1
|
Ye M, Chao X, Ye C, Guo L, Fan Z, Ma X, Liu A, Liang W, Chen S, Fang C, Zhang X, Luo Q. EGR1 mRNA expression levels and polymorphisms are associated with slaughter performance in chickens. Poult Sci 2024; 104:104533. [PMID: 39603185 PMCID: PMC11635649 DOI: 10.1016/j.psj.2024.104533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/30/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
With the implementation of the policy of "centralized slaughtering and chilled to market" and the development of the livestock processing industry, numerous researchers have begun to focus on the selection and breeding of broilers bred for slaughter. The selection of breeds with excellent slaughtering performance and high meat production performance has become one of the most important selective breeding goals. In our previous study, we conducted transcriptome sequencing on chicken breast tissues with high and low breast muscle rates and found higher early growth response protein 1 (EGR1) expression in breast tissues with a low breast muscle ratio, thus hypothesizing that the EGR1 gene is involved in the growth and development process of chicken muscle tissues. Therefore, we analyzed the gene functions and polymorphisms of EGR1 to investigate its association with slaughter traits. We used various experimental methods, including RT-qPCR, Cell Counting Kit 8, 5-ethynyl-2'-deoxyuridine, western blot, flow cytometry, and immunofluorescence, to validate EGR1's role in chicken primary myoblasts. The results of our functional validation experiments indicate that EGR1 is highly expressed in breast tissues with a low breast muscle content and plays a key role in regulating of muscle growth and development by promoting proliferation and inhibiting the differentiation of chicken primary myoblasts. In addition, we explored the relationship between the EGR1 gene polymorphisms and slaughter traits using mixed linear models for the first time. In a population of Jiangfeng M3 lineage partridge chickens, we identified 4 EGR1 single-nucleotide polymorphisms, 2 of which were significantly associated with slaughter traits, including live weight, slaughter weight, semi-eviscerated weight, eviscerated weight, leg weight, wing weight, and breast muscle rate. In summary, ectopic expression of EGR1 promotes the proliferation and differentiation of chicken primary myoblasts. In addition, polymorphisms in EGR1 were associated with slaughter performance, providing a potential basis for further utilization of EGR1 as a breeding marker.
Collapse
Affiliation(s)
- Mao Ye
- College of Animal Science, South China Agricultural University, Guangzhou, PR China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, PR China
| | - Xiaohuan Chao
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, PR China
| | - Chutian Ye
- College of Animal Science, South China Agricultural University, Guangzhou, PR China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, PR China
| | - Lijin Guo
- College of Animal Science, South China Agricultural University, Guangzhou, PR China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, PR China
| | - Zhexia Fan
- College of Animal Science, South China Agricultural University, Guangzhou, PR China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, PR China
| | - Xuerong Ma
- College of Animal Science, South China Agricultural University, Guangzhou, PR China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, PR China
| | - Aijun Liu
- College of Animal Science, South China Agricultural University, Guangzhou, PR China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, PR China
| | - Weiming Liang
- College of Animal Science, South China Agricultural University, Guangzhou, PR China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, PR China
| | - Shuya Chen
- College of Animal Science, South China Agricultural University, Guangzhou, PR China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, PR China
| | - Cheng Fang
- College of Animal Science, South China Agricultural University, Guangzhou, PR China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, PR China
| | - Xiquan Zhang
- College of Animal Science, South China Agricultural University, Guangzhou, PR China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, PR China
| | - Qingbin Luo
- College of Animal Science, South China Agricultural University, Guangzhou, PR China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, PR China.
| |
Collapse
|
2
|
Liu Y, Wu X, Xu Q, Lan X, Li W. Temporal Transcriptome Dynamics of Longissimus dorsi Reveals the Mechanism of the Differences in Muscle Development and IMF Deposition between Fuqing Goats and Nubian Goats. Animals (Basel) 2024; 14:1770. [PMID: 38929389 PMCID: PMC11200590 DOI: 10.3390/ani14121770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
In this study, we measured the growth performance and intramuscular fat (IMF) content of the Longissimus dorsi (LD) of Fuqing goats (FQs) and Nubian goats (NBYs), which exhibit extreme phenotypic differences in terms of their production and meat quality traits. RNA-Seq analysis was performed, and transcriptome data were obtained from the LD tissue of 3-month fetuses (E3), 0-month lambs (0M), 3-month lambs (3M), and 12-month lambs (12M) to reveal the differences in the molecular mechanisms regulating the muscle development and IMF deposition between FQs and NBYs. The results showed that a higher body weight and average daily gain were observed in the NBYs at three developmental stages after birth, whereas a higher IMF content was registered in the FQs at 12M. Additionally, transcriptome profiles during the embryonic period and after birth were completely different for both FQs and NBYs. Moreover, DEGs (KIF23, CCDC69, CCNA2, MKI67, KIF11, RACGAP1, NUSAP1, SKP2, ZBTB18, NES, LOC102180034, CAPN6, TUBA1A, LOC102178700, and PEG10) significantly enriched in the cell cycle (ko04110) at E3 (FQs vs. NBYs), and DEGs (MRPS7, RPS8, RPL6, RPL4, RPS11, RPS10, RPL5, RPS6, RPL8, RPS13, RPS24, RPS15, RPL23) significantly enriched in ribosomes (ko03010) at 0M (FQs vs. NBYs) related to myogenic differentiation and fusion were identified. Meanwhile, the differences in glucose and lipid metabolism began at the E3 timepoint and continued to strengthen as growth proceeded in FQs vs. NBYs. DEGs (CD36, ADIROQR2, ACACA, ACACB, CPT1A, IGF1R, IRS2, LDH-A, PKM, HK2, PFKP, PCK1, GPI, FASN, FADS1, ELOVL6, HADHB, ACOK1, ACAA2, and ACSL4) at 3M (FQs vs. NBYs) and 12M (FQs vs. NBYs) significantly enriched in the AMPK signaling pathway (ko04152), insulin resistance (ko04931), the insulin signaling pathway (ko04910), fatty acid metabolism (ko01212), and glycolysis/gluconeogenesis (ko00010) related to IMF deposition were identified. Further, the results from this study provide the basis for future studies on the mechanisms regulating muscle development and IMF deposition in different breeds of goats, and the candidate genes identified could be used in the selection process.
Collapse
Affiliation(s)
- Yuan Liu
- Fujian Provincial Key Laboratory of Animal Genetics and Breeding, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (Y.L.); (X.W.); (Q.X.)
| | - Xianfeng Wu
- Fujian Provincial Key Laboratory of Animal Genetics and Breeding, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (Y.L.); (X.W.); (Q.X.)
| | - Qian Xu
- Fujian Provincial Key Laboratory of Animal Genetics and Breeding, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (Y.L.); (X.W.); (Q.X.)
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Wenyang Li
- Fujian Provincial Key Laboratory of Animal Genetics and Breeding, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (Y.L.); (X.W.); (Q.X.)
| |
Collapse
|
3
|
Liu Y, Zhou Z, Li K, Wang P, Chen Y, Deng S, Li W, Yu K, Wang K. VMP1 Regulated by chi-miR-124a Effects Goat Myoblast Proliferation, Autophagy, and Apoptosis through the PI3K/ULK1/mTOR Signaling Pathway. Cells 2022; 11:cells11142227. [PMID: 35883670 PMCID: PMC9319091 DOI: 10.3390/cells11142227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 11/28/2022] Open
Abstract
The production of goat meat is determined by the growth speed of muscle fibers, and the autophagy and apoptosis of myoblast cells is a crucial process in the growth of muscle fibers. The rapid growth of muscle fibers occurs from one month old to nine months old in goats; however, the mechanisms of myoblast cells’ autophagy and apoptosis in this process are still unknown. To identify candidate genes and signaling pathway mechanisms involved in myoblast apoptosis and autophagy, we compared the expression characteristics of longissimus dorsi tissues from Wu’an goats—a native goat breed of China—at 1 month old (mon1 group) and 9 months old (mon9 group). Herein, a total of 182 differentially expressed mRNAs (DEGs) in the mon1 vs. mon9 comparison, along with the KEGG enrichments, showed that the PI3K-Akt pathway associated with autophagy and apoptosis was significantly enriched. Among these DEGs, expression of vacuole membrane protein 1 (VMP1)—a key gene for the PI3K-Akt pathway—was significantly upregulated in the older goats relative to the 1-month-old goats. We demonstrated that VMP1 promotes the proliferation and autophagy of myoblasts, and inhibits their apoptosis. The integration analysis of miRNA–mRNA showed that miR-124a was a regulator of VMP1 in muscle tissue, and overexpression and inhibition of miR-124a suppressed the proliferation and autophagy of myoblasts. The PI3K/Akt/mTOR pathway was an important pathway for cell autophagy. Additionally, the activator of the PI3K/Akt/mTOR pathway, the expression of VMP1, and ULK1 were higher than the negative control, and the expression of mTOR was depressed. The expression of VMP1, ULK1, and mTOR was the opposite when the inhibitor was added to the myoblasts. These results show that the PI3K/Akt/mTOR pathway promoted the expression of VMP1 and ULK1. By using adenovirus-mediated apoptosis and proliferation assays, we found that that miR-124a inhibits myoblast proliferation and autophagy, and promotes their apoptosis by targeting VMP1. In conclusion, our results indicated that VMP1 was highly expressed in the LD muscle tissues of nine-month-old goats, and that it was regulated by miR-124a to inhibit myoblast cells’ apoptosis through the PI3K/Akt/mTOR pathway, and to promote proliferation and autophagy. These findings contribute to the understanding of the molecular mechanisms involved in myoblast proliferation, autophagy, and apoptosis.
Collapse
Affiliation(s)
- Yufang Liu
- College of Animal Sciences and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.L.); (W.L.)
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056021, China; (Z.Z.); (K.L.); (P.W.); (Y.C.)
| | - Zuyang Zhou
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056021, China; (Z.Z.); (K.L.); (P.W.); (Y.C.)
| | - Kunyu Li
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056021, China; (Z.Z.); (K.L.); (P.W.); (Y.C.)
| | - Peng Wang
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056021, China; (Z.Z.); (K.L.); (P.W.); (Y.C.)
| | - Yulin Chen
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056021, China; (Z.Z.); (K.L.); (P.W.); (Y.C.)
| | - Shoulong Deng
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China;
| | - Wenting Li
- College of Animal Sciences and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.L.); (W.L.)
| | - Kun Yu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Correspondence: (K.Y.); (K.W.); Tel.: +86-159-10666799 (K.Y.); +86-184-37158776 (K.W.); Fax: +86-0106-2731314 (K.Y.); +86-0371-56552516 (K.W.)
| | - Kejun Wang
- College of Animal Sciences and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.L.); (W.L.)
- Correspondence: (K.Y.); (K.W.); Tel.: +86-159-10666799 (K.Y.); +86-184-37158776 (K.W.); Fax: +86-0106-2731314 (K.Y.); +86-0371-56552516 (K.W.)
| |
Collapse
|
4
|
Shi B, Shi X, Zuo Z, Zhao S, Zhao Z, Wang J, Zhou H, Luo Y, Hu J, Hickford JGH. Identification of differentially expressed genes at different post-natal development stages of longissimus dorsi muscle in Tianzhu white yak. Gene X 2022; 823:146356. [PMID: 35227854 DOI: 10.1016/j.gene.2022.146356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/28/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
The regulatory mechanisms controlling post-natal muscle development in the yak (Bos grunniens) are still largely unknown, yet the growth and development of muscle is a complex process that plays a crucial role in determining the yield and quality of an animal's meat. In this study, we performed a transcriptome analysis based on the RNA sequencing (RNA-Seq) of yak longissimus dorsi muscle tissue obtained from calves (6 months of age; 6 M), young adults (30 months of age; 30 M) and adult (54 months of age; 54 M) to identify which genes are differentially expressed and to investigate their temporal expression profiles. In total, 1788 differentially expressed genes (DEGs) (|log2FC| ≥ 1, P-adjusted < 0.05) were detected by pairwise comparisons between the different age groups. The expression levels of 10 of the DEGs were confirmed using reverse transcription-quantitative PCR (RT-qPCR), and the results were consistent with the transcriptome profile. A time-series expression profile analysis clustered the DEGs into four groups that could be divided into two classes (P < 0.05): class 1 profiles, which had up-regulated patterns of gene expression and class 2 profiles, which featured down-regulated patterns. Based on that cluster analysis, GO enrichment analysis revealed 1073, 127, and 184 terms as significantly enriched in biological process (BP), cellular component (CC), and molecular function (MF) categories in the class 1 profiles, while 714, 66, and 206 terms were significantly enriched in BP, CC, and MF in the class 2 profiles. A KEGG pathway analysis revealed that DEGs from the class 1 profiles were enriched in 62 pathways, with the most enriched being the phosphoinositide 3-kinase (PI3K) - protein kinase B (Akt)-signaling pathway. The DEGs from the class 2 profiles were enriched in 16 pathways, of which forkhead box protein O (FoxO) - signaling was the most enriched. Taken together, these results provide insight into the mechanisms of skeletal muscle development, as well suggesting some potential genes of importance for yak meat production.
Collapse
Affiliation(s)
- Bingang Shi
- Faculty of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xuehong Shi
- Faculty of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhi Zuo
- Faculty of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Shijie Zhao
- Faculty of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhidong Zhao
- Faculty of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiqing Wang
- Faculty of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Huitong Zhou
- Gene-Marker Laboratory, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Yuzhu Luo
- Faculty of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiang Hu
- Faculty of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Jon G H Hickford
- Gene-Marker Laboratory, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand.
| |
Collapse
|
5
|
Profiling and Functional Analysis of mRNAs during Skeletal Muscle Differentiation in Goats. Animals (Basel) 2022; 12:ani12081048. [PMID: 35454294 PMCID: PMC9024908 DOI: 10.3390/ani12081048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
Skeletal myogenesis is a complicated biological event that involves a succession of tightly controlled gene expressions. In order to identify novel regulators of this process, we performed mRNA-Seq studies of goat skeletal muscle satellite cells (MuSCs) cultured under proliferation (GM) and differentiation (DM1/DM5) conditions. A total of 19,871 goat genes were expressed during these stages, 198 of which represented novel transcripts. Notably, in pairwise comparisons at the different stages, 2551 differentially expressed genes (DEGs) were identified (p < 0.05), including 1560 in GM vs. DM1, 1597 in GM vs. DM5, and 959 in DM1 vs. DM5 DEGs. The time-series expression profile analysis clustered the DEGs into eight gene groups, three of which had significantly upregulated and downregulated patterns (p < 0.05). Functional enrichment analysis showed that DEGs were enriched for essential biological processes such as muscle structure development, muscle contraction, muscle cell development, striated muscle cell differentiation, and myofibril assembly, and were involved in pathways such as the MAPK, Wnt and PPAR signaling pathways. Moreover, the expression of eight DEGs (MYL2, DES, MYOG, FAP, PLK2, ADAM, WWC1, and PRDX1) was validated. These findings offer novel insights into the transcriptional regulation of skeletal myogenesis in goats.
Collapse
|
6
|
Shen J, Hao Z, Wang J, Hu J, Liu X, Li S, Ke N, Song Y, Lu Y, Hu L, Qiao L, Wu X, Luo Y. Comparative Transcriptome Profile Analysis of Longissimus dorsi Muscle Tissues From Two Goat Breeds With Different Meat Production Performance Using RNA-Seq. Front Genet 2021; 11:619399. [PMID: 33519920 PMCID: PMC7838615 DOI: 10.3389/fgene.2020.619399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Carcass weight, meat quality and muscle components are important traits economically and they underpin most of the commercial return to goat producers. In this study, the Longissimus dorsi muscle tissues were collected from five Liaoning cashmere (LC) goats and five Ziwuling black (ZB) goats with phenotypic difference in carcass weight, some meat quality traits and muscle components. The histological quantitative of collagen fibers and the transcriptome profiles in the Longissimus dorsi muscle tissues were investigated using Masson-trichrome staining and RNA-Seq, respectively. The percentage of total collagen fibers in the Longissimus dorsi muscle tissues from ZB goats was less than those from LC goats, suggesting that these ZB goats had more tender meat. An average of 15,919 and 15,582 genes were found to be expressed in Longissimus dorsi muscle tissues from LC and ZB goats, respectively. Compared to LC goats, the expression levels of 78 genes were up-regulated in ZB goats, while 133 genes were down-regulated. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that the differentially expressed genes (DEGs) were significantly enriched in GO terms related to the muscle growth and development and the deposition of intramuscular fat and lipid metabolism, hippo signaling pathway and Jak-STAT signaling pathway. The results provide an improved understanding of the genetic mechanisms regulating meat production performance in goats, and will help us improve the accuracy of selection for meat traits in goats using marker-assisted selection based on these differentially expressed genes obtained.
Collapse
Affiliation(s)
- Jiyuan Shen
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Zhiyun Hao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiqing Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiu Liu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Na Ke
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yize Song
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yujie Lu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Liyan Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Lirong Qiao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xinmiao Wu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yuzhu Luo
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
7
|
Ma X, Jia C, Chu M, Fu D, Lei Q, Ding X, Wu X, Guo X, Pei J, Bao P, Yan P, Liang C. Transcriptome and DNA Methylation Analyses of the Molecular Mechanisms Underlying with Longissimus dorsi Muscles at Different Stages of Development in the Polled Yak. Genes (Basel) 2019; 10:genes10120970. [PMID: 31779203 PMCID: PMC6947547 DOI: 10.3390/genes10120970] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 02/04/2023] Open
Abstract
DNA methylation modifications are implicated in many biological processes. As the most common epigenetic mechanism DNA methylation also affects muscle growth and development. The majority of previous studies have focused on different varieties of yak, but little is known about the epigenetic regulation mechanisms in different age groups of animals. The development of muscles in the different stages of yak growth remains unclear. In this study, we selected the longissimus dorsi muscle tissue at three different growth stages of the yak, namely, 90-day-old fetuses (group E), six months old (group M), and three years old (group A). Using RNA-Seq transcriptome sequencing and methyl-RAD whole-genome methylation sequencing technology, changes in gene expression levels and DNA methylation status throughout the genome were investigated during the stages of yak development. Each group was represented by three biological replicates. The intersections of expression patterns of 7694 differentially expressed genes (DEGs) were identified (padj < 0.01, |log2FC| > 1.2) at each of the three developmental periods. Time-series expression profile clustering analysis indicated that the DEGs were significantly arranged into eight clusters which could be divided into two classes (padj < 0.05), class I profiles that were downregulated and class II profiles that were upregulated. Based on this cluster analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that DEGs from class I profiles were significantly (padj < 0.05) enriched in 21 pathways, the most enriched pathway being the Axon guidance signaling pathway. DEGs from the class II profile were significantly enriched in 58 pathways, the pathway most strongly enriched being Metabolic pathway. After establishing the methylation profiles of the whole genomes, and using two groups of comparisons, the three combinations of groups (M-vs.-E, M-vs.-A, A-vs.-E) were found to have 1344, 822, and 420 genes, respectively, that were differentially methylated at CCGG sites and 2282, 3056, and 537 genes, respectively, at CCWGG sites. The two sets of data were integrated and the negative correlations between DEGs and differentially methylated promoters (DMPs) analyzed, which confirmed that TMEM8C, IGF2, CACNA1S and MUSTN1 were methylated in the promoter region and that expression of the modified genes was negatively correlated. Interestingly, these four genes, from what was mentioned above, perform vital roles in yak muscle growth and represent a reference for future genomic and epigenomic studies in muscle development, in addition to enabling marker-assisted selection of growth traits.
Collapse
Affiliation(s)
- Xiaoming Ma
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.M.); (C.J.); (M.C.); (D.F.); (Q.L.); (X.D.); (X.W.); (X.G.); (J.P.); (P.B.)
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Congjun Jia
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.M.); (C.J.); (M.C.); (D.F.); (Q.L.); (X.D.); (X.W.); (X.G.); (J.P.); (P.B.)
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Min Chu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.M.); (C.J.); (M.C.); (D.F.); (Q.L.); (X.D.); (X.W.); (X.G.); (J.P.); (P.B.)
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Donghai Fu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.M.); (C.J.); (M.C.); (D.F.); (Q.L.); (X.D.); (X.W.); (X.G.); (J.P.); (P.B.)
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Qinhui Lei
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.M.); (C.J.); (M.C.); (D.F.); (Q.L.); (X.D.); (X.W.); (X.G.); (J.P.); (P.B.)
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xuezhi Ding
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.M.); (C.J.); (M.C.); (D.F.); (Q.L.); (X.D.); (X.W.); (X.G.); (J.P.); (P.B.)
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xiaoyun Wu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.M.); (C.J.); (M.C.); (D.F.); (Q.L.); (X.D.); (X.W.); (X.G.); (J.P.); (P.B.)
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xian Guo
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.M.); (C.J.); (M.C.); (D.F.); (Q.L.); (X.D.); (X.W.); (X.G.); (J.P.); (P.B.)
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Jie Pei
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.M.); (C.J.); (M.C.); (D.F.); (Q.L.); (X.D.); (X.W.); (X.G.); (J.P.); (P.B.)
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Pengjia Bao
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.M.); (C.J.); (M.C.); (D.F.); (Q.L.); (X.D.); (X.W.); (X.G.); (J.P.); (P.B.)
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Ping Yan
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.M.); (C.J.); (M.C.); (D.F.); (Q.L.); (X.D.); (X.W.); (X.G.); (J.P.); (P.B.)
- Correspondence: (P.Y.); (C.L.); Tel.: +86-0931-2115288 (P.Y.); +86-0931-2115271 (C.L.)
| | - Chunnian Liang
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Correspondence: (P.Y.); (C.L.); Tel.: +86-0931-2115288 (P.Y.); +86-0931-2115271 (C.L.)
| |
Collapse
|
8
|
Arora R, S. NK, S. S, Fairoze MN, Kaur M, Sharma A, Girdhar Y, M. SR, Devatkal SK, Ahlawat S, Vijh RK, S. MS. Transcriptome profiling of longissimus thoracis muscles identifies highly connected differentially expressed genes in meat type sheep of India. PLoS One 2019; 14:e0217461. [PMID: 31170190 PMCID: PMC6553717 DOI: 10.1371/journal.pone.0217461] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 05/13/2019] [Indexed: 12/16/2022] Open
Abstract
This study describes the muscle transcriptome profile of Bandur breed, a consumer favoured, meat type sheep of India. The transcriptome was compared to the less desirable, unregistered local sheep population, in order to understand the molecular factors related to muscle traits in Indian sheep breeds. Bandur sheep have tender muscles and higher backfat thickness than local sheep. The longissimus thoracis transcriptome profiles of Bandur and local sheep were obtained using RNA sequencing (RNA Seq). The animals were male, non-castrated, with uniform age and reared under similar environment, as well as management conditions. We could identify 568 significantly up-regulated and 538 significantly down-regulated genes in Bandur sheep (p≤0.05). Among these, 181 up-regulated and 142 down-regulated genes in Bandur sheep, with a fold change ≥1.5, were considered for further analysis. Significant Gene Ontology terms for the up-regulated dataset in Bandur sheep included transporter activity, substrate specific transmembrane, lipid and fatty acid binding. The down-regulated activities in Bandur sheep were mainly related to RNA degradation, regulation of ERK1 and ERK2 cascades and innate immune response. The MAPK signaling pathway, Adipocytokine signaling pathway and PPAR signaling pathway were enriched for Bandur sheep. The highly connected genes identified by network analysis were CNOT2, CNOT6, HSPB1, HSPA6, MAP3K14 and PPARD, which may be important regulators of energy metabolism, cellular stress and fatty acid metabolism in the skeletal muscles. These key genes affect the CCR4-NOT complex, PPAR and MAPK signaling pathways. The highly connected genes identified in this study, form interesting candidates for further research on muscle traits in Bandur sheep.
Collapse
Affiliation(s)
- Reena Arora
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
- * E-mail:
| | - Naveen Kumar S.
- Karnataka Veterinary Animal and Fisheries Sciences University, Bangalore, Karnataka, India
| | - Sudarshan S.
- Karnataka Veterinary Animal and Fisheries Sciences University, Bangalore, Karnataka, India
| | - Mohamed Nadeem Fairoze
- Karnataka Veterinary Animal and Fisheries Sciences University, Bangalore, Karnataka, India
| | - Mandeep Kaur
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Anju Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Yashila Girdhar
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Sreesujatha R. M.
- Karnataka Veterinary Animal and Fisheries Sciences University, Bangalore, Karnataka, India
| | | | - Sonika Ahlawat
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Ramesh Kumar Vijh
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Manjunatha S. S.
- Karnataka Veterinary Animal and Fisheries Sciences University, Bangalore, Karnataka, India
| |
Collapse
|
9
|
Comparative study on seasonal hair follicle cycling by analysis of the transcriptomes from cashmere and milk goats. Genomics 2019; 112:332-345. [PMID: 30779940 DOI: 10.1016/j.ygeno.2019.02.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 01/06/2023]
Abstract
Guard hair and cashmere undercoat are developed from primary and secondary hair follicle, respectively. Little is known about the gene expression differences between primary and secondary hair follicle cycling. In this study, we obtained RNA-seq data from cashmere and milk goats grown at four different seasons. We studied the differentially expressed genes (DEGs) during the yearly hair follicle cycling, and between cashmere and milk goats. WNT, NOTCH, MAPK, BMP, TGFβ and Hedgehog signaling pathways were involved in hair follicle cycling in both cashmere and milk goat. However, Milk goat DEGs between different months were significantly more than cashmere goat DEGs, with the largest difference being identified in December. Some expression dynamics were confirmed by quantitative PCR and western blot, and immunohistochemistry. This study offers new information sources related to hair follicle cycling in milk and cashmere goats, which could be applicable to improve the wool production and quality.
Collapse
|
10
|
Li Z, Xu Y, Lin Y. Transcriptome analyses reveal genes of alternative splicing associated with muscle development in chickens. Gene 2018; 676:146-155. [PMID: 30010040 DOI: 10.1016/j.gene.2018.07.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 06/26/2018] [Accepted: 07/10/2018] [Indexed: 01/18/2023]
Abstract
Alternative splicing (AS) of pre-mRNA is a central mode of genetic regulation in higher eukaryotes. High-throughput experimental verification of alternative splice forms, functional characterization, and regulation of alternative splicing are key directions for research. However, little information is available on the transcriptome-wide changes during different ages in different chicken breeds. In this study, the sequencing reads of chicken muscle tissues collected from White feather broiler (day 42) and Luning Chicken (day 70, 120, 150) were mapped to the chicken genome. Results showed that a total of 16,958 genes were annotated, with 2230 differentially expressed genes (DEGs) when comparing White feather broiler and Luning Chicken, and an average of 700 DEGs when comparing different ages in Luning Chicken. Functional classification by Gene Ontology (GO) and pathways analysis for selecting the genes showed most DEGs were related to muscle development and immune response. Of the 16,958 genes, a total of 6249 genes (36.85%) underwent AS events, and over 40% were specifically expressed in each library. Additionally, 6 DEGs (SRPK3, ENSGALG00000022884, CCL4, GATM, SESN1, PTTG1IP) involved in muscle development and immunity response were found to be alternatively spliced among all the four muscle tissues. In conclusion, we present a complete dataset involving the spatial and temporal transcriptome of chicken muscle tissue using RNA -seq. These data will facilitate the understanding of the effects of breed and age on the development of muscle and uncover that AS events of candidate genes may have important functional roles in regulation of muscle development in chicken.
Collapse
Affiliation(s)
- Zhixiong Li
- College of Life Science and Technology, Southwest Minzu University, Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, Sichuan 610041, PR China.
| | - Yaou Xu
- College of Life Science and Technology, Southwest Minzu University, Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, Sichuan 610041, PR China
| | - Yaqiu Lin
- College of Life Science and Technology, Southwest Minzu University, Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, Sichuan 610041, PR China
| |
Collapse
|
11
|
Dynamic transcriptomic analysis in hircine longissimus dorsi muscle from fetal to neonatal development stages. Funct Integr Genomics 2017; 18:43-54. [PMID: 28993898 DOI: 10.1007/s10142-017-0573-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/11/2017] [Indexed: 12/25/2022]
Abstract
Muscle growth and development from fetal to neonatal stages consist of a series of delicately regulated and orchestrated changes in expression of genes. In this study, we performed whole transcriptome profiling based on RNA-Seq of caprine longissimus dorsi muscle tissue obtained from prenatal stages (days 45, 60, and 105 of gestation) and neonatal stage (the 3-day-old newborn) to identify genes that are differentially expressed and investigate their temporal expression profiles. A total of 3276 differentially expressed genes (DEGs) were identified (Q value < 0.01). Time-series expression profile clustering analysis indicated that DEGs were significantly clustered into eight clusters which can be divided into two classes (Q value < 0.05), class I profiles with downregulated patterns and class II profiles with upregulated patterns. Based on cluster analysis, GO enrichment analysis found that 75, 25, and 8 terms to be significantly enriched in biological process (BP), cellular component (CC), and molecular function (MF) categories in class I profiles, while 35, 21, and 8 terms to be significantly enriched in BP, CC, and MF in class II profiles. KEGG pathway analysis revealed that DEGs from class I profiles were significantly enriched in 22 pathways and the most enriched pathway was Rap1 signaling pathway. DEGs from class II profiles were significantly enriched in 17 pathways and the mainly enriched pathway was AMPK signaling pathway. Finally, six selected DEGs from our sequencing results were confirmed by qPCR. Our study provides a comprehensive understanding of the molecular mechanisms during goat skeletal muscle development from fetal to neonatal stages and valuable information for future studies of muscle development in goats.
Collapse
|
12
|
Weikard R, Demasius W, Kuehn C. Mining long noncoding RNA in livestock. Anim Genet 2016; 48:3-18. [DOI: 10.1111/age.12493] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2016] [Indexed: 02/01/2023]
Affiliation(s)
- R. Weikard
- Institute Genome Biology; Leibniz Institute for Farm Animal Biology (FBN); 18196 Dummerstorf Germany
| | - W. Demasius
- Institute Genome Biology; Leibniz Institute for Farm Animal Biology (FBN); 18196 Dummerstorf Germany
| | - C. Kuehn
- Institute Genome Biology; Leibniz Institute for Farm Animal Biology (FBN); 18196 Dummerstorf Germany
- Faculty of Agricultural and Environmental Sciences; University Rostock; 18059 Rostock Germany
| |
Collapse
|
13
|
Zhan S, Dong Y, Zhao W, Guo J, Zhong T, Wang L, Li L, Zhang H. Genome-wide identification and characterization of long non-coding RNAs in developmental skeletal muscle of fetal goat. BMC Genomics 2016; 17:666. [PMID: 27550073 PMCID: PMC4994410 DOI: 10.1186/s12864-016-3009-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/10/2016] [Indexed: 01/23/2023] Open
Abstract
Background Long non-coding RNAs (lncRNAs) have been studied extensively over the past few years. Large numbers of lncRNAs have been identified in mouse, rat, and human, and some of them have been shown to play important roles in muscle development and myogenesis. However, there are few reports on the characterization of lncRNAs covering all the development stages of skeletal muscle in livestock. Results RNA libraries constructed from developing longissimus dorsi muscle of fetal (45, 60, and 105 days of gestation) and postnatal (3 days after birth) goat (Capra hircus) were sequenced. A total of 1,034,049,894 clean reads were generated. Among them, 3981 lncRNA transcripts corresponding to 2739 lncRNA genes were identified, including 3515 intergenic lncRNAs and 466 anti-sense lncRNAs. Notably, in pairwise comparisons between the libraries of skeletal muscle at the different development stages, a total of 577 transcripts were differentially expressed (P < 0.05) which were validated by qPCR using randomly selected six lncRNA genes. The identified goat lncRNAs shared some characteristics, such as fewer exons and shorter length, with the lncRNAs in other mammals. We also found 1153 lncRNAs genes were neighbored 1455 protein-coding genes (<10 kb upstream and downstream) and functionally enriched in transcriptional regulation and development-related processes, indicating they may be in cis-regulatory relationships. Additionally, Pearson’s correlation coefficients of co-expression levels suggested 1737 lncRNAs and 19,422 mRNAs were possibly in trans-regulatory relationships (r > 0.95 or r < −0.95). These co-expressed mRNAs were enriched in development-related biological processes such as muscle system processes, regulation of cell growth, muscle cell development, regulation of transcription, and embryonic morphogenesis. Conclusions This study provides a catalog of goat muscle-related lncRNAs, and will contribute to a fuller understanding of the molecular mechanism underpinning muscle development in mammals. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3009-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Siyuan Zhan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yao Dong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiazhong Guo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tao Zhong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linjie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Li Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Hongping Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|