultural Science, Jinan, People's Republic of China
| | - Zhihua Ju
- Dairy Cattle Research CenterShandong Academy of Agricultural Science, Jinan, People's Republic of China
| | - Qiang Jiang
- Dairy Cattle Research CenterShandong Academy of Agricultural Science, Jinan, People's Republic of China
| | - Yan Zhang
- Dairy Cattle Research CenterShandong Academy of Agricultural Science, Jinan, People's Republic of China
| | - Jinming Huang
- Dairy Cattle Research CenterShandong Academy of Agricultural Science, Jinan, People's Republic of China
| | - Jifeng Zhong
- Dairy Cattle Research CenterShandong Academy of Agricultural Science, Jinan, People's Republic of China
| | - Miao Yin
- College of Life ScienceShandong Normal University, Jinan, People's Republic of China
| | - Changfa Wang
- Dairy Cattle Research CenterShandong Academy of Agricultural Science, Jinan, People's Republic of China
| |
Collapse
|
8
|
Bagnato A, Strillacci MG, Pellegrino L, Schiavini F, Frigo E, Rossoni A, Fontanesi L, Maltecca C, Prinsen RT, Dolezal MA. Identification and Validation of Copy Number Variants in Italian Brown Swiss Dairy Cattle Using Illumina Bovine SNP50 Beadchip®. ITALIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.4081/ijas.2015.3900] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Alessandro Bagnato
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare, University of Milan, Italy
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, University of Bologna, Italy
| | - Maria G. Strillacci
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare, University of Milan, Italy
| | - Laura Pellegrino
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare, University of Milan, Italy
| | - Fausta Schiavini
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare, University of Milan, Italy
| | - Erika Frigo
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare, University of Milan, Italy
| | - Attilio Rossoni
- Associazione Nazionale Allevatori Razza Bruna, Bussolengo (VR), Italy
| | - Luca Fontanesi
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, University of Bologna, Italy
| | - Christian Maltecca
- Department of Animal Science, North Carolina State University, Raleigh, NC, USA
| | - Raphaelle T.M.M. Prinsen
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare, University of Milan, Italy
| | - Marlies A. Dolezal
- Institut für Populationsgenetik Veterinärmedizinische, University of Wien, Austria
| |
Collapse
|
9
|
The g.-165 T>C Rather than Methylation Is Associated with Semen Motility in Chinese Holstein Bulls by Regulating the Transcriptional Activity of the HIBADH Gene. PLoS One 2015; 10:e0127670. [PMID: 26133183 PMCID: PMC4489673 DOI: 10.1371/journal.pone.0127670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 04/17/2015] [Indexed: 12/05/2022] Open
Abstract
The 3-hydroxyisobutyrate dehydrogenase (HIBADH) is regarded as a human sperm-motility marker. However, the molecular mechanisms involved in the regulation of expression of the HIBADH gene in bulls remain largely unknown. HIBADH was detected in the testis, epididymis, and sperm via reverse transcription polymerase chain reaction and Western blot analysis. It is also expressed in the seminiferous epithelium, spermatids, and the entire epididymis, as detected by immunohistochemistry. Furthermore, HIBADH was expressed in the neck-piece and mid-piece of bull spermatids, as shown in the immunofluorescence assay. Using serially truncated bovine HIBADH promoters and luciferase constructs, we discovered an 878 bp (-703 bp to +175 bp) fragment that constitutes the core promoter region. One SNP g.-165 T>C of HIBADH was identified and genotyped in 307 Chinese Holstein bulls. Correlation analysis revealed that bulls with the TT genotype had higher initial sperm motility than those with the CC genotype (P < 0.05). Furthermore, the T- or C-containing loci (designated as pGL3-T and pGL3-C) were transiently transfected into MLTC-1 to test the effect of SNP on HIBADH expression. The luciferase reporter assay showed that the pGL3-T genotype exhibited 58% higher transcriptional activity than the pGL3-C genotype (P < 0.05). The bisulfite sequencing analysis revealed that the methylation pattern of the core promoter presented hypomethylation in the ejaculated semen in high-motility and low-motility bulls. The results demonstrated for the first time that the g.-165 T>C rather than methylation in the 5'-flanking region could affect the bovine sperm motility through the regulation of HIBADH gene transcriptional activity.
Collapse
|