1
|
Li W, Xu M, Zhang Z, Liang J, Fu R, Lin W, Luo W, Zhang X, Ren T. Regulatory Effects of 198-bp Structural Variants in the GSTA2 Promoter Region on Adipogenesis in Chickens. Int J Mol Sci 2024; 25:7155. [PMID: 39000259 PMCID: PMC11241197 DOI: 10.3390/ijms25137155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Molecular breeding accelerates animal breeding and improves efficiency by utilizing genetic mutations. Structural variations (SVs), a significant source of genetic mutations, have a greater impact on phenotypic variation than SNPs. Understanding SV functional mechanisms and obtaining precise information are crucial for molecular breeding. In this study, association analysis revealed significant correlations between 198-bp SVs in the GSTA2 promoter region and abdominal fat weight, intramuscular fat content, and subcutaneous fat thickness in chickens. High expression of GSTA2 in adipose tissue was positively correlated with the abdominal fat percentage, and different genotypes of GSTA2 exhibited varied expression patterns in the liver. The 198-bp SVs regulate GSTA2 expression by binding to different transcription factors. Overexpression of GSTA2 promoted preadipocyte proliferation and differentiation, while interference had the opposite effect. Mechanistically, the 198-bp fragment contains binding sites for transcription factors such as C/EBPα that regulate GSTA2 expression and fat synthesis. These SVs are significantly associated with chicken fat traits, positively influencing preadipocyte development by regulating cell proliferation and differentiation. Our work provides compelling evidence for the use of 198-bp SVs in the GSTA2 promoter region as molecular markers for poultry breeding and offers new insights into the pivotal role of the GSTA2 gene in fat generation.
Collapse
Affiliation(s)
- Wangyu Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China (R.F.); (W.L.); (W.L.)
- Guangdong Key Laboratory of Genome and Molecular Breeding of Agricultural Animals and Key Laboratory of Chicken Genetic Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510642, China
| | - Meng Xu
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Zihao Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China;
| | - Jiaying Liang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China (R.F.); (W.L.); (W.L.)
- Guangdong Key Laboratory of Genome and Molecular Breeding of Agricultural Animals and Key Laboratory of Chicken Genetic Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510642, China
| | - Rong Fu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China (R.F.); (W.L.); (W.L.)
- Guangdong Key Laboratory of Genome and Molecular Breeding of Agricultural Animals and Key Laboratory of Chicken Genetic Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510642, China
| | - Wujian Lin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China (R.F.); (W.L.); (W.L.)
- Guangdong Key Laboratory of Genome and Molecular Breeding of Agricultural Animals and Key Laboratory of Chicken Genetic Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510642, China
| | - Wen Luo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China (R.F.); (W.L.); (W.L.)
- Guangdong Key Laboratory of Genome and Molecular Breeding of Agricultural Animals and Key Laboratory of Chicken Genetic Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510642, China
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China (R.F.); (W.L.); (W.L.)
- Guangdong Key Laboratory of Genome and Molecular Breeding of Agricultural Animals and Key Laboratory of Chicken Genetic Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510642, China
| | - Tuanhui Ren
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China (R.F.); (W.L.); (W.L.)
- Guangdong Key Laboratory of Genome and Molecular Breeding of Agricultural Animals and Key Laboratory of Chicken Genetic Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510642, China
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| |
Collapse
|
2
|
Xiong X, Liu J, Rao Y. Whole Genome Resequencing Helps Study Important Traits in Chickens. Genes (Basel) 2023; 14:1198. [PMID: 37372379 DOI: 10.3390/genes14061198] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
The emergence of high-throughput sequencing technology promotes life science development, provides technical support to analyze many life mechanisms, and presents new solutions to previously unsolved problems in genomic research. Resequencing technology has been widely used for genome selection and research on chicken population structure, genetic diversity, evolutionary mechanisms, and important economic traits caused by genome sequence differences since the release of chicken genome sequence information. This article elaborates on the factors influencing whole genome resequencing and the differences between these factors and whole genome sequencing. It reviews the important research progress in chicken qualitative traits (e.g., frizzle feather and comb), quantitative traits (e.g., meat quality and growth traits), adaptability, and disease resistance, and provides a theoretical basis to study whole genome resequencing in chickens.
Collapse
Affiliation(s)
- Xinwei Xiong
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang Normal University, Nanchang 330032, China
| | - Jianxiang Liu
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang Normal University, Nanchang 330032, China
| | - Yousheng Rao
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang Normal University, Nanchang 330032, China
| |
Collapse
|
3
|
The Novel Structural Variation in the GHR Gene Is Associated with Growth Traits in Yaks ( Bos grunniens). Animals (Basel) 2023; 13:ani13050851. [PMID: 36899708 PMCID: PMC10000137 DOI: 10.3390/ani13050851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
The growth hormone receptor (GHR) is a member of the cytokine/hematopoietic factor receptor superfamily, which plays an important role in the growth and development, immunity, and metabolism of animals. This study identified a 246 bp deletion variant in the intronic region of the GHR gene, and three genotypes, including type II, type ID, and type DD, were observed. Genotype analysis of structural variation (SV) was performed on 585 individuals from 14 yak breeds, and it was found that 246 bp deletion was present in each breed. The II genotype was dominant in all yak breeds except for SB yak. The association analysis of gene polymorphisms and growth traits in the ASD yak population showed that the 246 bp SV was significantly associated with body length at 6 months (p < 0.05). GHR messenger RNA (mRNA) was expressed in all the tested tissues, with significantly higher levels in the liver, muscle, and fat than in other organs. The results of transcription activity showed that the luciferase activity of the pGL4.10-DD vector was significantly higher than that of the pGL4.10-II vector (p < 0.05). Additionally, the transcription-factor binding prediction results showed that the SV in the runt-related transcription factor 1 (Runx1) transcription-factor binding site may affect the transcriptional activity of the GHR gene, regulating yak growth and development. This study showed that the novel SV of the GHR gene could be used as a candidate molecular marker for the selection of the early growth trait in ASD yak.
Collapse
|
4
|
Tang H, Ma Y, Li J, Zhang Z, Li W, Cai C, Zhang L, Li Z, Tian Y, Zhang Y, Ji J, Han L, Kang X, Jiang R, Han R. Identification and genetic analysis of major gene ST3GAL4 related to serum alkaline phosphatase in chicken. Res Vet Sci 2023; 155:115-123. [PMID: 36680949 DOI: 10.1016/j.rvsc.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 11/18/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022]
Abstract
Alkaline phosphatase (ALP) is a marker of osteoblast maturation and an important indicator of bone metabolism. The activity of ALP can reflect the bone metabolism and growth traits of animals, so the polymorphism affecting ALP expression deserves further study. In this study, we identified an SNP site in ST3GAL4 found by genome-wide association studies (GWAS) in previous studies, 8 SNPs were also identified by DNA sequencing. Interestingly, there were 4 SNPs (rs475471G > A, rs475533C > T, rs475621A > G, rs475647C > A) completely linked by haplotype analysis. Therefore, we selected a tag SNP rs475471G > A to further analyze the ALP level of different genotypes in Hubbard leg disease population and an F2 chicken resource population produced by Anka and Gushi chickens and carried out population genetic analysis in 18 chicken breeds. Association analysis showed that this QTL within ST3GAL4 was highly correlated with ALP level. The mutant individuals with genotype AA had the highest ALP level, followed by GA and GG carriers. The mutant individual carriers of AA and GA genotype had higher values for body weight (BW), chest width (CW), body slanting length (BSL), pelvis width (PW) at 4-week, the semi-evisceration weight (SEW), evisceration weight (EW) and Leg weight (LW) than GG genotypes. The amplification and typing of 4852 DNA samples from 18 different breeds showed GG genotype mainly existed in egg-type chickens and dual-type chickens, while the AA genotype was mainly distributed in commercial broilers and F2 resource population. The individual carriers of the AA genotype had the highest ALP and showed better growth performance. Besides, tissue expression analysis used Cobb broiler showed significant differences between different genotypes in the spleen and duodenum. Taken together, this was the first time to determine 9 SNPs within ST3GAL4 related to ALP in chickens, 4 of them were complete linkage with each other, which provides useful information on the mutation of ST3GAL4 and could predict the serum ALP level of chicken early and as an effective potential molecular breeding marker for chickens.
Collapse
Affiliation(s)
- Hehe Tang
- College of animal science and technology, Henan Agricultural University, Zhengzhou, Henan Province 4500046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, Henan Province 450046, China
| | - Yanchao Ma
- College of animal science and technology, Henan Agricultural University, Zhengzhou, Henan Province 4500046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, Henan Province 450046, China
| | - Jianzeng Li
- College of animal science and technology, Henan Agricultural University, Zhengzhou, Henan Province 4500046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, Henan Province 450046, China
| | - Zhenzhen Zhang
- College of animal science and technology, Henan Agricultural University, Zhengzhou, Henan Province 4500046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, Henan Province 450046, China
| | - Wenting Li
- College of animal science and technology, Henan Agricultural University, Zhengzhou, Henan Province 4500046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, Henan Province 450046, China
| | - Chunxia Cai
- College of animal science and technology, Henan Agricultural University, Zhengzhou, Henan Province 4500046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, Henan Province 450046, China
| | - Lujie Zhang
- College of animal science and technology, Henan Agricultural University, Zhengzhou, Henan Province 4500046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, Henan Province 450046, China
| | - Zhuanjian Li
- College of animal science and technology, Henan Agricultural University, Zhengzhou, Henan Province 4500046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, Henan Province 450046, China
| | - Yadong Tian
- College of animal science and technology, Henan Agricultural University, Zhengzhou, Henan Province 4500046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, Henan Province 450046, China
| | - Yanhua Zhang
- College of animal science and technology, Henan Agricultural University, Zhengzhou, Henan Province 4500046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, Henan Province 450046, China
| | - Jinqing Ji
- Henan Husbandry Breau, Zhengzhou 450008, China
| | - Lu Han
- Henan Husbandry Breau, Zhengzhou 450008, China
| | - Xiangtao Kang
- College of animal science and technology, Henan Agricultural University, Zhengzhou, Henan Province 4500046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, Henan Province 450046, China.
| | - Ruirui Jiang
- College of animal science and technology, Henan Agricultural University, Zhengzhou, Henan Province 4500046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, Henan Province 450046, China.
| | - Ruili Han
- College of animal science and technology, Henan Agricultural University, Zhengzhou, Henan Province 4500046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, Henan Province 450046, China.
| |
Collapse
|
5
|
Molecular Characterization, Expression Profile, and A 21-bp Indel within the ASB9 Gene and Its Associations with Chicken Production Traits. Genes (Basel) 2023; 14:genes14020339. [PMID: 36833266 PMCID: PMC9957280 DOI: 10.3390/genes14020339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
A growing number of studies have shown that members of the ankyrin repeat and suppressors of cytokine signaling (SOCS) box-containing protein (ASB) family are extensively involved in biological processes such as cell growth, tissue development, insulin signaling, ubiquitination, protein degradation, and skeletal muscle membrane protein formation, while the specific biological role of ankyrin-repeat and SOCS box protein 9 (ASB9) remains unclear. In this study, a 21 bp indel in the intron of ASB9 was identified for the first time in 2641 individuals from 11 different breeds and an F2 resource population, and differences were observed among individuals with different genotypes (II, ID, and DD). An association study of a cross-designed F2 resource population revealed that the 21-bp indel was significantly related to growth and carcass traits. The significantly associated growth traits were body weight (BW) at 4, 6, 8, 10, and 12 weeks of age; sternal length (SL) at 4, 8, and 12 weeks of age; body slope length (BSL) at 4, 8, and 12 weeks of age; shank girth (SG) at 4 and 12 weeks of age; tibia length (TL) at 12 weeks of age; and pelvic width (PW) at 4 weeks of age (p < 0.05). This indel was also significantly correlated with carcass traits including semievisceration weight (SEW), evisceration weight (EW), claw weight (CLW), breast muscle weight (BMW), leg weight (LeW), leg muscle weight (LMW), claw rate (CLR), and shedding weight (ShW) (p < 0.05). In commercial broilers, the II genotype was the dominant genotype and underwent extensive selection. Interestingly, the ASB9 gene was expressed at significantly higher levels in the leg muscles of Arbor Acres broilers than those of Lushi chickens, while the opposite was true for the breast muscles. In summary, the 21-bp indel in the ASB9 gene significantly influenced the expression of the ASB9 gene in muscle tissue and was associated with multiple growth and carcass traits in the F2 resource population. These findings suggested that the 21-bp indel within the ASB9 gene could be used in marker-assisted selection breeding for traits related to chicken growth.
Collapse
|
6
|
He S, Ren T, Lin W, Yang X, Hao T, Zhao G, Luo W, Nie Q, Zhang X. Identification of candidate genes associated with skin yellowness in yellow chickens. Poult Sci 2023; 102:102469. [PMID: 36709583 PMCID: PMC9922980 DOI: 10.1016/j.psj.2022.102469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/04/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Abstract
The yellow color of the skin is an important economic trait for yellow chickens. Low and non-uniform skin yellowness would reduce economic efficiency. However, the regulatory mechanism of chicken skin yellowness has not been fully elucidated. In this study, we evaluated the skin yellowness of 819 chickens by colorimeter and digital camera, which are from the same batch and the same age of 2 pure lines with significant differences in skin yellowness. A total of 982 candidate differential expressed genes (DEGs) were detected in duodenal tissue by RNA-seq analysis for high and low yellowness chickens. Among the DEGs, we chose fatty acid translocase (CD36) gene and identified a single nucleotide polymorphism (SNP) upstream of the CD36 gene that was significantly associated with skin yellowness at multiple parts of the chicken, and its different genotypes had significant effects on the promoter activity of the CD36 gene. These findings will help to further elucidate the molecular mechanism of chicken skin yellowness and is helpful for improving chicken skin yellowness.
Collapse
Affiliation(s)
- Shizi He
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, Guangdong, China
| | - Tuanhui Ren
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, Guangdong, China
| | - Wujian Lin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, Guangdong, China
| | - Xiuxian Yang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, Guangdong, China
| | - Tianqi Hao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, Guangdong, China
| | - Guoxi Zhao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, Guangdong, China
| | - Wen Luo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, Guangdong, China
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, Guangdong, China
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
7
|
Ren T, Lin W, Yang X, Zhang Z, He S, Li W, Li Z, Zhang X. QPCTL Affects the Daily Weight Gain of the F2 Population and Regulates Myogenic Cell Proliferation and Differentiation in Chickens. Animals (Basel) 2022; 12:ani12243535. [PMID: 36552455 PMCID: PMC9774964 DOI: 10.3390/ani12243535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/10/2022] [Accepted: 12/11/2022] [Indexed: 12/16/2022] Open
Abstract
Molecular breeding can accelerate the process of animal breeding and improve the breeding efficiency. To date, many Indel molecular markers have been identified in livestock and poultry, but how Indels affect economic traits is not well understood. For molecular breeding, it is crucial to reveal the mechanism of action of Indels and to provide more accurate information. The purpose of this study was to investigate how the 52/224-bp multiallelic Indels of the chicken QPCTL promoter area affect the daily weight gain of chickens and the potential regulatory mechanism of the QPCTL gene. The analysis was conducted by association analysis, qPCR, dual-fluorescence assay and Western blotting. The results showed that Indels in the QPCTL promoter region were significantly associated with the daily weight gain in chickens and that QPCTL expression showed a decreasing trend in embryonic breast muscle tissues. Furthermore, QPCTL expression was significantly higher in breast muscle tissues of the AC genotype than in those of the AB and BB genotypes. Based on the transcriptional activity results, the pGL3-C vector produced more luciferase activity than pGL3-A and pGL3-B. In addition, overexpression of QPCTL promoted chicken primary myoblast (CPM) proliferation and inhibited differentiation. The results of this study suggest that Indels in the promoter region of the QPCTL gene may regulate the proliferation and differentiation of CPMs by affecting the expression of QPCTL, which ultimately affects the growth rate of chickens. These Indels have important value for the molecular breeding of chickens, and QPCTL can be used as a candidate gene to regulate and improve chicken growth and development.
Collapse
Affiliation(s)
- Tuanhui Ren
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Wujian Lin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Xiuxian Yang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Zihao Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Shizi He
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Wangyu Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Correspondence: (Z.L.); (X.Z.)
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
- Correspondence: (Z.L.); (X.Z.)
| |
Collapse
|
8
|
Li T, Qin P, Chen B, Niu X, Wang Y, Niu Y, Wei C, Hou D, Ma H, Han R, Li H, Liu X, Kang X, Li Z. A novel 27-bp indel in the intron region of the YBX3 gene is associated with growth traits in chickens. Br Poult Sci 2022; 63:590-596. [PMID: 35382648 DOI: 10.1080/00071668.2022.2059340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
1. The DNA/RNA binding protein YBX3 is associated with gene transcription, DNA repair, and the progression of various diseases and is highly conserved from bacteria to humans.2. The following experiment found a 27-bp insertion/deletion polymorphism in the intron region of the YBX3 gene through resequencing. In cross-designed, F2 resource groups, the indel was significantly associated with broiler weight and body size at 0, 2, 4, 6, 8, 10 and 12 weeks of age and several other traits (semi evisceration weight (SEW), evisceration weight (EW), semi evisceration rate (SER), evisceration rate (ER), head weight (HW), claw weight (CLW), wing weight (DWW), gizzard weight (GW), pancreas weight (PW), chest muscle weight (CMW), leg weight (LW), leg muscle weight (LMW), shedding weight (SW), carcass weight (CW) and pectoral area (PA)) (P<0.05).3. The insertion-insertion (II) genotype was significantly associated with the greatest growth traits and carcass traits, whereas the values associated with the insertion-deletion (ID) genotype were the lowest in the F2 reciprocal cross chickens.4. The mutation sites were genotyped in 3611 individuals from 13 different chicken breeds and cross-designed F2 resource groups. The II genotype is the most important in commercial broilers, and the I allele frequency observed in these breeds was relatively high. However, there is still considerable potential in breeding dual-purpose chickens and commercial laying hens.5. The mRNA expression of the YBX3 gene in tissues from different breeds and developmental stages demonstrated that the 27-bp indel may affect the entire development process of poultry by affecting muscle development. These findings are beneficial for elucidating the function of the YBX3 gene and facilitating enhanced reproduction in the chicken industry.
Collapse
Affiliation(s)
- Tong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Panpan Qin
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Bingjie Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Xinran Niu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Yanxing Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Yufang Niu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Chengjie Wei
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Dan Hou
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Haoxiang Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China.,Henan Innovative Engineering Research Centre of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China.,Henan Innovative Engineering Research Centre of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China.,Henan Innovative Engineering Research Centre of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
9
|
Liu X, Yang P, Sun H, Zhang Z, Cai C, Xu J, Ding X, Wang X, Lyu S, Li Z, Xu Z, Shi Q, Wang E, Lei C, Chen H, Ru B, Huang Y. CNV analysis of VAMP7 gene reveals variation associated with growth traits in Chinese cattle. Anim Biotechnol 2022:1-7. [PMID: 35236249 DOI: 10.1080/10495398.2021.2011741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Copy number variant (CNV), a common genetic polymorphism, is closely related to the phenotypic variation traits of organisms. Vesicle-associated membrane protein 7 gene (VAMP7) codes a protein, which is a member of the SNARE proteins family and plays an important role in the process of intracellular vesicle transport. In this study, a total of four cattle breeds (Yunling cattle, Xianan cattle, Pinan cattle, Jiaxian red cattle) were used to investigate the copy numbers, and we found an association relationship between CNV of VAMP7 gene and growth traits of cattle by SPSS 20.0 software. The results showed that the CNV type of VAMP7 gene in four cattle breeds had the same distribution, Duplication type occupies a dominant position among the four varieties. In Yunling cattle, the Duplication type of VAMP7 is significantly related to the height at the hip cross (p < 0.05), Individuals with Duplication type commonly have less performance on growth and development, which indicates that the Duplication type of the VAMP7 gene may have a negative effect on cattle growth. Individuals with the other two CNV types may become the breeding direction of the VAMP7 gene. This study provided a new perspective and basic material for the molecular genetics of the CNV of the VAMP7 gene, and also promoted the breeding progress of Chinese local cattle.
Collapse
Affiliation(s)
- Xian Liu
- Henan Provincial Animal Husbandry General Station, Zhengzhou, People's Republic of China
| | - Peng Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, People's Republic of China
| | - Haoming Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, People's Republic of China
| | - Zijing Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, People's Republic of China
| | - Cuicui Cai
- Guyuan Branch of Ningxia Academy of Agriculture and Forestry Sciences, Guyuan, People's Republic of China
| | - Jiawei Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, People's Republic of China
| | - Xiaoting Ding
- College of Animal Science and Technology, Northwest A&F University, Yangling, People's Republic of China
| | - Xianwei Wang
- Henan Provincial Animal Husbandry General Station, Zhengzhou, People's Republic of China
| | - Shijie Lyu
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, People's Republic of China
| | - Zhiming Li
- Henan Provincial Animal Husbandry General Station, Zhengzhou, People's Republic of China
| | - Zejun Xu
- Henan Provincial Animal Husbandry General Station, Zhengzhou, People's Republic of China
| | - Qiaoting Shi
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, People's Republic of China
| | - Eryao Wang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, People's Republic of China
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, People's Republic of China
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, People's Republic of China
| | - Baorui Ru
- Henan Provincial Animal Husbandry General Station, Zhengzhou, People's Republic of China
| | - Yongzhen Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling, People's Republic of China
| |
Collapse
|
10
|
Wei C, Niu Y, Chen B, Qin P, Wang Y, Hou D, Li T, Li R, Wang C, Yin H, Han R, Xu H, Tian Y, Liu X, Kang X, Li Z. Genetic effect of an InDel in the promoter region of the NUDT15 and its effect on myoblast proliferation in chickens. BMC Genomics 2022; 23:138. [PMID: 35168561 PMCID: PMC8848950 DOI: 10.1186/s12864-022-08362-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/25/2022] [Indexed: 12/14/2022] Open
Abstract
Background Molecular breeding accelerates the speed of animal breeding. Screening molecular markers that can affect economic traits through genome-wide association studies (GWAS) can provide a theoretical basis for molecular breeding. At present, a large number of molecular markers have been screened in poultry research, but few reports on how molecular markers affect economic traits exist. It is particularly important to reveal the action mechanisms of molecular markers, which can provide more accurate information for molecular breeding. Results The aim of this study was to investigate the relationships between two indels (NUDT15-indel-2777 and NUDT15-indel-1673) in the promoter region of NUDT15 and growth and carcass traits in chickens and to explore the regulatory mechanism of NUDT15. Significant differences were found in genotype and allele frequencies among commercial broilers, commercial laying hens and dual-purpose chickens. The results of association analyses showed that these two indel loci could significantly affect growth traits, such as body weight, and carcass traits. Tissue expression profiling at E12 showed that the expression of NUDT15 was significantly higher in skeletal muscle, and time-expression profiling of leg muscle showed that the expression of NUDT15 in myoblasts was significantly higher in the E10 and E12 proliferation stages than in other stages. Promoter activity analysis showed that pro-1673-I and pro-1673-D significantly inhibited promoter activity, and the promoter activity of pro-1673-D was significantly lower than that of pro-1673-I. In addition, when NUDT15 was overexpressed or underwent interference in chicken primary myoblasts (CPMs), NUDT15 could inhibit the proliferation of CPMs. Conclusion The results suggest that the studied indels in the promoter region of NUDT15 may regulate the proliferation of CPMs by affecting NUDT15 expression, ultimately affecting the growth and carcass traits of chickens. These indel polymorphisms may be used together as molecular markers for improving economic traits in chickens. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08362-6.
Collapse
Affiliation(s)
- Chengjie Wei
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou, 450046, China
| | - Yufang Niu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou, 450046, China
| | - Bingjie Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou, 450046, China
| | - Panpan Qin
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou, 450046, China
| | - Yanxing Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou, 450046, China
| | - Dan Hou
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou, 450046, China
| | - Tong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou, 450046, China
| | - Ruiting Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou, 450046, China
| | - Chunxiu Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou, 450046, China
| | - Huadong Yin
- Farm Animal genetic resources exploration and innovation key laboratory of sichuan province, sichuan agricultural university, Chengdu, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou, 450046, China
| | - Huifen Xu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou, 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou, 450046, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou, 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou, 450046, China
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China. .,Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou, 450046, China.
| |
Collapse
|
11
|
Li T, Chen B, Wei C, Hou D, Qin P, Jing Z, Ma H, Niu X, Wang C, Han R, Li H, Liu X, Xu H, Kang X, Li Z. A 104-bp Structural Variation of the ADPRHL1 Gene Is Associated With Growth Traits in Chickens. Front Genet 2021; 12:691272. [PMID: 34512719 PMCID: PMC8427608 DOI: 10.3389/fgene.2021.691272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/29/2021] [Indexed: 11/13/2022] Open
Abstract
Analyzing marker-assisted breeding is an important method utilized in modern molecular breeding. Recent studies have determined that a large number of molecular markers appear to explain the impact of "lost heritability" on human height. Therefore, it is necessary to locate molecular marker sites in poultry and investigate the possible molecular mechanisms governing their effects. In this study, we found a 104-bp insertion/deletion polymorphism in the 5'UTR of the ADPRHL1 gene through resequencing. In cross-designed F2 resource groups, the indel was significantly associated with weight at 0, 2, 4, 6, and 10 weeks and a number of other traits [carcass weight (CW), semi-evisceration weight (SEW), evisceration weight (EW), claw weight (CLW), wings weight (DWW), gizzard weight (GW), pancreas weight (PW), chest muscle weight (CMW), leg weight (LW), leg muscle weight (LMW), shedding Weight (SW), liver rate (LR), and leg muscle rate (LMR)] (P < 0.05). In brief, the insertion-insertion (II) genotype was significantly associated with the greatest growth traits and meat quality traits, whereas the values associated with the insertion-deletion (ID) genotype were the lowest in the F2 reciprocal cross chickens. The mutation sites were genotyped in 4,526 individuals from 12 different chicken breeds and cross-designed F2 resource groups. The II genotype is the most important genotype in commercial broilers, and the I allele frequency observed in these breeds is relatively high. Deletion mutations tend to be fixed in commercial broilers. However, there is still considerable great potential for breeding in dual-purpose chickens and commercial laying hens. A luciferase reporter assay showed that the II genotype of the ADPRHL1 gene possessed 2.49-fold higher promoter activity than the DD genotype (P < 0.05). We hypothesized that this indel might affect the transcriptional activity of ADPRHL1, thereby affecting the growth traits of chickens. These findings may help to elucidate the function of the ADPRHL1 gene and facilitate enhanced reproduction in the chicken industry.
Collapse
Affiliation(s)
- Tong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Bingjie Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Chengjie Wei
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Dan Hou
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Panpan Qin
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Zhenzhu Jing
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Haoran Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Xinran Niu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Chunxiu Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, China
| | - Huifen Xu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, China
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
12
|
Detection of 15-bp Deletion Mutation within PLAG1 Gene and Its Effects on Growth Traits in Goats. Animals (Basel) 2021; 11:ani11072064. [PMID: 34359192 PMCID: PMC8300177 DOI: 10.3390/ani11072064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Goats have always served as an important domesticated livestock. PLAG1 is a major gene that affects the stature and growth of animals. Body size traits are very important for goats as it directly affects the economic characteristics of meat and cashmere production. This study showed that the 15-base pair (bp) InDel (rs637141549) can significantly affect growth traits such as body weight, height, height at hip cross, chest circumference, hip width and body index of goats through the detection of large samples (n = 1581) in four indigenous breeds. Accordingly, it is suggested that the deletion mutation can be used as a potential molecular marker that significantly affects goat growth traits. Moreover, the 15bp deletion mutation can be used as a potential molecular marker, which significantly affects the growth traits of goats and plays an important role in animal husbandry production. Abstract Stature and weight are important growth and development traits for animals, which also significantly affect the productivity of livestock. Polymorphic adenoma gene 1 (PLAG1) is located in the growth-related quantitative trait nucleotides (QTN), and its variation has been determined to significantly affect the body stature of bovines. This study found that novel 15-bp InDel could significantly influence important growth traits in goats. The frequencies of genotypes of the 15-bp mutation and relationship with core growth traits such as body weight, body height, height at hip cross, chest circumference, hip width and body index were explored in 1581 individuals among 4 Chinese native goat breeds. The most frequent genotypes of Shaanbei white Cashmere goat (SWCG), Inner Mongolia White Cashmere goat (IMCG) and Guanzhong Dairy goat (GZDG) were II genotypes (insertion/insertion), and the frequency of ID genotype (insertion/deletion) was found to be slightly higher than that of II genotype in Hainan Black goat (HNBG), showing that the frequency of the I allele was higher than that of the D allele. In adult goats, there were significant differences between 15-bp variation and body weight, chest circumference and body height traits in SWCG (p < 0.05). Furthermore, the locus was also found to be significantly correlated with the body index of HNBG (p = 0.044) and hip width in GZDG (p = 0.002). In regard to lambs, there were significant differences in height at the hip cross of SWCG (p = 0.036) and hip width in IMWC (p = 0.005). The corresponding results suggest that the 15-bp InDel mutation of PLAG1 is associated with the regulation of important growth characteristics of both adult and lamb of goats, which may serve as efficient molecular markers for goat breeding.
Collapse
|
13
|
Lin W, Ren T, Li W, Liu M, He D, Liang S, Luo W, Zhang X. Novel 61-bp Indel of RIN2 Is Associated With Fat and Hatching Weight Traits in Chickens. Front Genet 2021; 12:672888. [PMID: 34276778 PMCID: PMC8280519 DOI: 10.3389/fgene.2021.672888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/09/2021] [Indexed: 11/28/2022] Open
Abstract
The Ras and Rab interactor 2 (RIN2) gene, which encodes RAS and Rab interacting protein 2, can interact with GTP-bound Rab5 and participate in early endocytosis. This study found a 61-bp insertion/deletion (indel) in the RIN2 intron region, and 3 genotypes II, ID, and DD were observed. Genotype analysis of mutation sites was performed on 665 individuals from F2 population and 8 chicken breeds. It was found that the indel existed in each breed and that yellow feathered chickens were mainly of the DD genotype. Correlation analysis of growth and carcass traits in the F2 population of Xinghua and White Recessive Rock chickens showed that the 61-bp indel was significantly correlated with abdominal fat weight, abdominal fat rate, fat width, and hatching weight (P < 0.05). RIN2 mRNA was expressed in all the tested tissues, and its expression in abdominal fat was higher than that in other tissues. In addition, the expression of the RIN2 mRNA in the abdominal fat of the DD genotype was significantly higher than that of the II genotype (P < 0.05). The transcriptional activity results showed that the luciferase activity of the pGL3-DD vector was significantly higher than that of the pGL3-II vector (P < 0.01). Moreover, the results indicate that the polymorphisms in transcription factor binding sites (TFBSs) of 61-bp indel may affect the transcriptional activity of RIN2, and thus alter fat traits in chicken. The results of this study showed that the 61-bp indel was closely related to abdominal fat-related and hatching weight traits of chickens, which may have reference value for molecular marker-assisted selection of chickens.
Collapse
Affiliation(s)
- Wujian Lin
- Department of Animal Genetics, Breeding, and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Tuanhui Ren
- Department of Animal Genetics, Breeding, and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Wangyu Li
- Department of Animal Genetics, Breeding, and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Manqing Liu
- Department of Animal Genetics, Breeding, and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Danlin He
- Department of Animal Genetics, Breeding, and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Shaodong Liang
- Department of Animal Genetics, Breeding, and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Wen Luo
- Department of Animal Genetics, Breeding, and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding, and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| |
Collapse
|
14
|
Kang Z, Bai Y, Lan X, Zhao H. Goat AKAP12: Indel Mutation Detection, Association Analysis With Litter Size and Alternative Splicing Variant Expression. Front Genet 2021; 12:648256. [PMID: 34093646 PMCID: PMC8176285 DOI: 10.3389/fgene.2021.648256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/29/2021] [Indexed: 12/27/2022] Open
Abstract
A-kinase anchoring protein 12 (AKAP12) plays key roles in male germ cells and female ovarian granulosa cells, whereas its influence on livestock litter size remains unclear. Herein we detected the genetic variants of AKAP12 gene and their effects on litter size as well as alternative splicing variants expression in Shaanbei white cashmere (SBWC) goats, aiming at exploring theoretical basis for goat molecular breeding. We identified two Insertion/deletions (Indels) (7- and 13-bp) within the AKAP12 gene. Statistical analyses demonstrated that the 13-bp indel mutation in the 3′ UTR was significantly associated with litter size (n = 1,019), and the carriers with DD genotypes presented lower litter sizes compared with other carriers (P < 0.01). Bioinformatics analysis predicted that this 13-bp deletion sequence could bind to the seed region of miR-181, which has been documented to suppress porcine reproductive and respiratory syndrome virus (PRRSV) infection by targeting PRRSV receptor CD163 and affect the pig litter size. Therefore, luciferase assay for this 13-bp indel binding with miRNA-181 was performed, and the luciferase activity of pcDNA-miR-181-13bp-Deletion-allele vector was significantly lower than that of the pcDNA-miR-181-13bp-Insertion-allele vector (P < 0.05), suggesting the reduced binding capability with miR-181 in DD genotype. Given that alternative spliced variants and their expression considerably account for the Indel genetic effects on phenotypic traits, we therefore detected the expression of the alternative spliced variants in different tissues and identified that AKAP12-AS2 exhibited the highest expression levels in testis tissues. Interestingly, the AKAP12-AS2 expression levels of homozygote DD carriers were significantly lower than that of individuals with heterozygote ID, in both testis and ovarian tissues (P < 0.05), which is consistent with the effect of the 13-bp deletion on the reduced litter size. Taken together, our results here suggest that this 13-bp indel mutation within goat AKAP12 might be utilized as a novel molecular marker for improving litter size in goat breeding.
Collapse
Affiliation(s)
- Zihong Kang
- School of Life Sciences, Lanzhou University, Lanzhou, China.,College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling, China
| | - Yangyang Bai
- College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling, China
| | - Xianyong Lan
- College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling, China
| | - Haiyu Zhao
- School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
15
|
Chao X, Guo L, Wang Q, Huang W, Liu M, Luan K, Jiang J, Lin S, Nie Q, Luo W, Zhang X, Luo Q. miR-429-3p/ LPIN1 Axis Promotes Chicken Abdominal Fat Deposition via PPARγ Pathway. Front Cell Dev Biol 2020; 8:595637. [PMID: 33425901 PMCID: PMC7793751 DOI: 10.3389/fcell.2020.595637] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/04/2020] [Indexed: 12/14/2022] Open
Abstract
To explore the regulatory mechanism of abdominal fat deposition in broilers, 100-day-old Sanhuang chickens (n = 12) were divided into high-fat and low-fat groups, according to the abdominal fat ratio size. Total RNA isolated from the 12 abdominal fat tissues was used for miRNA and mRNA sequencing. Results of miRNA and mRNA sequencing revealed that miR-429-3p was highly expressed in high-fat chicken whereas LPIN1 expression was downregulated. Further, we determined that miR-429-3p promoted preadipocyte proliferation and differentiation, whereas LPIN1 exerted an opposite effect. Notably, we found that the miR-429-3p/LPIN1 axis facilitated PPARγ pathway activation, which is closely associated with the progression of adipogenesis. In conclusion, our results provide evidence that a novel miR-429-3p/LPIN1 axis is involved in the regulation of adipogenesis, which may have a guiding role in the improvement of breeding for abdominal fat traits in broiler chickens.
Collapse
Affiliation(s)
- Xiaohuan Chao
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.,College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Lijin Guo
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.,College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qi Wang
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.,College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Weiling Huang
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.,College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Manqing Liu
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.,College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Kang Luan
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.,College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jinqi Jiang
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.,College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shudai Lin
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.,College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qinghua Nie
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.,College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wen Luo
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.,College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiquan Zhang
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.,College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qingbin Luo
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.,College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
16
|
Li W, Jing Z, Cheng Y, Wang X, Li D, Han R, Li W, Li G, Sun G, Tian Y, Liu X, Kang X, Li Z. Analysis of four complete linkage sequence variants within a novel lncRNA located in a growth QTL on chromosome 1 related to growth traits in chickens. J Anim Sci 2020; 98:5822640. [PMID: 32309860 DOI: 10.1093/jas/skaa122] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 04/16/2020] [Indexed: 12/18/2022] Open
Abstract
An increasing number of studies have shown that quantitative trait loci (QTLs) at the end of chromosome 1 identified in different chicken breeds and populations exert significant effects on growth traits in chickens. Nevertheless, the causal genes underlying the QTL effect remain poorly understood. Using an updated gene database, a novel lncRNA (named LncFAM) was found at the end of chromosome 1 and located in a growth and digestion QTL. This study showed that the expression level of LncFAM in pancreas tissues with a high weight was significantly higher than that in pancreas tissues with a low weight, which indicates that the expression level of LncFAM was positively correlated with various growth phenotype indexes, such as growth speed and body weight. A polymorphism screening identified four polymorphisms with strong linkage disequilibrium in LncFAM: a 5-bp indel in the second exon, an A/G base mutation, and 7-bp and 97-bp indels in the second intron. A study of a 97-bp insertion in the second intron using an F2 chicken resource population produced by Anka and Gushi chickens showed that the mutant individuals with genotype II had the highest values for body weight (BW) at 0 days and 2, 4, 6, 8, 10 and 12 weeks, shank girth (SG) at 4, 8 and 12 weeks, chest width (CW) at 4, 8 and 12 weeks, body slant length (BSL) at 8 and 12 weeks, and pelvic width (PW) at 4, 8 and 12 weeks, followed by ID and DD genotypes. The amplification and typing of 2,716 chickens from ten different breeds, namely, the F2 chicken resource population, dual-type chickens, including Xichuan black-bone chickens, Lushi green-shell layers, Dongxiang green-shell layers, Changshun green-shell layers, and Gushi chickens, and commercial broilers, including Ross 308, AA, Cobb and Hubbard broilers, revealed that II was the dominant genotype. Interestingly, only genotype II existed among the tested populations of commercial broilers. Moreover, the expression level in the pancreas tissue of Ross 308 chickens was significantly higher than that in the pancreas tissue of Gushi chickens (P < 0.001), which might be related to the conversion rates among different chickens. The prediction and verification of the target gene of LncFAM showed that LncFAM might regulate the expression of its target gene FAM48A through cis-expression. Our results provide useful information on the mutation of LncFAM, which can be used as a potential molecular breeding marker.
Collapse
Affiliation(s)
- Wenya Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou
| | - Zhenzhu Jing
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou
| | - Yingying Cheng
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xiangnan Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou
| | - Donghua Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou
| | - Ruili Han
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou
| | - Wenting Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou
| | - Guoxi Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou
| | - Guirong Sun
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou
| | - Yadong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou
| | - Xiaojun Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou
| | - Xiangtao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou
| | - Zhuanjian Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou
| |
Collapse
|
17
|
Ren T, Yang Y, Lin W, Li W, Xian M, Fu R, Zhang Z, Mo G, Luo W, Zhang X. A 31-bp indel in the 5' UTR region of GNB1L is significantly associated with chicken body weight and carcass traits. BMC Genet 2020; 21:91. [PMID: 32847500 PMCID: PMC7450547 DOI: 10.1186/s12863-020-00900-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/16/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND G-protein subunit beta 1 like (GNB1L) encodes a G-protein beta-subunit-like polypeptide. Chicken GNB1L is upregulated in the breast muscle of high feed efficiency chickens, and its expression is 1.52-fold that in low feed efficiency chickens. However, no report has described the effects of GNB1L indels on the chicken carcass and growth traits. RESULTS This study identified a 31-bp indel in the 5' untranslated region (UTR) of GNB1L and elucidated the effect of this gene mutation on the carcass and growth traits in chickens. The 31-bp indel showed a highly significant association with the body weight at 8 different stages and was significantly correlated with daily gains at 0 to 4 weeks and 4 to 8 weeks. Similarly, the mutation was significantly associated with small intestine length, breast width, breast depth and breast muscle weight. Moreover, DD and ID were superior genotypes for chicken growth and carcass traits. CONCLUSIONS These results show that the 31-bp indel of GNB1L significantly affects chicken body weight and carcass traits and can serve as a candidate molecular marker for chicken genetics and breeding programs.
Collapse
Affiliation(s)
- Tuanhui Ren
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China.,College of Life Science, Foshan University, Foshan, 528231, Guangdong, China
| | - Ying Yang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Wujian Lin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China
| | - Wangyu Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China
| | - Mingjian Xian
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China
| | - Rong Fu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China
| | - Zihao Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China
| | - Guodong Mo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China
| | - Wen Luo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China. .,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
18
|
Molecular characterization and a duplicated 31-bp indel within the LDB2 gene and its associations with production performance in chickens. Gene 2020; 761:145046. [PMID: 32781192 DOI: 10.1016/j.gene.2020.145046] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/01/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023]
Abstract
Many studies have shown that the LDB2 gene plays a regulatory role in retinal development and the cell cycle, but its biological role remains unclear. In this study, a 31-bp indel in the LDB2 gene was found for the first time on the basis of 2797 individuals from 10 different breeds, which led to different genotypes among individuals (II, ID and DD). Among these genotypes, DD was the most dominant. Association analysis of an F2 resource population crossed with the Gushi (GS) chicken and Anka chicken showed that the DD genotype conferred a significantly greater semi-evisceration weight (SEW, 1108.665 g ± 6.263), evisceration weight (EW, 927.455 g ± 5.424), carcass weight (CW, 1197.306 g ± 6.443), breast muscle weight (BMW, 71.05 g ± 0.574), and leg muscle weight (LMW, 100.303 g ± 0.677) than the ID genotype (SEW, 1059.079 g ± 16.86; EW, 879.459 g ± 14.446; CW, 1141.821 g ± 17.176; BMW, 67.164 g ± 1.523; and LMW, 96.163 g ± 1.823). In addition, LDB2 gene expression in different breeds was significantly higher in the breast muscles and leg muscles than in other tissues. The expression level in the breast muscle differed significantly among stages of GS chicken development, with the highest expression observed at 6 weeks. The expression levels in the pectoral muscles differed significantly among Ross 308 genotypes. In summary, we studied the relationships between a 31-bp indel in the LDB2 gene and economic traits in chickens. The indel was significantly correlated with multiple growth and carcass traits in the F2 resource population and affected the expression of the LDB2 gene in muscle tissue. In short, our study revealed that the LDB2 gene 31-bp indel can be used as a potential genetic marker for molecular breeding.
Collapse
|
19
|
Yang Y, Hu H, Mao C, Jiang F, Lu X, Han X, Hao K, Lan X, Zhang Q, Pan C. Detection of the 23-bp nucleotide sequence mutation in retinoid acid receptor related orphan receptor alpha (RORA) gene and its effect on sheep litter size. Anim Biotechnol 2020; 33:70-78. [PMID: 32731793 DOI: 10.1080/10495398.2020.1770273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Retinoid acid receptor related orphan receptor alpha (RORA) transcribes steroid-related genes to regulate estrogen synthesis. As an important reproductive trait, litter size relates to estrogen synthesis. Therefore, it is important to investigate the association between RORA gene and sheep litter size. In this study, one 23-bp nucleotide sequence mutation was identified in intron 1 of RORA gene in 532 female Australian White Sheep. Moreover, the polymorphic information content (PIC) values of this locus was 0.219. The litter size of ID genotype was significantly better than II genotype and DD genotype in the second born litter size (p < 0.05). This loci was related to third born litter size and the ID is the dominant genotype (p < 0.05). The association between combined genotypes and average litter size showed that sheep with heterozygote (ID) genotypes had larger lamb than homozygous (DD and II) genotypes. To sum, this study provided theoretical references for the comprehensively research of the function of RORA gene and the breeding of Australian White Sheep. The 23-bp indel variants could be considered as molecular markers for the second and third born litter size of sheep for MAS breeding.
Collapse
Affiliation(s)
- Yuta Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Huina Hu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Cui Mao
- Tianjin Aoqun Sheep Industry Research Institute, Tianjin Aoqun Animal Husbandry Company Ltd, Tianjin, China.,Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Ji'nan, China
| | - Fugui Jiang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Ji'nan, China
| | - Xiaofang Lu
- Tianjin Aoqun Sheep Industry Research Institute, Tianjin Aoqun Animal Husbandry Company Ltd, Tianjin, China
| | - Xufei Han
- Tianjin Aoqun Sheep Industry Research Institute, Tianjin Aoqun Animal Husbandry Company Ltd, Tianjin, China
| | - Kunjie Hao
- Tianjin Aoqun Sheep Industry Research Institute, Tianjin Aoqun Animal Husbandry Company Ltd, Tianjin, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Qingfeng Zhang
- Tianjin Aoqun Sheep Industry Research Institute, Tianjin Aoqun Animal Husbandry Company Ltd, Tianjin, China
| | - Chuanying Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
20
|
Ren T, Zhang Z, Fu R, Yang Y, Li W, Liang J, Mo G, Luo W, Zhang X. A 51 bp indel polymorphism within the PTH1R gene is significantly associated with chicken growth and carcass traits. Anim Genet 2020; 51:568-578. [PMID: 32400914 DOI: 10.1111/age.12942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2020] [Indexed: 01/04/2023]
Abstract
Parathyroid hormone (PTH) is a crucial regulator of calcium homeostasis and bone remodeling, and the parathyroid hormone 1 receptor (PTH1R) belongs to a class II G-protein-coupled receptor. PTH activates PTH1R, which mediates catabolic and anabolic processes in the skeleton. However, the functional mechanism of PTH1R has not been thoroughly elucidated in organisms. This study identified a 51 bp indel mutation in the first intron of the PTH1R gene and elucidated the effect of this gene mutation on the growth and carcass traits in chickens. The results indicated that the 51 bp indel was significantly associated with subcutaneous fat thickness, abdominal fat weight, body weight and daily gain over 4-8 weeks. Furthermore, we found that PTH1R gene expression was highest in the kidney and liver tissues, and it showed a trend of decreasing in leg and breast muscle tissues at different embryonic stages. In addition, we examined the expression of the three genotypes of the PTH1R gene in the liver, breast muscle and abdominal fat and found that the II genotype was significantly higher than the DD and ID genotypes. In summary, these findings suggest that the PTH1R gene can serve as a potential molecular marker for chicken breeding.
Collapse
Affiliation(s)
- T Ren
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China
| | - Z Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China
| | - R Fu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China
| | - Y Yang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - W Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China
| | - J Liang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China
| | - G Mo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China
| | - W Luo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China
| | - X Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China
| |
Collapse
|
21
|
He L, Bi Y, Wang R, Pan C, Chen H, Lan X, Qu L. Detection of a 4 bp Mutation in the 3'UTR Region of Goat Sox9 Gene and Its Effect on the Growth Traits. Animals (Basel) 2020; 10:ani10040672. [PMID: 32294879 PMCID: PMC7222716 DOI: 10.3390/ani10040672] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The sex determining region Y (SRY)-type high mobility group (HMG) box 9 (Sox9) gene is critically important in the formation and development of cartilage and is considered the “main regulator” of chondrogenesis. Additionally, a large number of studies have shown that mutations in a single allele of human Sox9 can lead to campomelic dysplasia syndrome. Therefore, the mutations of Sox9 have been the subject of increasing interest among researchers. However, no studies to date have examined the association between Sox9 gene variants and growth traits in goats. Here, we detected a 4 bp indel in the 3′Untranslated Regions (3′UTR) region of Sox9 in Shaanbei white cashmere (SBWC) goats (n = 1109) and studied the association between this indel and growth traits. The 4 bp indel of Sox9 was significantly associated with body length, heart girth, hip width, and all body measurement indexes (p < 0.05) in SBWC goats. Thus, this deletion could be used as an effective molecular marker for maximizing the growth traits of goats in breeding programs. Abstract The SRY-type HMG box 9 (Sox9) gene plays an important role in chondrocyte development as well as changes in hypertrophic chondrocytes, indicating that Sox9 can regulate growth in animals. However, no studies to date have examined the correlation between variations in Sox9 and growth traits in goats. Here, we found a 4 bp indel in the 3′UTR of Sox9 and verified its association with growth traits in Shaanbei white cashmere goats (n = 1109). The frequencies of two genotypes (ID and II) were 0.397 and 0.603, respectively, and polymorphic information content (PIC) values showed that the indel had a medium PIC (PIC > 0.25). The 4 bp indel was significantly correlated with body length (p = 0.006), heart girth (p = 0.001), and hip width (p = 4.37 × 10 −4). Notably, individuals with the ID genotype had significantly superior phenotypic traits compared with individuals bearing the II genotype. Hence, we speculated that the 4 bp indel is an important mutation affecting growth traits in goat, and may serve as an effective DNA molecular marker for marker-assisted selection in goat breeding programs.
Collapse
Affiliation(s)
- Libang He
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; (L.H.)
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling 712100, Shaanxi, China
| | - Yi Bi
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; (L.H.)
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling 712100, Shaanxi, China
| | - Ruolan Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; (L.H.)
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling 712100, Shaanxi, China
| | - Chuanying Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; (L.H.)
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling 712100, Shaanxi, China
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; (L.H.)
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling 712100, Shaanxi, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; (L.H.)
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling 712100, Shaanxi, China
- Correspondence: (X.L.); (L.Q.); Tel.: +86-137-7207-1502 (X.L.); +86-189-9226-2688 (L.Q.)
| | - Lei Qu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, Shaanxi, China
- Life Science Research Center, Yulin University, Yulin 719000, Shaanxi, China
- Correspondence: (X.L.); (L.Q.); Tel.: +86-137-7207-1502 (X.L.); +86-189-9226-2688 (L.Q.)
| |
Collapse
|
22
|
Fu R, Ren T, Li W, Liang J, Mo G, Luo W, He D, Liang S, Zhang X. A Novel 65-bp Indel in the GOLGB1 Gene Is Associated with Chicken Growth and Carcass Traits. Animals (Basel) 2020; 10:ani10030475. [PMID: 32178328 PMCID: PMC7142648 DOI: 10.3390/ani10030475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Many Chinese-local chickens show slow-growing and low-producing performance, which is not conductive to the development of the poultry industry. The identification of thousands of indels in the last twenty years has helped us to make progress in animal genetics and breeding. Golgin subfamily B member 1 (GOLGB1) is located on chromosome 1 in chickens. Previous study showed that a large number of QTLs on the chicken chromosome 1 were related to the important economic traits. However, the biological function of GOLGB1 gene in chickens is still unclear. In this study, we detected a novel 65-bp indel in the fifth intron of the chicken GOLGB1 gene. Correlation analysis between the 65-bp indel and chicken growth and carcass traits was performed through a yellow chicken population, which is commercial. Results revealed that this 65-bp indel was significantly associated with chicken body weight, highly significantly associated with neck weight, abdominal fat weight, abdominal fat percentage, and the yellow index b of breast. These findings hinted that the 65-bp indel in GOLGB1 could be assigned to a molecular marker in chicken breeding and enhance production in the chicken industry. Abstract Golgin subfamily B member 1 (GOLGB1) gene encodes the coat protein 1 vesicle inhibiting factor, giantin. Previous study showed that mutations of the GOLGB1 gene are associated with dozens of human developmental disorders and diseases. However, the biological function of GOLGB1 gene in chicken is still unclear. In this study, we detected a novel 65-bp insertion/deletion (indel) polymorphism in the chicken GOLGB1 intron 5. Association of this indel with chicken growth and carcass traits was analyzed in a yellow chicken population. Results showed that this 65-bp indel was significantly associated with chicken body weight (p < 0.05), highly significantly associated with neck weight, abdominal fat weight, abdominal fat percentage and the yellow index b of breast (p < 0.01). Analysis of genetic parameters indicated that “I” was the predominant allele. Except for the yellow index b of breast, II genotype individuals had the best growth characteristics, by comparison with the ID genotype and DD genotype individuals. Moreover, the mRNA expression of GOLGB1 was detected in the liver tissue of chicken with different GOLGB1 genotypes, where the DD genotype displayed high expression levels. These findings hinted that the 65-bp indel in GOLGB1 could be assigned to a molecular marker in chicken breeding and enhance production in the chicken industry.
Collapse
Affiliation(s)
- Rong Fu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (R.F.); (T.R.); (W.L.); (J.L.); (G.M.); (W.L.); (D.H.); (S.L.)
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Tuanhui Ren
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (R.F.); (T.R.); (W.L.); (J.L.); (G.M.); (W.L.); (D.H.); (S.L.)
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Wangyu Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (R.F.); (T.R.); (W.L.); (J.L.); (G.M.); (W.L.); (D.H.); (S.L.)
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Jiaying Liang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (R.F.); (T.R.); (W.L.); (J.L.); (G.M.); (W.L.); (D.H.); (S.L.)
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Guodong Mo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (R.F.); (T.R.); (W.L.); (J.L.); (G.M.); (W.L.); (D.H.); (S.L.)
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Wen Luo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (R.F.); (T.R.); (W.L.); (J.L.); (G.M.); (W.L.); (D.H.); (S.L.)
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Danlin He
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (R.F.); (T.R.); (W.L.); (J.L.); (G.M.); (W.L.); (D.H.); (S.L.)
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Shaodong Liang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (R.F.); (T.R.); (W.L.); (J.L.); (G.M.); (W.L.); (D.H.); (S.L.)
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (R.F.); (T.R.); (W.L.); (J.L.); (G.M.); (W.L.); (D.H.); (S.L.)
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
- Correspondence:
| |
Collapse
|
23
|
Jing Z, Wang X, Cheng Y, Wei C, Hou D, Li T, Li W, Han R, Li H, Sun G, Tian Y, Liu X, Kang X, Li Z. Detection of CNV in the SH3RF2 gene and its effects on growth and carcass traits in chickens. BMC Genet 2020; 21:22. [PMID: 32111154 PMCID: PMC7048116 DOI: 10.1186/s12863-020-0831-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/25/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The SH3RF2 gene is a protein-coding gene located in a quantitative trait locus associated with body weight, and its deletion has been shown to be positively associated with body weight in chickens. RESULTS In the present study, CNV in the SH3RF2 gene was detected in 4079 individuals from 17 populations, including the "Gushi ×Anka" F2 resource population and populations of Chinese native chickens, commercial layers, and commercial broilers. The F2 resource population was then used to investigate the genetic effects of the chicken SH3RF2 gene. The results showed that the local chickens and commercial layers were all homozygous for the wild-type allele. Deletion mutation individuals were detected in all of the commercial broiler breeds except Hubbard broiler. A total of, 798 individuals in the F2 resource group were used to analyze the effects of genotype (DD/ID/II) on chicken production traits. The results showed that CNV was associated with 2-, 6-, 10-, and 12-week body weight (P = 0.026, 0.042, 0.021 and 0.039 respectively) and significantly associated with 8-week breast bone length (P = 0.045). The mutation was significantly associated with 8-week body weight (P = 0.007) and 4-week breast bone length (P = 0.010). CNV was significantly associated with evisceration weight, leg muscle weight, carcass weight, breast muscle weight and gizzard weight (P = 0.032, 0.033, 0.045, 0.004 and 0.000, respectively). CONCLUSIONS CNV of the SH3RF2 gene contributed to variation in the growth and weight gain of chickens.
Collapse
Affiliation(s)
- Zhenzhu Jing
- Department of Animal genetics and breeding, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, Henan, China
| | - Xinlei Wang
- Department of Animal genetics and breeding, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, Henan, China
| | - Yingying Cheng
- Department of Animal genetics and breeding, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, Henan, China
| | - Chengjie Wei
- Department of Animal genetics and breeding, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, Henan, China
| | - Dan Hou
- Department of Animal genetics and breeding, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, Henan, China
| | - Tong Li
- Department of Animal genetics and breeding, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, Henan, China
| | - Wenya Li
- Department of Animal genetics and breeding, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, Henan, China
| | - Ruili Han
- Department of Animal genetics and breeding, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, Henan, China
| | - Hong Li
- Department of Animal genetics and breeding, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, Henan, China
| | - Guirong Sun
- Department of Animal genetics and breeding, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, Henan, China
| | - Yadong Tian
- Department of Animal genetics and breeding, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, Henan, China
| | - Xiaojun Liu
- Department of Animal genetics and breeding, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, Henan, China
| | - Xiangtao Kang
- Department of Animal genetics and breeding, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, Henan, China
| | - Zhuanjian Li
- Department of Animal genetics and breeding, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China.
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
24
|
Gao J, Song X, Wu H, Tang Q, Wei Z, Wang X, Lan X, Zhang B. Detection of rs665862918 (15-bp Indel) of the HIAT1 Gene and its Strong Genetic Effects on Growth Traits in Goats. Animals (Basel) 2020; 10:ani10020358. [PMID: 32102183 PMCID: PMC7070599 DOI: 10.3390/ani10020358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/15/2020] [Accepted: 02/17/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Growth traits are important in goats and can affect their body size and meat production. In this study, the hippocampus abundant transcript 1 (HIAT1) gene, which has been reported as a meat-associated trait in elite goat breeds and a dairy-associated trait in water buffalo, was chosen to detect its correlation with growth traits in goats. The results show that the rs665862918 polymorphism (a 15 bp insertion) in HIAT1 is associated with body length, chest width, chest depth, height at hip cross and heart girth in Shaanbei white cashmere goats (SBWC, n = 1013). Our results reveal that rs665862918 in HIAT1 is relevant to the growth traits of goats and could be used for marker-assisted selection (MAS) as a molecular marker in goat populations. Abstract The hippocampus abundant transcript 1 (HIAT1) gene, which was detected by the genome-wide identification of selective sweeps among elite goat breeds and water buffalo, is proposed to play an important role in meat characteristics. Four indels of the HIAT1 gene selected from the NCBI and Ensembl databases were detected via a pooling and sequencing strategy. A 15 bp insertion (rs665862918) in the first intron of HIAT1 was selected and classified on an electrophoresis platform in the Shaanbei white cashmere goat (SBWC) population. The correlation analysis revealed that rs665862918 is significantly highly associated with chest width (p = 1.57 × 10−5), chest depth (p = 8.85 × 10−5), heart girth (p = 1.05 × 10−7), body length (p = 0.022), and height at hip cross (p = 0.023) in the SBWC population (n = 1013). Further analysis revealed that individuals with a genotype insertion/insertion (II) of the rs665862918 locus exhibited better growth trait performance than individuals with an insertion/deletion (ID) or deletion/deletion (DD). These findings verify that HIAT1 affects the body size of goats and that rs665862918 could be a potential molecular marker for growth traits in goat breeding.
Collapse
Affiliation(s)
- Jiayang Gao
- College of Medicine & Forensic, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, Shaanxi, China;
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science, Northwest A&F University, Yangling 712100, Shaanxi, China; (H.W.); (Q.T.); (Z.W.); (X.W.)
| | - Xiaoyue Song
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, Shaanxi, China;
- Life Science Research Center, Yulin University, Yulin 719000, Shaanxi, China
| | - Hui Wu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science, Northwest A&F University, Yangling 712100, Shaanxi, China; (H.W.); (Q.T.); (Z.W.); (X.W.)
| | - Qi Tang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science, Northwest A&F University, Yangling 712100, Shaanxi, China; (H.W.); (Q.T.); (Z.W.); (X.W.)
| | - Zhenyu Wei
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science, Northwest A&F University, Yangling 712100, Shaanxi, China; (H.W.); (Q.T.); (Z.W.); (X.W.)
| | - Xinyu Wang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science, Northwest A&F University, Yangling 712100, Shaanxi, China; (H.W.); (Q.T.); (Z.W.); (X.W.)
| | - Xianyong Lan
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science, Northwest A&F University, Yangling 712100, Shaanxi, China; (H.W.); (Q.T.); (Z.W.); (X.W.)
- Correspondence: (X.L.); (B.Z.)
| | - Bao Zhang
- College of Medicine & Forensic, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, Shaanxi, China;
- Correspondence: (X.L.); (B.Z.)
| |
Collapse
|
25
|
Association of a new 99-bp indel of the CEL gene promoter region with phenotypic traits in chickens. Sci Rep 2020; 10:3215. [PMID: 32081917 PMCID: PMC7035288 DOI: 10.1038/s41598-020-60168-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 02/04/2020] [Indexed: 02/08/2023] Open
Abstract
Carboxyl ester lipase (CEL) encodes a cholesterol ester hydrolase that is secreted into the duodenum as a component of pancreatic juice. The objective of this study was to characterize the CEL gene, investigate the association between the CEL promoter variants and chicken phenotypic traits, and explore the CEL gene regulatory mechanism. An insertion/deletion (indel) caused by a 99-bp insertion fragment was shown for the first time in the chicken CEL promoter, and large differences in allelic frequency were found among commercial breeds, indigenous and feral birds. Association analysis demonstrated that this indel site had significant effects on shank length, shank girth, chest breadth at 8 weeks (p < 0.01), evisceration weight, sebum weight, breast muscle weight, and leg weight (p < 0.05). Tissue expression profiles showed extremely high levels of the CEL gene in pancreatic tissue. Moreover, the expression levels of the genes APOB, MTTP, APOV1 and SREBF1, which are involved in lipid transport, were significantly reduced by adding a 4% oxidized soybean oil diet treatment at the individual level and transfecting the embryonic primary hepatocytes with a CEL-overexpression vector. Interestingly, the results showed that the expression level of the II homozygous genotype was significantly higher than that of the ID and DD genotypes, while individuals with DD genotypes had higher phenotypic values. Therefore, these data suggested that the CEL gene might affect body growth by participating in hepatic lipoprotein metabolism and that the 99-bp indel polymorphism could be a potentially useful genetic marker for improving the economically important traits of chickens.
Collapse
|
26
|
Bi Y, Feng B, Wang Z, Zhu H, Qu L, Lan X, Pan C, Song X. Myostatin (MSTN) Gene Indel Variation and Its Associations with Body Traits in Shaanbei White Cashmere Goat. Animals (Basel) 2020; 10:E168. [PMID: 31963797 PMCID: PMC7022945 DOI: 10.3390/ani10010168] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 12/21/2022] Open
Abstract
Myostatin (MSTN) gene, also known as growth differentiation factor 8 (GDF8), is a member of the transforming growth factor-beta super-family and plays a negative role in muscle development. It acts as key points during pre- and post-natal life of amniotes that ultimately determine the overall muscle mass of animals. There are several studies that concentrate on the effect of a 5 bp insertion/deletion (indel) within the 5' untranslated region (5' UTR) of goat MSTN gene in goats. However, almost all sample sizes were below 150 individuals. Only in Boer goats, the sample sizes reached 482. Hence, whether the 5 bp indel was still associated with the growth traits of goats in large sample sizes which were more reliable is not clear. To find an effective and dependable DNA marker for goat rearing, we first enlarged the sample sizes (n = 1074, Shaanbei White Cashmere goat) which would enhance the robustness of the analysis and did the association analyses between the 5 bp indel and growth traits. Results uncovered that the 5 bp indel was significantly related to body height, height at hip cross, and chest width index (p < 0.05). In addition, individuals with DD genotype had a superior growing performance than those with the ID genotype. These findings suggested that the 5 bp indel in MSTN gene are significantly associated with growth traits and the specific genotype might be promising for maker-assisted selection (MAS) of goats.
Collapse
Affiliation(s)
- Yi Bi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.B.); (B.F.); (Z.W.); (X.L.)
| | - Bo Feng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.B.); (B.F.); (Z.W.); (X.L.)
| | - Zhen Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.B.); (B.F.); (Z.W.); (X.L.)
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China; (H.Z.); (L.Q.)
- Life Science Research Center, Yulin University, Yulin 719000, China
| | - Haijing Zhu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China; (H.Z.); (L.Q.)
- Life Science Research Center, Yulin University, Yulin 719000, China
| | - Lei Qu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China; (H.Z.); (L.Q.)
- Life Science Research Center, Yulin University, Yulin 719000, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.B.); (B.F.); (Z.W.); (X.L.)
| | - Chuanying Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.B.); (B.F.); (Z.W.); (X.L.)
| | - Xiaoyue Song
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China; (H.Z.); (L.Q.)
- Life Science Research Center, Yulin University, Yulin 719000, China
| |
Collapse
|
27
|
An 11-bp Indel Polymorphism within the CSN1S1 Gene Is Associated with Milk Performance and Body Measurement Traits in Chinese Goats. Animals (Basel) 2019; 9:ani9121114. [PMID: 31835668 PMCID: PMC6940862 DOI: 10.3390/ani9121114] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 02/06/2023] Open
Abstract
The casein alpha s1 (CSN1S1) gene encodes α-s1 casein, one of the proteins constituting milk, which affects milk performance, as well as improving the absorption of calcium and bone development in mammals. A previous study found that an 11-bp insertion/deletion (indel) of this gene strongly affected litter size in goats. However, to our knowledge, the relationships between this polymorphism and the milk performance and body measurement traits of goats have not been reported. In this paper, the previously identified indel has been recognized in three Chinese goat breeds, namely the Guanzhong dairy goat (GZDG; n = 235), Shaanbei white cashmere goat (SBWC; n = 1092), and Hainan black goat (HNBG; n = 278), and the following three genotypes have been studied for all of the breeds: insertion/insertion (II), deletion/deletion (DD), and insertion/deletion (ID). The allele frequencies analyzed signified that the frequencies of the "D" allele were higher (47.8%-65.5%), similar to the previous report, which indicates that this polymorphism is genetically stable in different goat breeds. Further analysis showed that this indel was markedly associated with milk fat content, total solids content, solids-not-fat content, freezing point depression, and acidity in GZDG (p < 0.05), and also affected different body measurement traits in all three breeds (p < 0.05). The goats with II genotypes had superior milk performance, compared with the others; however, goats with DD genotypes had better body measurement sizes. Hence, it may be necessary to select goats with an II or DD genotype, based on the desired traits, while breeding. Our study provides information on the potential impact of the 11-bp indel polymorphism of the CSN1S1 gene for improving the milk performance and body measurement traits in goats.
Collapse
|
28
|
Tang Q, Zhang X, Wang X, Wang K, Yan H, Zhu H, Lan X, Lei Q, Pan C. Detection of two insertion/deletions (indels) within the ADAMTS9 gene and their associations with growth traits in goat. Small Rumin Res 2019. [DOI: 10.1016/j.smallrumres.2019.09.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
29
|
Jiang E, Kang Z, Wang X, Liu Y, Liu X, Wang Z, Li X, Lan X. Detection of insertions/deletions (InDels) within the goat Runx2 gene and their association with litter size and growth traits. Anim Biotechnol 2019; 32:169-177. [PMID: 31591922 DOI: 10.1080/10495398.2019.1671858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Runt-related transcription factor 2 (Runx2) is characterized by its critical functions in osteoblastic and ovulatory processes. The goal of this study was to explore the insertion/deletion (indel) variants of this gene and to evaluate their association with productive traits. Herein, a 12 bp and 6 bp insertion within the Runx2 gene was uncovered in Shaanbei white cashmere goats (SBWC; n = 1200). Chi-square analysis revealed that the 12 bp insertion was related to litter size (p < 0.01). Further association analysis also found this insertion was significantly associated with litter size (p = 1.1E-5). Interestingly, this insertion was also significantly associated with chest circumference (p = 0.018). Additionally, the 6 bp insertion was associated with body length (p = 0.003), chest width (p = 0.011), and chest circumference (p = 0.005). Furthermore, diplotype associations also uncovered that the combined genotypes of these two indels also significantly affected litter size and growth traits (p < 0.05). These findings suggested that these two insertions within the Runx2 gene were significantly associated with reproduction and growth traits, which would make them beneficial functional DNA markers that can be used in goat breeding.
Collapse
Affiliation(s)
- Enhui Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Zihong Kang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xinyu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuan Liu
- College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Xinfeng Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhen Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiangchen Li
- College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
30
|
Liu D, Han R, Wang X, Li W, Tang S, Li W, Wang Y, Jiang R, Yan F, Wang C, Liu X, Kang X, Li Z. A novel 86-bp indel of the motilin receptor gene is significantly associated with growth and carcass traits in Gushi-Anka F 2 reciprocal cross chickens. Br Poult Sci 2019; 60:649-658. [PMID: 31469320 DOI: 10.1080/00071668.2019.1655710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
1. A previous whole-genome association analysis has identified the motilin receptor gene (MLNR), which regulates gastrointestinal motility and gastric emptying, as a candidate gene related to chicken growth.2. MLNR mRNA was expressed in all tissues tested, and the expression level in digestive tissues was greater than in other tissues. Expression levels in the pancreas, duodenum and glandular stomach at day old and one, two and three weeks of age indicated a possible correlation with the digestive system. This suggested that the MLNR gene plays a central role in gastrointestinal tract function and affects the growth and development of chickens. Moreover, there was a significant difference in expression in the glandular stomach tissue between Ross 308 and Gushi chickens at six weeks of age.3. Re-sequencing revealed an 86-bp insertion/deletion polymorphism in the downstream region of the MLNR gene. The mutation locus was genotyped in 2,261 individuals from nine different chicken breeds. MLNR expression levels in the glandular stomach of chickens with DD genotypes were greater than those in chickens with the ID and II genotypes. The DD genotype was the most dominant genotype in commercial broiler's (Ross 308 and Arbor Acres broilers), and the D allele frequency in these breeds exceeded 91%. The deletion mutation tended towards fixation in commercial broilers.4. Association with growth and carcass traits analysed in a Gushi-Anka F2 intercrossed population, showed that the DD genotype was significantly associated with the greatest growth and carcass trait values, whereas values associated with the II genotype were the lowest in the F2 reciprocal cross chickens.5. The results suggest that the mutation is strongly associated with growth related traits and it is likely to be useful for marker-assisted selection of chickens.
Collapse
Affiliation(s)
- D Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, Henan, China
| | - R Han
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, Henan, China
| | - X Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, Henan, China
| | - W Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, Henan, China
| | - S Tang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - W Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, Henan, China
| | - Y Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, Henan, China
| | - R Jiang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, Henan, China
| | - F Yan
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, Henan, China
| | - C Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, Henan, China
| | - X Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, Henan, China
| | - X Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, Henan, China
| | - Z Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, Henan, China
| |
Collapse
|
31
|
Liang K, Wang X, Tian X, Geng R, Li W, Jing Z, Han R, Tian Y, Liu X, Kang X, Li Z. Molecular characterization and an 80-bp indel polymorphism within the prolactin receptor ( PRLR) gene and its associations with chicken growth and carcass traits. 3 Biotech 2019; 9:296. [PMID: 31321200 DOI: 10.1007/s13205-019-1827-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/07/2019] [Indexed: 01/09/2023] Open
Abstract
The prolactin receptor (PRLR), a type I cytokine receptor, must bind prolactin (PRL) to act on target cells to mediate various physiological functions, including reproduction and lactation. This study identified an 80-bp insertion/deletion (indel) polymorphism in the 3'-untranslated region (3'-UTR) of the chicken PRLR gene in 3736 individuals from 15 breeds and analyzed its associations with growth and carcass traits in an F2 resource population. The results of the association analysis indicated that the 80-bp indel polymorphism was significantly (P < 0.05) or very significantly (P < 0.01) associated with multiple growth and carcass traits, such as body weight, leg weight, and shank length. In addition, we found that during the breeding process of commercial laying hens and commercial broilers, the 80-bp indel locus was artificially selected for the II genotype. Together, our findings reveal that this 80-bp indel polymorphism has potential as a new molecular marker for marker-assisted selection of chicken growth and carcass traits.
Collapse
Affiliation(s)
- Ke Liang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046 China
| | - Xiangnan Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046 China
| | - Xiaoxiao Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046 China
| | - Rui Geng
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046 China
| | - Wenya Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046 China
| | - Zhenzhu Jing
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046 China
| | - Ruili Han
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046 China
| | - Yadong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046 China
| | - Xiaojun Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046 China
| | - Xiangtao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046 China
| | - Zhuanjian Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046 China
| |
Collapse
|