1
|
Nisa FU, Naqvi RZ, Arshad F, Ilyas I, Asif M, Amin I, Mrode R, Mansoor S, Mukhtar Z. Assessment of Genomic Diversity and Selective Pressures in Crossbred Dairy Cattle of Pakistan. Biochem Genet 2024; 62:4137-4156. [PMID: 38664326 DOI: 10.1007/s10528-024-10809-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 04/08/2024] [Indexed: 09/28/2024]
Abstract
Improving the low productivity levels of native cattle breeds in smallholder farming systems is a pressing concern in Pakistan. Crossbreeding high milk-yielding holstein friesian (HF) breed with the adaptability and heat tolerance of Sahiwal cattle has resulted in offspring that are well-suited to local conditions and exhibit improved milk yield. The exploration of how desirable traits in crossbred dairy cattle are selected has not yet been investigated. This study aims to provide the first overview of the selective pressures on the genome of crossbred dairy cattle in Pakistan. A total of eighty-one crossbred, thirty-two HF and twenty-four Sahiwal cattle were genotyped, and additional SNP genotype data for HF and Sahiwal were collected from a public database to equate the sample size in each group. Within-breed selection signatures in crossbreds were investigated using the integrated haplotype score. Crossbreds were also compared to each of their parental breeds to discover between-population signatures of selection using two approaches: cross-population extended haplotype homozygosity and fixation index. We identified several overlapping genes associated with production, immunity, and adaptation traits, including U6, TMEM41B, B4GALT7, 5S_rRNA, RBM27, POU4F3, NSD1, PRELID1, RGS14, SLC34A1, TMED9, B4GALT7, OR2AK3, OR2T16, OR2T60, OR2L3, and CTNNA1. Our results suggest that regions responsible for milk traits have generally experienced stronger selective pressure than others.
Collapse
Affiliation(s)
- Fakhar Un Nisa
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Faisalabad, 38000, Pakistan
- Pakistan Institute of Engineering & Applied Sciences (PIEAS), Nilore, Islamabad, 45650, Pakistan
- Department of Animal Breeding and Genetics, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Rubab Zahra Naqvi
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Faisalabad, 38000, Pakistan
- Pakistan Institute of Engineering & Applied Sciences (PIEAS), Nilore, Islamabad, 45650, Pakistan
| | - Fazeela Arshad
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Faisalabad, 38000, Pakistan
- Pakistan Institute of Engineering & Applied Sciences (PIEAS), Nilore, Islamabad, 45650, Pakistan
| | - Iram Ilyas
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Faisalabad, 38000, Pakistan
- Pakistan Institute of Engineering & Applied Sciences (PIEAS), Nilore, Islamabad, 45650, Pakistan
| | - Muhammad Asif
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Faisalabad, 38000, Pakistan
- Pakistan Institute of Engineering & Applied Sciences (PIEAS), Nilore, Islamabad, 45650, Pakistan
| | - Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Faisalabad, 38000, Pakistan
- Pakistan Institute of Engineering & Applied Sciences (PIEAS), Nilore, Islamabad, 45650, Pakistan
| | - Raphael Mrode
- Animal Biosciences, International Livestock Research Institute, Nairobi, Kenya
- Animal and Veterinary Sciences, Scotland's Rural College, Edinburgh, UK
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Faisalabad, 38000, Pakistan
- Pakistan Institute of Engineering & Applied Sciences (PIEAS), Nilore, Islamabad, 45650, Pakistan
- International Centre for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Zahid Mukhtar
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Faisalabad, 38000, Pakistan.
- Pakistan Institute of Engineering & Applied Sciences (PIEAS), Nilore, Islamabad, 45650, Pakistan.
| |
Collapse
|
2
|
Baazaoui I, Bedhiaf-Romdhani S, Mastrangelo S, Lenstra JA, Da Silva A, Benjelloun B, Ciani E. Refining the genomic profiles of North African sheep breeds through meta-analysis of worldwide genomic SNP data. Front Vet Sci 2024; 11:1339321. [PMID: 38487707 PMCID: PMC10938946 DOI: 10.3389/fvets.2024.1339321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/13/2024] [Indexed: 03/17/2024] Open
Abstract
Introduction The development of reproducible tools for the rapid genotyping of thousands of genetic markers (SNPs) has promoted cross border collaboration in the study of sheep genetic diversity on a global scale. Methods In this study, we collected a comprehensive dataset of 239 African and Eurasian sheep breeds genotyped at 37,638 filtered SNP markers, with the aim of understanding the genetic structure of 22 North African (NA) sheep breeds within a global context. Results and discussion We revealed asubstantial enrichment of the gene pool between the north and south shores of the Mediterranean Sea, which corroborates the importance of the maritime route in the history of livestock. The genetic structure of North African breeds mirrors the differential composition of genetic backgrounds following the breed history. Indeed, Maghrebin sheep stocks constitute a geographically and historically coherent unit with any breed-level genetic distinctness among them due to considerable gene flow. We detected a broad east-west pattern describing the most important trend in NA fat-tailed populations, exhibited by the genetic closeness of Egyptian and Libyan fat-tailed sheep to Middle Eastern breeds rather than Maghrebin ones. A Bayesian FST scan analysis revealed a set of genes with potentially key adaptive roles in lipid metabolism (BMP2, PDGFD VEGFA, TBX15, and WARS2), coat pigmentation (SOX10, PICK1, PDGFRA, MC1R, and MTIF) and horn morphology RXFP2) in Tunisian sheep. The local ancestry method detected a Merino signature in Tunisian Noire de Thibar sheep near the SULF1gene introgressed by Merino's European breeds. This study will contribute to the general picture of worldwide sheep genetic diversity.
Collapse
Affiliation(s)
- Imen Baazaoui
- Laboratory of Animal and Fodder Production, National Institute of Agronomic Research of Tunisia, Ariana, Tunisia
| | - Sonia Bedhiaf-Romdhani
- Laboratory of Animal and Fodder Production, National Institute of Agronomic Research of Tunisia, Ariana, Tunisia
| | - Salvatore Mastrangelo
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Anne Da Silva
- Faculté des Sciences et Techniques de Limoges, E2LIM, Limoges, France
| | - Badr Benjelloun
- National Institute of Agronomic Research (INRA Maroc), Regional Centre of Agronomic Research, Beni Mellal, Morocco
| | - Elena Ciani
- Dipartamento Bioscienze, Biotecnologie, Biofarmaceutica, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
3
|
Investigation of genetic diversity and selection signatures in Czech cattle genetic resources revealed by genome-wide analysis. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.104825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Ma J, Gao X, Li J, Gao H, Wang Z, Zhang L, Xu L, Gao H, Li H, Wang Y, Zhu B, Cai W, Wang C, Chen Y. Assessing the Genetic Background and Selection Signatures of Huaxi Cattle Using High-Density SNP Array. Animals (Basel) 2021; 11:ani11123469. [PMID: 34944246 PMCID: PMC8698132 DOI: 10.3390/ani11123469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022] Open
Abstract
Huaxi cattle, a specialized beef cattle breed in China, has the characteristics of fast growth, high slaughter rate, and net meat rate, good reproductive performance, strong stress resistance, and wide adaptability. In this study, we evaluated the genetic diversity, population structure, and genetic relationships of Huaxi cattle and its ancestor populations at the genome-wide level, as well as detecting the selection signatures of Huaxi cattle. Principal component analysis (PCA) and phylogenetic analysis revealed that Huaxi cattle were obviously separated from other cattle populations. The admixture analysis showed that Huaxi cattle has distinct genetic structures among all populations at K = 4. It can be concluded that Huaxi cattle has formed its own unique genetic features. Using integrated haplotype score (iHS) and composite likelihood ratio (CLR) methods, we identified 143 and 199 potentially selected genes in Huaxi cattle, respectively, among which nine selected genes (KCNK1, PDLIM5, CPXM2, CAPN14, MIR2285D, MYOF, PKDCC, FOXN3, and EHD3) related to ion binding, muscle growth and differentiation, and immunity were detected by both methods. Our study sheds light on the unique genetic feature and phylogenetic relationship of Huaxi cattle, provides a basis for the genetic mechanism analysis of important economic traits, and guides further intensive breeding improvement of Huaxi cattle.
Collapse
Affiliation(s)
- Jun Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.M.); (X.G.); (J.L.); (H.G.); (Z.W.); (L.Z.); (L.X.); (H.G.); (H.L.); (Y.W.); (B.Z.); (W.C.)
| | - Xue Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.M.); (X.G.); (J.L.); (H.G.); (Z.W.); (L.Z.); (L.X.); (H.G.); (H.L.); (Y.W.); (B.Z.); (W.C.)
| | - Junya Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.M.); (X.G.); (J.L.); (H.G.); (Z.W.); (L.Z.); (L.X.); (H.G.); (H.L.); (Y.W.); (B.Z.); (W.C.)
| | - Huijiang Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.M.); (X.G.); (J.L.); (H.G.); (Z.W.); (L.Z.); (L.X.); (H.G.); (H.L.); (Y.W.); (B.Z.); (W.C.)
| | - Zezhao Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.M.); (X.G.); (J.L.); (H.G.); (Z.W.); (L.Z.); (L.X.); (H.G.); (H.L.); (Y.W.); (B.Z.); (W.C.)
| | - Lupei Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.M.); (X.G.); (J.L.); (H.G.); (Z.W.); (L.Z.); (L.X.); (H.G.); (H.L.); (Y.W.); (B.Z.); (W.C.)
| | - Lingyang Xu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.M.); (X.G.); (J.L.); (H.G.); (Z.W.); (L.Z.); (L.X.); (H.G.); (H.L.); (Y.W.); (B.Z.); (W.C.)
| | - Han Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.M.); (X.G.); (J.L.); (H.G.); (Z.W.); (L.Z.); (L.X.); (H.G.); (H.L.); (Y.W.); (B.Z.); (W.C.)
| | - Hongwei Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.M.); (X.G.); (J.L.); (H.G.); (Z.W.); (L.Z.); (L.X.); (H.G.); (H.L.); (Y.W.); (B.Z.); (W.C.)
| | - Yahui Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.M.); (X.G.); (J.L.); (H.G.); (Z.W.); (L.Z.); (L.X.); (H.G.); (H.L.); (Y.W.); (B.Z.); (W.C.)
| | - Bo Zhu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.M.); (X.G.); (J.L.); (H.G.); (Z.W.); (L.Z.); (L.X.); (H.G.); (H.L.); (Y.W.); (B.Z.); (W.C.)
| | - Wentao Cai
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.M.); (X.G.); (J.L.); (H.G.); (Z.W.); (L.Z.); (L.X.); (H.G.); (H.L.); (Y.W.); (B.Z.); (W.C.)
| | - Congyong Wang
- Beijing Lianyu Beef Cattle Breeding Technology Limited Company, Beijing 100193, China;
| | - Yan Chen
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.M.); (X.G.); (J.L.); (H.G.); (Z.W.); (L.Z.); (L.X.); (H.G.); (H.L.); (Y.W.); (B.Z.); (W.C.)
- Correspondence:
| |
Collapse
|
5
|
Buaban S, Lengnudum K, Boonkum W, Phakdeedindan P. Genome-wide association study on milk production and somatic cell score for Thai dairy cattle using weighted single-step approach with random regression test-day model. J Dairy Sci 2021; 105:468-494. [PMID: 34756438 DOI: 10.3168/jds.2020-19826] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 08/24/2021] [Indexed: 12/26/2022]
Abstract
Genome-wide association studies are a powerful tool to identify genomic regions and variants associated with phenotypes. However, only limited mutual confirmation from different studies is available. The objectives of this study were to identify genomic regions as well as genes and pathways associated with the first-lactation milk, fat, protein, and total solid yields; fat, protein, and total solid percentage; and somatic cell score (SCS) in a Thai dairy cattle population. Effects of SNPs were estimated by a weighted single-step GWAS, which back-solved the genomic breeding values predicted using single-step genomic BLUP (ssGBLUP) fitting a single-trait random regression test-day model. Genomic regions that explained at least 0.5% of the total genetic variance were selected for further analyses of candidate genes. Despite the small number of genotyped animals, genomic predictions led to an improvement in the accuracy over the traditional BLUP. Genomic predictions using weighted ssGBLUP were slightly better than the ssGBLUP. The genomic regions associated with milk production traits contained 210 candidate genes on 19 chromosomes [Bos taurus autosome (BTA) 1 to 7, 9, 11 to 16, 20 to 21, 26 to 27 and 29], whereas 21 candidate genes on 3 chromosomes (BTA 11, 16, and 21) were associated with SCS. Many genomic regions explained a small fraction of the genetic variance, indicating polygenic inheritance of the studied traits. Several candidate genes coincided with previous reports for milk production traits in Holstein cattle, especially a large region of genes on BTA14. We identified 141 and 5 novel genes related to milk production and SCS, respectively. These novel genes were also found to be functionally related to heat tolerance (e.g., SLC45A2, IRAG1, and LOC101902172), longevity (e.g., SYT10 and LOC101903327), and fertility (e.g., PAG1). These findings may be attributed to indirect selection in our population. Identified biological networks including intracellular cell transportation and protein catabolism implicate milk production, whereas the immunological pathways such as lymphocyte activation are closely related to SCS. Further studies are required to validate our findings before exploiting them in genomic selection.
Collapse
Affiliation(s)
- S Buaban
- Bureau of Animal Husbandry and Genetic Improvement, Department of Livestock Development, Pathum Thani 12000, Thailand
| | - K Lengnudum
- Bureau of Biotechnology in Livestock Production, Department of Livestock Development, Pathum Thani 12000, Thailand
| | - W Boonkum
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - P Phakdeedindan
- Department of Animal Husbandry, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
6
|
Yougbaré B, Ouédraogo D, Tapsoba ASR, Soudré A, Zoma BL, Orozco-terWengel P, Moumouni S, Ouédraogo-Koné S, Wurzinger M, Tamboura HH, Traoré A, Mwai OA, Sölkner J, Khayatzadeh N, Mészáros G, Burger PA. Local Ancestry to Identify Selection in Response to Trypanosome Infection in Baoulé x Zebu Crossbred Cattle in Burkina Faso. Front Genet 2021; 12:670390. [PMID: 34646296 PMCID: PMC8504455 DOI: 10.3389/fgene.2021.670390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 08/09/2021] [Indexed: 11/15/2022] Open
Abstract
The genomes of crossbred (admixed) individuals are a mosaic of ancestral haplotypes formed by recombination in each generation. The proportion of these ancestral haplotypes in certain genomic regions can be responsible for either susceptibility or tolerance against pathogens, and for performances in production traits. Using a medium-density genomic marker panel from the Illumina Bovine SNP50 BeadChip, we estimated individual admixture proportions for Baoulé x Zebu crossbred cattle in Burkina Faso, which were tested for trypanosome infection by direct ELISA from blood samples. Furthermore, we calculated local ancestry deviation from average for each SNP across 29 autosomes to identify potential regions under selection in the trypanotolerant Baoulé cattle and their crossbreds. We identified significant deviation from the local average ancestry (above 5 and 10% genome-wide thresholds) on chromosomes 8 and 19 in the positive animals, while the negative ones showed higher deviation on chromosomes 6, 19, 21, and 22. Some candidate genes on chromosome 6 (PDGFRA) and chromosome 19 (CDC6) have been found associated to trypanotolerance in West African taurines. Screening for FST outliers in trypanosome positive/negative animals we detected seven variants putatively under selection. Finally, we identified a minimum set of highly ancestry informative markers for routine admixture testing. The results of this study contribute to a better understanding of the genetic basis of trypanotolerance in Baoulé cattle and their crossbreeds. Furthermore, we provide a small informative marker set to monitor admixture in this valuable indigenous breed. As such, our results are important for conserving the genetic uniqueness and trypanotolerance of Baoulé cattle, as well as for the improvement of Baoulé and Zebu crossbreds in specific community-based breeding programs.
Collapse
Affiliation(s)
- Bernadette Yougbaré
- Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria.,Institut de l'Environnement et de Recherches Agricoles (INERA), Ouagadougou, Burkina Faso
| | - Dominique Ouédraogo
- Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria.,Institut du Développement Rural, Université Nazi Boni, Bobo-Dioulasso, Burkina Faso
| | - Arnaud S R Tapsoba
- Institut du Développement Rural, Université Nazi Boni, Bobo-Dioulasso, Burkina Faso
| | - Albert Soudré
- Unité de Formation et de Recherche en Sciences et Technologies, Université Norbert Zongo, Koudougou, Burkina Faso
| | - Bienvenue L Zoma
- Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria.,Institut du Développement Rural, Université Nazi Boni, Bobo-Dioulasso, Burkina Faso
| | | | - Sanou Moumouni
- Institut de l'Environnement et de Recherches Agricoles (INERA), Ouagadougou, Burkina Faso
| | | | - Maria Wurzinger
- Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria
| | - Hamidou H Tamboura
- Institut de l'Environnement et de Recherches Agricoles (INERA), Ouagadougou, Burkina Faso
| | - Amadou Traoré
- Institut de l'Environnement et de Recherches Agricoles (INERA), Ouagadougou, Burkina Faso
| | - Okeyo Ally Mwai
- International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Johann Sölkner
- Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria
| | - Negar Khayatzadeh
- Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria.,SUISAG, Sempach, Switzerland
| | - Gábor Mészáros
- Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria
| | - Pamela A Burger
- Research Institute of Wildlife Ecology, Vetmeduni Vienna, Savoyenstraße 1, Vienna, Austria
| |
Collapse
|
7
|
van der Nest MA, Hlongwane N, Hadebe K, Chan WY, van der Merwe NA, De Vos L, Greyling B, Kooverjee BB, Soma P, Dzomba EF, Bradfield M, Muchadeyi FC. Breed Ancestry, Divergence, Admixture, and Selection Patterns of the Simbra Crossbreed. Front Genet 2021; 11:608650. [PMID: 33584805 PMCID: PMC7876384 DOI: 10.3389/fgene.2020.608650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/18/2020] [Indexed: 12/21/2022] Open
Abstract
In this study, we evaluated an admixed South African Simbra crossbred population, as well as the Brahman (Indicine) and Simmental (Taurine) ancestor populations to understand their genetic architecture and detect genomic regions showing signatures of selection. Animals were genotyped using the Illumina BovineLD v2 BeadChip (7K). Genomic structure analysis confirmed that the South African Simbra cattle have an admixed genome, composed of 5/8 Taurine and 3/8 Indicine, ensuring that the Simbra genome maintains favorable traits from both breeds. Genomic regions that have been targeted by selection were detected using the linkage disequilibrium-based methods iHS and Rsb. These analyses identified 10 candidate regions that are potentially under strong positive selection, containing genes implicated in cattle health and production (e.g., TRIM63, KCNA10, NCAM1, SMIM5, MIER3, and SLC24A4). These adaptive alleles likely contribute to the biological and cellular functions determining phenotype in the Simbra hybrid cattle breed. Our data suggested that these alleles were introgressed from the breed's original indicine and taurine ancestors. The Simbra breed thus possesses derived parental alleles that combine the superior traits of the founder Brahman and Simmental breeds. These regions and genes might represent good targets for ad-hoc physiological studies, selection of breeding material and eventually even gene editing, for improved traits in modern cattle breeds. This study represents an important step toward developing and improving strategies for selection and population breeding to ultimately contribute meaningfully to the beef production industry.
Collapse
Affiliation(s)
| | - Nompilo Hlongwane
- Biotechnology Platform, Agricultural Research Council, Pretoria, South Africa
| | - Khanyisile Hadebe
- Biotechnology Platform, Agricultural Research Council, Pretoria, South Africa
| | - Wai-Yin Chan
- Biotechnology Platform, Agricultural Research Council, Pretoria, South Africa
| | - Nicolaas A van der Merwe
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Lieschen De Vos
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Ben Greyling
- Animal Production, Agricultural Research Council, Pretoria, South Africa
| | | | - Pranisha Soma
- Animal Production, Agricultural Research Council, Pretoria, South Africa
| | - Edgar F Dzomba
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | | | - Farai C Muchadeyi
- Biotechnology Platform, Agricultural Research Council, Pretoria, South Africa
| |
Collapse
|
8
|
Genetic Diversity and Signatures of Selection in a Native Italian Horse Breed Based on SNP Data. Animals (Basel) 2020; 10:ani10061005. [PMID: 32521830 PMCID: PMC7341496 DOI: 10.3390/ani10061005] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/01/2020] [Accepted: 06/04/2020] [Indexed: 12/31/2022] Open
Abstract
Simple Summary The Bardigiano horse is a native Italian breed bred for living in rural areas, traditionally used in agriculture. The breed counts about 3000 horses, and it is nowadays mainly used for recreational purposes. The relatively small size and the closed status of the breed raise the issue of monitoring genetic diversity. We therefore characterized the breed’s genetic diversity based on molecular data. We showed a critical reduction of genetic variability mainly driven by past bottlenecks. We also highlighted homozygous genomic regions that might be the outcome of directional selection in recent years, in line with the conversion of Bardigiano horses from agricultural to riding purposes. Abstract Horses are nowadays mainly used for sport and leisure activities, and several local breeds, traditionally used in agriculture, have been exposed to a dramatic loss in population size and genetic diversity. The loss of genetic diversity negatively impacts individual fitness and reduces the potential long-term survivability of a breed. Recent advances in molecular biology and bioinformatics have allowed researchers to explore biodiversity one step further. This study aimed to evaluate the loss of genetic variability and identify genomic regions under selection pressure in the Bardigiano breed based on GGP Equine70k SNP data. The effective population size based on Linkage Disequilibrium (Ne) was equal to 39 horses, and it showed a decline over time. The average inbreeding based on runs of homozygosity (ROH) was equal to 0.17 (SD = 0.03). The majority of the ROH were relatively short (91% were ≤2 Mbp long), highlighting the occurrence of older inbreeding, rather than a more recent occurrence. A total of eight ROH islands, shared among more than 70% of the Bardigiano horses, were found. Four of them mapped to known quantitative trait loci related to morphological traits (e.g., body size and coat color) and disease susceptibility. This study provided the first genome-wide scan of genetic diversity and selection signatures in an Italian native horse breed.
Collapse
|
9
|
Cheruiyot EK, Bett RC, Amimo JO, Zhang Y, Mrode R, Mujibi FDN. Signatures of Selection in Admixed Dairy Cattle in Tanzania. Front Genet 2018; 9:607. [PMID: 30619449 PMCID: PMC6305962 DOI: 10.3389/fgene.2018.00607] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 11/19/2018] [Indexed: 01/07/2023] Open
Abstract
Multiple studies have investigated selection signatures in domestic cattle and other species. However, there is a dearth of information about the response to selection in genomes of highly admixed crossbred cattle in relation to production and adaptation to tropical environments. In this study, we evaluated 839 admixed crossbred cows sampled from two major dairy regions in Tanzania namely Rungwe and Lushoto districts, in order to understand their genetic architecture and detect genomic regions showing preferential selection. Animals were genotyped at 150,000 SNP loci using the Geneseek Genomic Profiler (GGP) High Density (HD) SNP array. Population structure analysis showed a large within-population genetic diversity in the study animals with a high degree of variation in admixture ranging between 7 and 100% taurine genes (dairyness) of mostly Holstein and Friesian ancestry. We explored evidence of selection signatures using three statistical methods (iHS, XP-EHH, and pcadapt). Selection signature analysis identified 108 candidate selection regions in the study population. Annotation of these regions yielded interesting genes potentially under strong positive selection including ABCG2, ABCC2, XKR4, LYN, TGS1, TOX, HERC6, KIT, PLAG1, CHCHD7, NCAPG, and LCORL that are involved in multiple biological pathways underlying production and adaptation processes. Several candidate selection regions showed an excess of African taurine ancestral allele dosage. Our results provide further useful insight into potential selective sweeps in the genome of admixed cattle with possible adaptive and productive importance. Further investigations will be necessary to better characterize these candidate regions with respect to their functional significance to tropical adaptations for dairy cattle.
Collapse
Affiliation(s)
- Evans Kiptoo Cheruiyot
- Department of Animal Production, College of Agriculture and Veterinary Sciences, University of Nairobi, Nairobi, Kenya.,USOMI Limited, Nairobi, Kenya
| | - Rawlynce Cheruiyot Bett
- Department of Animal Production, College of Agriculture and Veterinary Sciences, University of Nairobi, Nairobi, Kenya
| | - Joshua Oluoch Amimo
- Department of Animal Production, College of Agriculture and Veterinary Sciences, University of Nairobi, Nairobi, Kenya
| | - Yi Zhang
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Raphael Mrode
- International Livestock Research Institute, Nairobi, Kenya.,Scotland's Rural College, Edinburgh, United Kingdom
| | - Fidalis D N Mujibi
- USOMI Limited, Nairobi, Kenya.,Nelson Mandela African Institute of Science and Technology, Arusha, Tanzania
| |
Collapse
|
10
|
Bahbahani H, Afana A, Wragg D. Genomic signatures of adaptive introgression and environmental adaptation in the Sheko cattle of southwest Ethiopia. PLoS One 2018; 13:e0202479. [PMID: 30114214 PMCID: PMC6095569 DOI: 10.1371/journal.pone.0202479] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 08/04/2018] [Indexed: 11/23/2022] Open
Abstract
Although classified as an African taurine breed, the genomes of Sheko cattle are an admixture of Asian zebu and African taurine ancestries. They populate the humid Bench Maji zone in Sheko and Bench districts in the south-western part of Ethiopia and are considered as a trypanotolerant breed with high potential for dairy production. Here, we investigate the genome of Sheko cattle for candidate signatures of adaptive introgression and positive selection using medium density genome-wide SNP data. Following locus-ancestry deviation analysis, 15 and 72 genome regions show substantial excess and deficiency in Asian zebu ancestry, respectively. Nine and 23 regions show candidate signatures of positive selection following extended haplotype homozygosity (EHH)-based analyses (iHS and Rsb), respectively. The results support natural selection before admixture for one iHS, one Rsb and three zebu ancestry-deficient regions. Genes and/or QTL associated with bovine immunity, fertility, heat tolerance, trypanotolerance and lactation are present within candidate selected regions. The identification of candidate regions under selection in Sheko cattle warrants further investigation of a larger sample size using full genome sequence data to better characterise the underlying haplotypes. The results can then support informative genomic breeding programmes to sustainably enhance livestock productivity in East African trypanosomosis infested areas.
Collapse
Affiliation(s)
- Hussain Bahbahani
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait City, Kuwait
- * E-mail: ,
| | - Arwa Afana
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait City, Kuwait
| | - David Wragg
- Centre for Tropical Livestock Genetics and Health, The Roslin Institute, Edinburgh, United Kingdom
| |
Collapse
|
11
|
Khayatzadeh N, Mészáros G, Utsunomiya YT, Schmitz-Hsu F, Seefried F, Schnyder U, Ferenčaković M, Garcia JF, Curik I, Sölkner J. Effects of breed proportion and components of heterosis for semen traits in a composite cattle breed. J Anim Breed Genet 2017; 135:45-53. [PMID: 29164741 DOI: 10.1111/jbg.12304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/22/2017] [Indexed: 11/30/2022]
Abstract
The aim of this study was to estimate the non-additive genetic effects of the dominance component of heterosis as well as epistatic loss on semen traits in admixed Swiss Fleckvieh, a composite of Simmental (SI) and Red Holstein Friesian (RHF) cattle. Heterosis is the additional gain in productivity or fitness of cross-bred progeny over the mid-purebred parental populations. Intralocus gene interaction usually has a positive effect, while epistatic loss generally reduces productivity or fitness due to lack of evolutionarily established interactions of genes from different breeds. Genotypic data on 38,205 SNP of 818 admixed, as well as 148 RHF and 213 SI bulls as the parental breeds were used to predict breed origin of alleles. The genomewide locus-specific breed ancestries of individuals were used to calculate effects of breed difference as well as the dominance component of heterosis, while proxies for two definitions of epistatic loss were derived from 100,000 random pairs of loci. The average Holstein Friesian ancestry in admixed bulls was estimated 0.82. Results of fitting different linear mixed models showed including the dominance component of heterosis considerably improved the model adequacy for three of the four traits. Inclusion of epistatic loss increased the accuracy of the models only for our new definition of the epistatic effect for two traits, while the other definition was so highly correlated with the dominance component that statistical separation was impossible.
Collapse
Affiliation(s)
- N Khayatzadeh
- Department of Sustainable Agricultural Systems, Division of Livestock Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
| | - G Mészáros
- Department of Sustainable Agricultural Systems, Division of Livestock Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Y T Utsunomiya
- Faculdade de Cinêcias Agrárias Veterinárias, Departamento de Medicina Veterinária Preventiva e Reprodução Animal, UNESP - Univ Estadual Paulista, Araçatuba, São Paulo, Brazil
| | | | | | | | - M Ferenčaković
- Faculty of Agriculture, Department of Animal Science, University of Zagreb, Zagreb, Croatia
| | - J F Garcia
- Faculdade de Cinêcias Agrárias Veterinárias, Departamento de Medicina Veterinária Preventiva e Reprodução Animal, UNESP - Univ Estadual Paulista, Araçatuba, São Paulo, Brazil.,Faculdade de Medicina Veterinária de Araçatuba, Departamento de Apoio, Saúde e Produção Animal, UNESP - Univ Estadual Paulista, Araçatuba, São Paulo, Brazil
| | - I Curik
- Faculty of Agriculture, Department of Animal Science, University of Zagreb, Zagreb, Croatia
| | - J Sölkner
- Department of Sustainable Agricultural Systems, Division of Livestock Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
12
|
Signer-Hasler H, Burren A, Neuditschko M, Frischknecht M, Garrick D, Stricker C, Gredler B, Bapst B, Flury C. Population structure and genomic inbreeding in nine Swiss dairy cattle populations. Genet Sel Evol 2017; 49:83. [PMID: 29115934 PMCID: PMC5674839 DOI: 10.1186/s12711-017-0358-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 10/26/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Domestication, breed formation and intensive selection have resulted in divergent cattle breeds that likely exhibit their own genomic signatures. In this study, we used genotypes from 27,612 autosomal single nucleotide polymorphisms to characterize population structure based on 9214 sires representing nine Swiss dairy cattle populations: Brown Swiss (BS), Braunvieh (BV), Original Braunvieh (OB), Holstein (HO), Red Holstein (RH), Swiss Fleckvieh (SF), Simmental (SI), Eringer (ER) and Evolèner (EV). Genomic inbreeding (F ROH) and signatures of selection were determined by calculating runs of homozygosity (ROH). The results build the basis for a better understanding of the genetic development of Swiss dairy cattle populations and highlight differences between the original populations (i.e. OB, SI, ER and EV) and those that have become more popular in Switzerland as currently reflected by their larger populations (i.e. BS, BV, HO, RH and SF). RESULTS The levels of genetic diversity were highest and lowest in the SF and BS breeds, respectively. Based on F ST values, we conclude that, among all pairwise comparisons, BS and HO (0.156) differ more than the other pairs of populations. The original Swiss cattle populations OB, SI, ER, and EV are clearly genetically separated from the Swiss cattle populations that are now more common and represented by larger numbers of cows. Mean levels of F ROH ranged from 0.027 (ER) to 0.091 (BS). Three of the original Swiss cattle populations, ER (F ROH: 0.027), OB (F ROH: 0.029), and SI (F ROH: 0.039), showed low levels of genomic inbreeding, whereas it was much higher in EV (F ROH: 0.074). Private signatures of selection for the original Swiss cattle populations are reported for BTA4, 5, 11 and 26. CONCLUSIONS The low levels of genomic inbreeding observed in the original Swiss cattle populations ER, OB and SI compared to the other breeds are explained by a lesser use of artificial insemination and greater use of natural service. Natural service results in more sires having progeny at each generation and thus this breeding practice is likely the major reason for the remarkable levels of genetic diversity retained within these populations. The fact that the EV population is regionally restricted and its small census size of herd-book cows explain its high level of genomic inbreeding.
Collapse
Affiliation(s)
- Heidi Signer-Hasler
- School of Agricultural, Forest and Food Sciences, Bern University of Applied Sciences, Zollikofen, Switzerland
| | - Alexander Burren
- School of Agricultural, Forest and Food Sciences, Bern University of Applied Sciences, Zollikofen, Switzerland
| | | | - Mirjam Frischknecht
- School of Agricultural, Forest and Food Sciences, Bern University of Applied Sciences, Zollikofen, Switzerland
- Qualitas AG, Zug, Switzerland
| | | | | | | | | | - Christine Flury
- School of Agricultural, Forest and Food Sciences, Bern University of Applied Sciences, Zollikofen, Switzerland
| |
Collapse
|
13
|
Evidence of positive selection towards Zebuine haplotypes in the BoLA region of Brangus cattle. Animal 2017; 12:215-223. [PMID: 28707606 DOI: 10.1017/s1751731117001380] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Brangus breed was developed to combine the superior characteristics of both of its founder breeds, Angus and Brahman. It combines the high adaptability to tropical and subtropical environments, disease resistance, and overall hardiness of Zebu cattle with the reproductive potential and carcass quality of Angus. It is known that the major histocompatibility complex (MHC, also known as bovine leucocyte antigen: BoLA), located on chromosome 23, encodes several genes involved in the adaptive immune response and may be responsible for adaptation to harsh environments. The objective of this work was to evaluate whether the local breed ancestry percentages in the BoLA locus of a Brangus population diverged from the estimated genome-wide proportions and to identify signatures of positive selection in this genomic region. For this, 167 animals (100 Brangus, 45 Angus and 22 Brahman) were genotyped using a high-density single nucleotide polymorphism array. The local ancestry analysis showed that more than half of the haplotypes (55.0%) shared a Brahman origin. This value was significantly different from the global genome-wide proportion estimated by cluster analysis (34.7% Brahman), and the proportion expected by pedigree (37.5% Brahman). The analysis of selection signatures by genetic differentiation (F st ) and extended haplotype homozygosity-based methods (iHS and Rsb) revealed 10 and seven candidate regions, respectively. The analysis of the genes located within these candidate regions showed mainly genes involved in immune response-related pathway, while other genes and pathways were also observed (cell surface signalling pathways, membrane proteins and ion-binding proteins). Our results suggest that the BoLA region of Brangus cattle may have been enriched with Brahman haplotypes as a consequence of selection processes to promote adaptation to subtropical environments.
Collapse
|
14
|
Bahbahani H, Tijjani A, Mukasa C, Wragg D, Almathen F, Nash O, Akpa GN, Mbole-Kariuki M, Malla S, Woolhouse M, Sonstegard T, Van Tassell C, Blythe M, Huson H, Hanotte O. Signatures of Selection for Environmental Adaptation and Zebu × Taurine Hybrid Fitness in East African Shorthorn Zebu. Front Genet 2017. [PMID: 28642786 PMCID: PMC5462927 DOI: 10.3389/fgene.2017.00068] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The East African Shorthorn Zebu (EASZ) cattle are ancient hybrid between Asian zebu × African taurine cattle preferred by local farmers due to their adaptability to the African environment. The genetic controls of these adaptabilities are not clearly understood yet. Here, we genotyped 92 EASZ samples from Kenya (KEASZ) with more than 770,000 SNPs and sequenced the genome of a pool of 10 KEASZ. We observe an even admixed autosomal zebu × taurine genomic structure in the population. A total of 101 and 165 candidate regions of positive selection, based on genome-wide SNP analyses (meta-SS, Rsb, iHS, and ΔAF) and pooled heterozygosity (Hp) full genome sequence analysis, are identified, in which 35 regions are shared between them. A total of 142 functional variants, one novel, have been detected within these regions, in which 30 and 26 were classified as of zebu and African taurine origins, respectively. High density genome-wide SNP analysis of zebu × taurine admixed cattle populations from Uganda and Nigeria show that 25 of these regions are shared between KEASZ and Uganda cattle, and seven regions are shared across the KEASZ, Uganda, and Nigeria cattle. The identification of common candidate regions allows us to fine map 18 regions. These regions intersect with genes and QTL associated with reproduction and environmental stress (e.g., immunity and heat stress) suggesting that the genome of the zebu × taurine admixed cattle has been uniquely selected to maximize hybrid fitness both in terms of reproduction and survivability.
Collapse
Affiliation(s)
- Hussain Bahbahani
- Department of Biological Sciences, Faculty of Science, Kuwait UniversityKuwait, Kuwait
| | - Abdulfatai Tijjani
- School of Life Sciences, University of NottinghamNottingham, United Kingdom.,Centre for Genomics Research and Innovation, National Biotechnology Development AgencyAbuja, Nigeria
| | | | - David Wragg
- Centre for Tropical Livestock Genetics and Health, Roslin InstituteEdinburgh, United Kingdom
| | - Faisal Almathen
- Department of Veterinary Public Health and Animal Husbandry, College of Veterinary Medicine, King Faisal UniversityAl-Hasa, Saudi Arabia
| | - Oyekanmi Nash
- Centre for Genomics Research and Innovation, National Biotechnology Development AgencyAbuja, Nigeria
| | - Gerald N Akpa
- Department of Animal Science, Ahmadu Bello UniversityZaria, Nigeria
| | - Mary Mbole-Kariuki
- School of Life Sciences, University of NottinghamNottingham, United Kingdom
| | - Sunir Malla
- Deep Seq Department, University of NottinghamNottingham, United Kingdom
| | - Mark Woolhouse
- Ashworth Laboratories, Centre for Immunity, Infection and Evolution, University of EdinburghEdinburgh, United Kingdom
| | | | - Curtis Van Tassell
- Animal Genomics and Improvement Laboratory, United States Department of Agriculture, Agricultural Research ServiceBeltsville, MD, United States
| | - Martin Blythe
- Deep Seq Department, University of NottinghamNottingham, United Kingdom
| | - Heather Huson
- Animal Genomics and Improvement Laboratory, United States Department of Agriculture, Agricultural Research ServiceBeltsville, MD, United States
| | - Olivier Hanotte
- School of Life Sciences, University of NottinghamNottingham, United Kingdom.,International Livestock Research Institute (ILRI)Addis Ababa, Ethiopia
| |
Collapse
|