1
|
Taheri S, Javadmanesh A, Zerehdaran S. Identification of selective sweep and associated QTL traits in Iranian Ovis aries and Ovis orientalis populations. Front Genet 2024; 15:1414717. [PMID: 39748948 PMCID: PMC11693725 DOI: 10.3389/fgene.2024.1414717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 11/19/2024] [Indexed: 01/04/2025] Open
Abstract
Introduction Identifying genomic regions under selection is the most challenging issue for improving important traits in animals. Few studies have focused on identifying genomic regions under selection in sheep. The aim of this study was to identify selective sweeps and to explore the relationship between these and quantitative trait loci (QTL) in both domestic and wild sheep species using single nucleotide polymorphism markers (SNPs). Methods Genomic data were obtained from the NextGen project, which included genotyping 20 domestic and 14 wild sheep using the Illumina Ovine SNP50K BeadChip. The XP-EHH, iHS, and RSB methods were employed to detect signatures of positive selection. Results The results of the iHS method indicated 405 and 275 selective sweeps in domestic and wild sheep, respectively. Additionally, RSB and XP-EHH analyses revealed approximately 398 and 479 selective sweeps in domestic and wild sheep, respectively. Some of the genes associated with important QTL traits in domestic sheep include ADGRB3, CADM1, CAPN2, GALNT10, MTR, RELN, and USP25, while in wild sheep, the relevant genes include ACAN, ACO1, GADL1, MGST3, and PRDM16. Selective sweeps identified in domestic sheep were associated with body weight, muscle weight, milk protein percentage, and milk yield. In contrast, selective sweeps found in wild sheep were linked to average daily gain, bone weight, carcass fat percentage, and dressing percentage. Discussion These results indicate that selection by humans and the environment have largely progressed in harmony, highlighting the importance of both economic and environmental traits for survival. Additionally, the identification of potential candidate genes associated with economic traits and genomic regions that have experienced selection can be utilized in sheep breeding programs. However, due to the incomplete information regarding the functional annotation of genes in sheep and the limited sample size, further research with a larger sample group is essential to gain a deeper understanding of the candidate genes linked to economic traits in both domestic and wild sheep. Advancing knowledge in this area can significantly enhance the effectiveness of breeding strategies. The quantitative trait loci identified in this study have the potential to be incorporated into breeding plans for both domestic and wild sheep.
Collapse
Affiliation(s)
| | | | - Saeed Zerehdaran
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
2
|
Fonseca PAS, Suárez-Vega A, Arranz JJ, Gutiérrez-Gil B. Integration of selective sweeps across the sheep genome: understanding the relationship between production and adaptation traits. Genet Sel Evol 2024; 56:40. [PMID: 38773423 PMCID: PMC11106937 DOI: 10.1186/s12711-024-00910-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/07/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Livestock populations are under constant selective pressure for higher productivity levels for different selective purposes. This pressure results in the selection of animals with unique adaptive and production traits. The study of genomic regions associated with these unique characteristics has the potential to improve biological knowledge regarding the adaptive process and how it is connected to production levels and resilience, which is the ability of an animal to adapt to stress or an imbalance in homeostasis. Sheep is a species that has been subjected to several natural and artificial selective pressures during its history, resulting in a highly specialized species for production and adaptation to challenging environments. Here, the data from multiple studies that aim at mapping selective sweeps across the sheep genome associated with production and adaptation traits were integrated to identify confirmed selective sweeps (CSS). RESULTS In total, 37 studies were used to identify 518 CSS across the sheep genome, which were classified as production (147 prodCSS) and adaptation (219 adapCSS) CSS based on the frequency of each type of associated study. The genes within the CSS were associated with relevant biological processes for adaptation and production. For example, for adapCSS, the associated genes were related to the control of seasonality, circadian rhythm, and thermoregulation. On the other hand, genes associated with prodCSS were related to the control of feeding behaviour, reproduction, and cellular differentiation. In addition, genes harbouring both prodCSS and adapCSS showed an interesting association with lipid metabolism, suggesting a potential role of this process in the regulation of pleiotropic effects between these classes of traits. CONCLUSIONS The findings of this study contribute to a deeper understanding of the genetic link between productivity and adaptability in sheep breeds. This information may provide insights into the genetic mechanisms that underlie undesirable genetic correlations between these two groups of traits and pave the way for a better understanding of resilience as a positive ability to respond to environmental stressors, where the negative effects on production level are minimized.
Collapse
Affiliation(s)
- Pablo A S Fonseca
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana S/N, 24071, León, Spain
| | - Aroa Suárez-Vega
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana S/N, 24071, León, Spain
| | - Juan J Arranz
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana S/N, 24071, León, Spain
| | - Beatriz Gutiérrez-Gil
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana S/N, 24071, León, Spain.
| |
Collapse
|
3
|
Zhang C, Asadollahpour Nanaei H, Jafarpour Negari N, Amiri Roudbar M, Amiri Ghanatsaman Z, Niyazbekova Z, Yang X. Genomic analysis uncovers novel candidate genes related to adaptation to tropical climates and milk production traits in native goats. BMC Genomics 2024; 25:477. [PMID: 38745140 PMCID: PMC11094986 DOI: 10.1186/s12864-024-10387-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Since domestication, both evolutionary forces and human selection have played crucial roles in producing adaptive and economic traits, resulting in animal breeds that have been selected for specific climates and different breeding goals. Pakistani goat breeds have acquired genomic adaptations to their native climate conditions, such as tropical and hot climates. In this study, using next-generation sequencing data, we aimed to assess the signatures of positive selection in three native Pakistani goats, known as milk production breeds, that have been well adapted to their local climate. RESULTS To explore the genomic relationship between studied goat populations and their population structure, whole genome sequence data from native goat populations in Pakistan (n = 26) was merged with available worldwide goat genomic data (n = 184), resulting in a total dataset of 210 individuals. The results showed a high genetic correlation between Pakistani goats and samples from North-East Asia. Across all populations analyzed, a higher linkage disequilibrium (LD) level (- 0.59) was found in the Pakistani goat group at a genomic distance of 1 Kb. Our findings from admixture analysis (K = 5 and K = 6) showed no evidence of shared genomic ancestry between Pakistani goats and other goat populations from Asia. The results from genomic selection analysis revealed several candidate genes related to adaptation to tropical/hot climates (such as; KITLG, HSPB9, HSP70, HSPA12B, and HSPA12B) and milk production related-traits (such as IGFBP3, LPL, LEPR, TSHR, and ACACA) in Pakistani native goat breeds. CONCLUSIONS The results from this study shed light on the structural variation in the DNA of the three native Pakistani goat breeds. Several candidate genes were discovered for adaptation to tropical/hot climates, immune responses, and milk production traits. The identified genes could be exploited in goat breeding programs to select efficient breeds for tropical/hot climate regions.
Collapse
Affiliation(s)
- Chenxi Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hojjat Asadollahpour Nanaei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China.
- Animal Science Research Department, Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Shiraz, Iran.
| | | | - Mahmoud Amiri Roudbar
- Department of Animal Science, Safiabad-Dezful Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Dezful 333, Iran
| | - Zeinab Amiri Ghanatsaman
- Animal Science Research Department, Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Shiraz, Iran
| | - Zhannur Niyazbekova
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
4
|
Amiri Ghanatsaman Z, Ayatolahi Mehrgardi A, Asadollahpour Nanaei H, Esmailizadeh A. Comparative genomic analysis uncovers candidate genes related with milk production and adaptive traits in goat breeds. Sci Rep 2023; 13:8722. [PMID: 37253766 DOI: 10.1038/s41598-023-35973-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 05/26/2023] [Indexed: 06/01/2023] Open
Abstract
During the process of animal domestication, both natural and artificial selection cause variation in allele frequencies among populations. Identifying genomic areas of selection in domestic animals may aid in the detection of genomic areas linked to ecological and economic traits. We studied genomic variation in 140 worldwide goat individuals, including 75 Asian, 30 African and 35 European goats. We further carried out comparative population genomics to detect genomic regions under selection for adaptability to harsh conditions in local Asian ecotypes and also milk production traits in European commercial breeds. In addition, we estimated the genetic distances among 140 goat individuals. The results showed that among all studied goat groups, local breeds from West and South Asia emerged as an independent group. Our search for selection signatures in local goats from West and South Asia revealed candidate genes related to adaptation to hot climate (HSPB6, HSF4, VPS13A and NBEA genes) and immune response (IL7, IL5, IL23A and LRFN5) traits. Furthermore, selection signatures in European commercial goats involved several milk production related genes, such as VPS13C, NCAM2, TMPRSS15, CSN3 and ABCG2. The identified candidate genes could be the fundamental genetic resource for enhancement of goat production and environmental-adaptive traits, and as such they should be used in goat breeding programs to select more efficient breeds.
Collapse
Affiliation(s)
- Zeinab Amiri Ghanatsaman
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, 76169-133, PB, Iran
- Animal Science Research Department, Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Shiraz, Iran
| | - Ahmad Ayatolahi Mehrgardi
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, 76169-133, PB, Iran.
| | - Hojjat Asadollahpour Nanaei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, 76169-133, PB, Iran.
| |
Collapse
|
5
|
Arslan M. Whole-genome sequencing and genomic analysis of Norduz goat (Capra hircus). Mamm Genome 2023:10.1007/s00335-023-09990-3. [PMID: 37004528 DOI: 10.1007/s00335-023-09990-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/21/2023] [Indexed: 04/04/2023]
Abstract
Artificial and natural selective breeding of goats has resulted in many different goat breeds all around the world. Norduz goat is one of these breeds, and it is a local goat breed of Turkey. The goats are favorable due to pre-weaning viability and reproduction values compared to the regional breeds. Development in sequencing technologies has let to understand huge genomic structures and complex phenotypes. Until now, such a comprehensive study has not been carried out to understand the genomic structure of the Norduz goats, yet. In the study, the next-generation sequencing was carried out to understand the genomic structure of Norduz goat. Real-time PCR was used to evaluate prominent CNVs in the Norduz goat individuals. Whole genome of the goat was constructed with an average of 33.1X coverage level. In the stringent filtering condition, 9,757,980 SNPs, 1,536,715 InDels, and 290 CNVs were detected in the Norduz goat genome. Functional analysis of high-impact SNP variations showed that the classical complement activation biological process was affected significantly in the goat. CNVs in the goat genome were found in genes related to defense against viruses, immune response, and cell membrane transporters. It was shown that GBP2, GBP5, and mammalian ortholog GBP1, which are INF-stimulated GTPases, were found to be high copy numbers in the goats. To conclude, genetic variations mainly in immunological response processes suggest that Norduz goat is an immunologically improved goat breed and natural selection could take an important role in the genetical improvements of the goats.
Collapse
Affiliation(s)
- Mevlüt Arslan
- Department of Genetics, Faculty of Veterinary Medicine, Van Yüzüncü Yıl University, Tuşba, 65080, Van, Turkey.
| |
Collapse
|
6
|
Rocha RDFB, Garcia AO, Otto PI, da Silva MVB, Martins MF, Machado MA, Panetto JCDC, Guimarães SEF. Runs of homozygosity and signatures of selection for number of oocytes and embryos in the Gir Indicine cattle. Mamm Genome 2023:10.1007/s00335-023-09989-w. [PMID: 37000236 DOI: 10.1007/s00335-023-09989-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/11/2023] [Indexed: 04/01/2023]
Abstract
Runs of homozygosity (ROH) and signatures of selection are the results of selection processes in livestock species that have been shown to affect several traits in cattle. The aim of the current work was to verify the profile of ROH and inbreeding depression in the number of total (TO) and viable oocytes (VO) and the number of embryos (EMBR) in Gir Indicine cattle. In addition, we aim to identify signatures of selection, genes, and enriched regions between Gir subpopulations sorted by breeding value for these traits. The genotype file contained 2093 animals and 420,718 SNP markers. Breeding values used to sort Gir animals were previously obtained. ROH and signature of selection analyses were performed using PLINK software, followed by ROH-based (FROH) and pedigree-based inbreeding (Fped) and a search for genes and their functions. An average of 50 ± 8.59 ROHs were found per animal. ROHs were separated into classes according to size, ranging from 1 to 2 Mb (ROH1-2Mb: 58.17%), representing ancient inbreeding, ROH2-4Mb (22.74%), ROH4-8Mb (11.34%), ROH8-16Mb (5.51%), and ROH>16Mb (2.24%). Combining our results, we conclude that the increase in general FROH and Fped significantly decreases TO and VO; however, in different chromosomes traits can increase or decrease with FROH. In the analysis for signatures of selection, we identified 15 genes from 47 significant genomic regions, indicating differences in populations with high and low breeding value for the three traits.
Collapse
Affiliation(s)
| | | | - Pamela Itajara Otto
- Department of Animal Science, Universidade Federal de Santa Maria, Santa Maria, Rio Grande Do Sul, Brazil
| | | | | | | | | | | |
Collapse
|
7
|
Xiong J, Bao J, Hu W, Shang M, Zhang L. Whole-genome resequencing reveals genetic diversity and selection characteristics of dairy goat. Front Genet 2023; 13:1044017. [PMID: 36685859 PMCID: PMC9852865 DOI: 10.3389/fgene.2022.1044017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/13/2022] [Indexed: 01/09/2023] Open
Abstract
The dairy goat is one of the earliest dairy livestock species, which plays an important role in the economic development, especially for developing countries. With the development of agricultural civilization, dairy goats have been widely distributed across the world. However, few studies have been conducted on the specific characteristics of dairy goat. In this study, we collected the whole-genome data of 89 goat individuals by sequencing 48 goats and employing 41 publicly available goats, including five dairy goat breeds (Saanen, Nubian, Alpine, Toggenburg, and Guanzhong dairy goat; n = 24, 15, 11, 6, 6), and three goat breeds (Guishan goat, Longlin goat, Yunshang Black goat; n = 6, 15, 6). Through compared the genomes of dairy goat and non-dairy goat to analyze genetic diversity and selection characteristics of dairy goat. The results show that the eight goats could be divided into three subgroups of European, African, and Chinese indigenous goat populations, and we also found that Australian Nubian, Toggenburg, and Australian Alpine had the highest linkage disequilibrium, the lowest level of nucleotide diversity, and a higher inbreeding coefficient, indicating that they were strongly artificially selected. In addition, we identified several candidate genes related to the specificity of dairy goat, particularly genes associated with milk production traits (GHR, DGAT2, ELF5, GLYCAM1, ACSBG2, ACSS2), reproduction traits (TSHR, TSHB, PTGS2, ESR2), immunity traits (JAK1, POU2F2, LRRC66). Our results provide not only insights into the evolutionary history and breed characteristics of dairy goat, but also valuable information for the implementation and improvement of dairy goat cross breeding program.
Collapse
|
8
|
Abbasi-Moshaii B, Moradi MH, Yin T, Rahimi-Mianji G, Nejati-Javaremi A, König S. Genome-wide scan for selective sweeps identifies novel loci associated with resistance to mastitis in German Holstein cattle. J Anim Breed Genet 2023; 140:92-105. [PMID: 35988016 DOI: 10.1111/jbg.12737] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 08/02/2022] [Indexed: 12/13/2022]
Abstract
Domestication and selection significantly changed phenotypic and behavioural traits in modern domestic animals. In this study, to identify the genomic regions associated with mastitis, genomic data of German Holstein dairy cattle were analysed. The samples were genotyped using the Bovine 50 K SNP chip. For each defined healthy and sick group, 133 samples from 13,276 genotyped dairy cows were selected based on mastitis random residual effects. Grouping was done to infer selection signatures based on XP-EHH statistic. The results revealed that for the top 0.01 percentile of the obtained XP-EHH values, five genomic regions on chromosomes 8, 11, 12, 14 and 26 of the control group, and four regions on chromosomes 3, 4 (two regions) and 22 of the case group, have been under selection. Also, consideration of the top 0.1 percentile of the XP-EHH values, clarified 21 and 15 selective sweeps in the control and case group, respectively. This study identified some genomic regions containing potential candidate genes associated with resistance and susceptibility to mastitis, immune system and inflammation, milk traits, udder morphology and different types of cancers. In addition, these regions overlap with some quantitative trait loci linked to clinical mastitis, immunoglobulin levels, somatic cell score, udder traits, milk fat and protein, milk yield, milking speed and veterinary treatments. It is noteworthy that we found two regions in the healthy group (on chromosomes 12 and 14) with strong signals, which were not described previously. It is likely that future research could link these identified genomic regions to mastitis. The results of the current study contribute to the identification of causal mutations, genomic regions and genes affecting mastitis incidence in dairy cows.
Collapse
Affiliation(s)
- Bita Abbasi-Moshaii
- Institute of Animal Breeding and Genetics, Justus-Liebig University Giessen, Giessen, Germany.,Department of Animal Science and Fisheries, Sari Agricultural Science and Natural Resources University, Sari, Iran
| | | | - Tong Yin
- Institute of Animal Breeding and Genetics, Justus-Liebig University Giessen, Giessen, Germany
| | - Ghodratollah Rahimi-Mianji
- Department of Animal Science and Fisheries, Sari Agricultural Science and Natural Resources University, Sari, Iran
| | - Ardeshir Nejati-Javaremi
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Sven König
- Institute of Animal Breeding and Genetics, Justus-Liebig University Giessen, Giessen, Germany
| |
Collapse
|
9
|
Kalds P, Huang S, Chen Y, Wang X. Ovine HOXB13: expanding the gene repertoire of sheep tail patterning and implications in genetic improvement. Commun Biol 2022; 5:1196. [DOI: 10.1038/s42003-022-04199-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
|
10
|
Kalds P, Zhou S, Gao Y, Cai B, Huang S, Chen Y, Wang X. Genetics of the phenotypic evolution in sheep: a molecular look at diversity-driving genes. Genet Sel Evol 2022; 54:61. [PMID: 36085023 PMCID: PMC9463822 DOI: 10.1186/s12711-022-00753-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/29/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND After domestication, the evolution of phenotypically-varied sheep breeds has generated rich biodiversity. This wide phenotypic variation arises as a result of hidden genomic changes that range from a single nucleotide to several thousands of nucleotides. Thus, it is of interest and significance to reveal and understand the genomic changes underlying the phenotypic variation of sheep breeds in order to drive selection towards economically important traits. REVIEW Various traits contribute to the emergence of variation in sheep phenotypic characteristics, including coat color, horns, tail, wool, ears, udder, vertebrae, among others. The genes that determine most of these phenotypic traits have been investigated, which has generated knowledge regarding the genetic determinism of several agriculturally-relevant traits in sheep. In this review, we discuss the genomic knowledge that has emerged in the past few decades regarding the phenotypic traits in sheep, and our ultimate aim is to encourage its practical application in sheep breeding. In addition, in order to expand the current understanding of the sheep genome, we shed light on research gaps that require further investigation. CONCLUSIONS Although significant research efforts have been conducted in the past few decades, several aspects of the sheep genome remain unexplored. For the full utilization of the current knowledge of the sheep genome, a wide practical application is still required in order to boost sheep productive performance and contribute to the generation of improved sheep breeds. The accumulated knowledge on the sheep genome will help advance and strengthen sheep breeding programs to face future challenges in the sector, such as climate change, global human population growth, and the increasing demand for products of animal origin.
Collapse
Affiliation(s)
- Peter Kalds
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
- Department of Animal and Poultry Production, Faculty of Environmental Agricultural Sciences, Arish University, El-Arish, 45511 Egypt
| | - Shiwei Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100 China
| | - Yawei Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Bei Cai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Shuhong Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Yulin Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs, Yangling, 712100 China
| | - Xiaolong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs, Yangling, 712100 China
| |
Collapse
|
11
|
Sekhoacha M, Riet K, Motloung P, Gumenku L, Adegoke A, Mashele S. Prostate Cancer Review: Genetics, Diagnosis, Treatment Options, and Alternative Approaches. Molecules 2022; 27:5730. [PMID: 36080493 PMCID: PMC9457814 DOI: 10.3390/molecules27175730] [Citation(s) in RCA: 263] [Impact Index Per Article: 87.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 01/07/2023] Open
Abstract
Prostate cancer is one of the malignancies that affects men and significantly contributes to increased mortality rates in men globally. Patients affected with prostate cancer present with either a localized or advanced disease. In this review, we aim to provide a holistic overview of prostate cancer, including the diagnosis of the disease, mutations leading to the onset and progression of the disease, and treatment options. Prostate cancer diagnoses include a digital rectal examination, prostate-specific antigen analysis, and prostate biopsies. Mutations in certain genes are linked to the onset, progression, and metastasis of the cancer. Treatment for localized prostate cancer encompasses active surveillance, ablative radiotherapy, and radical prostatectomy. Men who relapse or present metastatic prostate cancer receive androgen deprivation therapy (ADT), salvage radiotherapy, and chemotherapy. Currently, available treatment options are more effective when used as combination therapy; however, despite available treatment options, prostate cancer remains to be incurable. There has been ongoing research on finding and identifying other treatment approaches such as the use of traditional medicine, the application of nanotechnologies, and gene therapy to combat prostate cancer, drug resistance, as well as to reduce the adverse effects that come with current treatment options. In this article, we summarize the genes involved in prostate cancer, available treatment options, and current research on alternative treatment options.
Collapse
Affiliation(s)
- Mamello Sekhoacha
- Department of Pharmacology, University of the Free State, Bloemfontein 9300, South Africa
| | - Keamogetswe Riet
- Department of Health Sciences, Central University of Technology, Bloemfontein 9300, South Africa
| | - Paballo Motloung
- Department of Health Sciences, Central University of Technology, Bloemfontein 9300, South Africa
| | - Lemohang Gumenku
- Department of Health Sciences, Central University of Technology, Bloemfontein 9300, South Africa
| | - Ayodeji Adegoke
- Department of Pharmacology, University of the Free State, Bloemfontein 9300, South Africa
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan 200005, Nigeria
| | - Samson Mashele
- Department of Health Sciences, Central University of Technology, Bloemfontein 9300, South Africa
| |
Collapse
|
12
|
Panigrahi M, Kumar H, Saravanan KA, Rajawat D, Sonejita Nayak S, Ghildiyal K, Kaisa K, Parida S, Bhushan B, Dutt T. Trajectory of livestock genomics in South Asia: A comprehensive review. Gene 2022; 843:146808. [PMID: 35973570 DOI: 10.1016/j.gene.2022.146808] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023]
Abstract
Livestock plays a central role in sustaining human livelihood in South Asia. There are numerous and distinct livestock species in South Asian countries. Several of them have experienced genetic development in recent years due to the application of genomic technologies and effective breeding programs. This review discusses genomic studies on cattle, buffalo, sheep, goat, pig, horse, camel, yak, mithun, and poultry. The frontiers covered in this review are genetic diversity, admixture studies, selection signature research, QTL discovery, genome-wide association studies (GWAS), and genomic selection. The review concludes with recommendations for South Asian livestock systems to increasingly leverage genomic technologies, based on the lessons learned from the numerous case studies. This paper aims to present a comprehensive analysis of the dichotomy in the South Asian livestock sector and argues that a realistic approach to genomics in livestock can ensure long-term genetic advancements.
Collapse
Affiliation(s)
- Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India.
| | - Harshit Kumar
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - K A Saravanan
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Sonali Sonejita Nayak
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Kanika Ghildiyal
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Kaiho Kaisa
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Subhashree Parida
- Division of Pharmacology & Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Bharat Bhushan
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Triveni Dutt
- Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| |
Collapse
|
13
|
Capturing Genetic Diversity and Selection Signatures of the Endangered Kosovar Balusha Sheep Breed. Genes (Basel) 2022; 13:genes13050866. [PMID: 35627251 PMCID: PMC9140571 DOI: 10.3390/genes13050866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/23/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022] Open
Abstract
There is a growing concern about the loss of animal genetic resources. The aim of this study was to analyze the genetic diversity and potential peculiarity of the endangered Kosovar sheep breed Balusha. For this purpose, a dataset consisting of medium-density SNP chip genotypes (39,879 SNPs) from 45 Balusha sheep was generated and compared with SNP chip genotypes from 29 individuals of a second Kosovar breed, Bardhoka. Publicly available SNP genotypes from 39 individuals of the relatively closely located sheep breeds Istrian Pramenka and Ruda were additionally included in the analyses. Analysis of heterozygosity, allelic richness and effective population size was used to assess the genetic diversity. Inbreeding was evaluated using two different methods (FIS, FROH). The standardized FST (di) and cross-population extended haplotype homozygosity (XPEHH) methods were used to detect signatures of selection. We observed the lowest heterozygosity (HO = 0.351) and effective population size (Ne5 = 25, Ne50 = 228) for the Balusha breed. The mean allelic richness levels (1.780–1.876) across all analyzed breeds were similar and also comparable with those in worldwide breeds. FROH estimates (0.023–0.077) were highest for the Balusha population, although evidence of decreased inbreeding was observed in FIS results for the Balusha breed. Two Gene Ontology (GO) TERMs were strongly enriched for Balusha, and involved genes belonging to the melanogenesis and T cell receptor signaling pathways, respectively. This could result from selection for the special coat color pattern of Balusha (black head) and resistance to certain infectious diseases. The analyzed diversity parameters highlight the urgency to preserve the local Kosovar Balusha sheep as it is clearly distinguished from other sheep of Southeastern Europe, has the lowest diversity level and may harbor valuable genetic variants, e.g., for resistance to infectious diseases.
Collapse
|
14
|
Shihabi M, Lukic B, Cubric-Curik V, Brajkovic V, Oršanić M, Ugarković D, Vostry L, Curik I. Identification of Selection Signals on the X-Chromosome in East Adriatic Sheep: A New Complementary Approach. Front Genet 2022; 13:887582. [PMID: 35615375 PMCID: PMC9126029 DOI: 10.3389/fgene.2022.887582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022] Open
Abstract
Sheep are one of the most important livestock species in Croatia, found mainly in the Mediterranean coastal and mountainous regions along the East Adriatic coast, well adapted to the environment and mostly kept extensively. Our main objective was therefore to map the positive selection of the X-chromosome (18,983 SNPs that passed quality control), since nothing is known about the adaptation genes on this chromosome for any of the breeds from the Balkan cluster. Analyses were performed on a sample of eight native Croatian breeds (101 females and 100 males) representing the East Adriatic metapopulation and on 10 mouflons (five females and males), all sampled in Croatia. Three classical within-population approaches (extreme Runs of Homozygosity islands, integrated Haplotype Score, and number of Segregating Sites by Length) were applied along with our new approach called Haplotype Richness Drop (HRiD), which uses only the information contained in male haplotypes. We have also shown that phylogenetic analyses, such as the Median-joining network, can provide additional information when performed with the selection signals identified by HRiD. Our new approach identifies positive selection signals by searching for genomic regions that exhibit a sudden decline in haplotype richness. In total, we identified 14 positive selection signals, 11 using the classical approach and three using the HRiD approach, all together containing 34 annotated genes. The most reliable selection signal was mapped by all four approaches in the same region, overlapping between 13.17 and 13.60 Mb, and assigned to the CA5B, ZRSR2, AP1S2, and GRPR genes. High repeatability (86%) of results was observed, as 12 identified selection signals were also confirmed in other studies with sheep. HRiD offers an interesting possibility to be used complementary to other approaches or when only males are genotyped, which is often the case in genomic breeding value estimations. These results highlight the importance of the X-chromosome in the adaptive architecture of domestic ruminants, while our novel HRiD approach opens new possibilities for research.
Collapse
Affiliation(s)
- Mario Shihabi
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
- *Correspondence: Mario Shihabi, ; Ino Curik,
| | - Boris Lukic
- Department for Animal Production and Biotechnology, Faculty of Agrobiotechnical Sciences Osijek, J.J. Strossmayer University of Osijek, Osijek, Croatia
| | - Vlatka Cubric-Curik
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Vladimir Brajkovic
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Milan Oršanić
- Department of Forest Ecology and Silviculture, Faculty of Forestry and Wood Technology, University of Zagreb, Zagreb, Croatia
| | - Damir Ugarković
- Department of Forest Ecology and Silviculture, Faculty of Forestry and Wood Technology, University of Zagreb, Zagreb, Croatia
| | - Luboš Vostry
- Department of Genetics and Breeding, Faculty Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czechia
| | - Ino Curik
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
- *Correspondence: Mario Shihabi, ; Ino Curik,
| |
Collapse
|
15
|
Deng TX, Ma XY, Lu XR, Duan AQ, Shokrollahi B, Shang JH. Signatures of selection reveal candidate genes involved in production traits in Chinese crossbred buffaloes. J Dairy Sci 2021; 105:1327-1337. [PMID: 34955275 DOI: 10.3168/jds.2021-21102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/03/2021] [Indexed: 12/11/2022]
Abstract
Identification of selection signature is important for a better understanding of genetic mechanisms that affect phenotypic differentiation in livestock. However, the genome-wide selection responses have not been investigated for the production traits of Chinese crossbred buffaloes. In this study, an SNP data set of 133 buffaloes (Chinese crossbred buffalo, n = 45; Chinese local swamp buffalo, n = 88) was collected from the Dryad Digital Repository database (https://datadryad.org/stash/). Population genetics analysis showed that these buffaloes were divided into the following 2 groups: crossbred buffalo and swamp buffalo. The crossbred group had higher genetic diversity than the swamp group. Using 3 complementary statistical methods (integrated haplotype score, cross population extended haplotype homozygosity, and composite likelihood ratio), a total of 31 candidate selection regions were identified in the Chinese crossbred population. Here, within these candidate regions, 25 genes were under the putative selection. Among them, several candidate genes were reported to be associated with production traits. In addition, we identified 13 selection regions that overlapped with bovine QTLs that were mainly involved in milk production and composition traits. These results can provide useful insights regarding the selection response for production traits of Chinese crossbred buffalo, as identified candidate genes influence production performance.
Collapse
Affiliation(s)
- T X Deng
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China.
| | - X Y Ma
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - X R Lu
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - A Q Duan
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - Borhan Shokrollahi
- Department of Animal Science, Faculty of Agriculture, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran 5595-73919
| | - J H Shang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China.
| |
Collapse
|
16
|
Mohamadipoor Saadatabadi L, Mohammadabadi M, Amiri Ghanatsaman Z, Babenko O, Stavetska R, Kalashnik O, Kucher D, Kochuk-Yashchenko O, Asadollahpour Nanaei H. Signature selection analysis reveals candidate genes associated with production traits in Iranian sheep breeds. BMC Vet Res 2021; 17:369. [PMID: 34861880 PMCID: PMC8641187 DOI: 10.1186/s12917-021-03077-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 11/16/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sheep were among the first animals to be domesticated. They are raised all over the world and produce a major scale of animal-based protein for human consumption and play an important role in agricultural economy. Iran is one of the important locations for sheep genetic resources in the world. Here, we compared the Illumina Ovine SNP50 BeadChip data of three Iranian local breeds (Moghani, Afshari and Gezel), as a population that does not undergone artificial breeding programs as yet, and five other sheep breeds namely East Friesian white, East Friesian brown, Lacaune, DorsetHorn and Texel to detect genetic mechanisms underlying economical traits and daptation to harsh environments in sheep. RESULTS To identify genomic regions that have been targeted by positive selection, we used fixation index (Fst) and nucleotide diversity (Pi) statistics. Further analysis indicated candidate genes involved in different important traits such as; wool production included crimp of wool (PTPN3, NBEA and KRTAP20-2 genes), fiber diameter (PIK3R4 gene), hair follicle development (LHX2 gene), the growth and development of fiber (COL17A1 gene)), adaptation to hot arid environments (CORIN gene), adaptive in deficit water status (CPQ gene), heat stress (PLCB4, FAM107B, NBEA, PIK3C2B and USP43 genes) in sheep. CONCLUSIONS We detected several candidate genes related to wool production traits and adaptation to hot arid environments in sheep that can be applicable for inbreeding goals. Our findings not only include the results of previous researches, but also identify a number of novel candidate genes related to studied traits. However, more works will be essential to acknowledge phenotype- genotype relationships of the identified genes in our study.
Collapse
Affiliation(s)
| | | | - Zeinab Amiri Ghanatsaman
- Department of Animal Science, Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education & Extension Organization (AREEO), Shiraz, Iran
| | - Olena Babenko
- Department of Animal Science, Bila Tserkva National Agrarian University, Soborna, Bila Tserkva, Kyivska Oblast, Ukraine
| | - Ruslana Stavetska
- Department of Animal Science, Bila Tserkva National Agrarian University, Soborna, Bila Tserkva, Kyivska Oblast, Ukraine
| | - Oleksandr Kalashnik
- Department of Animal Science, Sumy National Agrarian University, Sumy, Ukraine
| | - Dmytro Kucher
- Department of Breeding, Animal Genetics and Biotechnology, Polissia National University, Zhytomyr, Ukraine
| | | | | |
Collapse
|
17
|
Lei Z, Sun W, Guo T, Li J, Zhu S, Lu Z, Qiao G, Han M, Zhao H, Yang B, Zhang L, Liu J, Yuan C, Yue Y. Genome-Wide Selective Signatures Reveal Candidate Genes Associated with Hair Follicle Development and Wool Shedding in Sheep. Genes (Basel) 2021; 12:genes12121924. [PMID: 34946875 PMCID: PMC8702090 DOI: 10.3390/genes12121924] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 02/03/2023] Open
Abstract
Hair follicle development and wool shedding in sheep are poorly understood. This study investigated the population structures and genetic differences between sheep with different wool types to identify candidate genes related to these traits. We used Illumina ovine SNP 50K chip genotyping data of 795 sheep populations comprising 27 breeds with two wool types, measuring the population differentiation index (Fst), nucleotide diversity (θπ ratio), and extended haplotype homozygosity among populations (XP-EHH) to detect the selective signatures of hair sheep and fine-wool sheep. The top 5% of the Fst and θπ ratio values, and values of XP-EHH < −2 were considered strongly selected SNP sites. Annotation showed that the PRX, SOX18, TGM3, and TCF3 genes related to hair follicle development and wool shedding were strongly selected. Our results indicated that these methods identified important genes related to hair follicle formation, epidermal differentiation, and hair follicle stem cell development, and provide a meaningful reference for further study on the molecular mechanisms of economically important traits in sheep.
Collapse
Affiliation(s)
- Zhihui Lei
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.L.); (W.S.); (T.G.); (J.L.); (Z.L.); (G.Q.); (M.H.); (H.Z.); (B.Y.); (J.L.); (C.Y.)
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (S.Z.); (L.Z.)
| | - Weibo Sun
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.L.); (W.S.); (T.G.); (J.L.); (Z.L.); (G.Q.); (M.H.); (H.Z.); (B.Y.); (J.L.); (C.Y.)
| | - Tingting Guo
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.L.); (W.S.); (T.G.); (J.L.); (Z.L.); (G.Q.); (M.H.); (H.Z.); (B.Y.); (J.L.); (C.Y.)
| | - Jianye Li
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.L.); (W.S.); (T.G.); (J.L.); (Z.L.); (G.Q.); (M.H.); (H.Z.); (B.Y.); (J.L.); (C.Y.)
| | - Shaohua Zhu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (S.Z.); (L.Z.)
| | - Zengkui Lu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.L.); (W.S.); (T.G.); (J.L.); (Z.L.); (G.Q.); (M.H.); (H.Z.); (B.Y.); (J.L.); (C.Y.)
| | - Guoyan Qiao
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.L.); (W.S.); (T.G.); (J.L.); (Z.L.); (G.Q.); (M.H.); (H.Z.); (B.Y.); (J.L.); (C.Y.)
| | - Mei Han
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.L.); (W.S.); (T.G.); (J.L.); (Z.L.); (G.Q.); (M.H.); (H.Z.); (B.Y.); (J.L.); (C.Y.)
| | - Hongchang Zhao
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.L.); (W.S.); (T.G.); (J.L.); (Z.L.); (G.Q.); (M.H.); (H.Z.); (B.Y.); (J.L.); (C.Y.)
| | - Bohui Yang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.L.); (W.S.); (T.G.); (J.L.); (Z.L.); (G.Q.); (M.H.); (H.Z.); (B.Y.); (J.L.); (C.Y.)
| | - Liping Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (S.Z.); (L.Z.)
| | - Jianbin Liu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.L.); (W.S.); (T.G.); (J.L.); (Z.L.); (G.Q.); (M.H.); (H.Z.); (B.Y.); (J.L.); (C.Y.)
| | - Chao Yuan
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.L.); (W.S.); (T.G.); (J.L.); (Z.L.); (G.Q.); (M.H.); (H.Z.); (B.Y.); (J.L.); (C.Y.)
| | - Yaojing Yue
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.L.); (W.S.); (T.G.); (J.L.); (Z.L.); (G.Q.); (M.H.); (H.Z.); (B.Y.); (J.L.); (C.Y.)
- Correspondence:
| |
Collapse
|
18
|
Kalds P, Luo Q, Sun K, Zhou S, Chen Y, Wang X. Trends towards revealing the genetic architecture of sheep tail patterning: Promising genes and investigatory pathways. Anim Genet 2021; 52:799-812. [PMID: 34472112 DOI: 10.1111/age.13133] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2021] [Indexed: 12/22/2022]
Abstract
Different sheep breeds have evolved after initial domestication, generating various tail phenotypic patterns. The phenotypic diversity of sheep tail patterns offers ideal materials for comparative analysis of its genetic basis. Evolutionary biologists, animal geneticists, breeders, and producers have been curious to clearly understand the underlying genetics behind phenotypic differences in sheep tails. Understanding the causal gene(s) and mutation(s) underlying these differences will help probe an evolutionary riddle, improve animal production performance, promote animal welfare, and provide lessons that help comprehend human diseases related to fat deposition (i.e., obesity). Historically, fat tails have served as an adaptive response to aridification and climate change. However, the fat tail is currently associated with compromised mating and animal locomotion, fat distribution in the animal body, increased raising costs, reduced consumer preference, and other animal welfare issues such as tail docking. The developing genomic approaches provide unprecedented opportunities to determine causal variants underlying phenotypic differences among populations. In the last decade, researchers have performed several genomic investigations to assess the genomic causality underlying phenotypic variations in sheep tails. Various genes have been suggested with the prominence of several potentially significant causatives, including the BMP2 and PDGFD genes associated with the fat tail phenotype and the TBXT gene linked with the caudal vertebrae number and tail length. Although the potential genes related to sheep tail characteristics have been revealed, the causal variant(s) and mutation(s) of these high-ranking candidate genes are still elusive and need further investigation. The review discusses the potential genes, sheds light on a knowledge gap, and provides possible investigative approaches that could help determine the specific genomic causatives of sheep tail patterns. Besides, characterizing and revealing the genetic determinism of sheep tails will help solve issues compromising sheep breeding and welfare in the future.
Collapse
Affiliation(s)
- P Kalds
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China.,Department of Animal and Poultry Production, Faculty of Environmental Agricultural Sciences, Arish University, El-Arish, Egypt
| | - Q Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - K Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - S Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Y Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - X Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
19
|
Gurgul A, Jasielczuk I, Miksza-Cybulska A, Kawęcka A, Szmatoła T, Krupiński J. Evaluation of genetic differentiation and genome-wide selection signatures in Polish local sheep breeds. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Association of TMEM8B and SPAG8 with Mature Weight in Sheep. Animals (Basel) 2020; 10:ani10122391. [PMID: 33333720 PMCID: PMC7765121 DOI: 10.3390/ani10122391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/08/2020] [Accepted: 12/13/2020] [Indexed: 01/08/2023] Open
Abstract
Simple Summary Domestication and the subsequent selection of animals for either economic or morphological features can impact the legacy genome of a population in myriad ways. In sheep, the rs426272889 single nucleotide polymorphism (SNP) was identified as the peak of a signature of selection. We examined phenotypic data and identified associations for the Transmembrane protein 8B (TMEM8B) rs426272889 SNP and its genetically linked Sperm-associated antigen 8 (SPAG8) rs160159557 SNP with ewe mature weight in four sheep breeds. These data provided the first production-relevant phenotypes, as well as the first organism-level (as opposed to cellular or tumor-derived) phenotypes, associated with TMEM8B, and in so doing, improved the annotation of this gene and genomic region by adding body weight implications. Once validated, these data can be applied in genetic or genomic selection aiming to achieve desired mature body weight. Abstract Signature of selection studies have identified many genomic regions with known functional importance and some without verified functional roles. Multiple studies have identified Transmembrane protein 8B (TMEM8B)rs426272889 as having been recently under extreme selection pressure in domesticated sheep, but no study has provided sheep phenotypic data clarifying a reason for extreme selection. We tested rs426272889 for production trait association in 770 U.S. Rambouillet, Targhee, Polypay, and Suffolk sheep. TMEM8Brs426272889 was associated with mature weight at 3 and 4 years (p < 0.05). This suggested selection for sheep growth and body size might explain the historical extreme selection pressure in this genomic region. We also tested Sperm-associated antigen 8 (SPAG8) rs160159557 encoding a G493C substitution. While this variant was associated with mature weights at ages 3 and 4, it was not as strongly associated as TMEM8Brs426272889. Transmembrane protein 8B has little functional information except as an inhibitor of cancer cell proliferation. To our knowledge, this is the first study linking TMEM8B to whole organism growth and body size under standard conditions. Additional work will be necessary to identify the underlying functional variant(s). Once identified, such variants could be used to improve sheep production through selective breeding.
Collapse
|
21
|
Review of Huang-huai sheep, a new multiparous mutton sheep breed first identified in China. Trop Anim Health Prod 2020; 53:35. [PMID: 33230646 PMCID: PMC7683451 DOI: 10.1007/s11250-020-02453-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/15/2020] [Indexed: 12/24/2022]
Abstract
Huang-huai sheep are a new multiparous mutton sheep breed that has been cultivated by domestic scientific research institutes, governments, and sheep farms in China. Huang-huai sheep were bred using Dorper sheep as a sire and Small-tailed Han sheep as a dam. The breeding of Huang-huai sheep started in 2003, and three stages have been carried out: crossbreeding innovation, fixation in a two-way-crossbred closed flock, and herd propagation. A pilot test of Huang-huai sheep was conducted on 6 sheep farms from 2017 to 2018, and hereditary properties and production performance were evaluated in 2019. Huang-huai sheep were identified on site by the National Livestock and Poultry Resources Committee of China in December 2019 and approved as a new multiparous mutton sheep breed in China. The genetic distance showed that Huang-huai sheep are most closely related to Dorper sheep, Luxi black-headed sheep, and Small-tailed Han sheep, but the genetic distances are subspecies (0.02–0.20) each other. The body weights of adult Huang-huai sheep are 98.1 ± 5.2 kg (♂) and 71.7 ± 3.5 kg (♀), and those of 6-month-old Huang-huai sheep are 58.50 ± 6.55 kg (♂) and 52.45 ± 5.67 kg (♀). The slaughter rates of 6-month-old sheep are 56.02 ± 1.25% (♂) and 53.19 ± 1.19% (♀). The estrus cycle of Huang-huai sheep is 19.32 ± 2.8 days, the first estrus cycle occurs at 168 ± 12 days, the annual lambing rate of ewes is 252.82% ± 10.69%, the survival rate of lambs is 95.79 ± 0.95%, and the number of weaned lambs per ewe per year is 2.38 ± 0.14. The growth performance, carcass quality, and reproductive performance of Huang-huai sheep have been improved, resulting in considerable economic and social benefits and broader market prospects. This breed represents a new multiparous mutton sheep breed adapted for industrial sheep farms in China.
Collapse
|
22
|
|
23
|
Genetic Signatures of Selection for Cashmere Traits in Chinese Goats. Animals (Basel) 2020; 10:ani10101905. [PMID: 33080940 PMCID: PMC7603090 DOI: 10.3390/ani10101905] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Cashmere goats are a unique husbandry resource in China. These goats are well known for producing the highest cashmere yield and best fiber quality in the world. Although cashmere is highly valued and also known as “fiber gem” and “soft gold”, few studies have examined the genetic basis of cashmere traits in cashmere goats. Here, we identified selection signals by comparing Fst and XP-EHH (the cross population extend haplotype homozygosity test) of a non-cashmere breed (Huanghuai goat) with those of two cashmere breeds (Inner Mongolia and Liaoning cashmere goats). Two genes (WNT10A and CSN3) were potentially associated with cashmere traits. This information may be valuable for studying the genetic uniqueness of cashmere goats and elucidating the mechanisms underlying cashmere traits in cashmere goats. Abstract Inner Mongolia and Liaoning cashmere goats in China are well-known for their cashmere quality and yield. Thus, they are great models for identifying genomic regions associated with cashmere traits. Herein, 53 Inner Mongolia cashmere goats, Liaoning cashmere goats and Huanghuai goats were genotyped, and 53,347 single-nucleotide polymorphisms (SNPs) were produced using the Illumina Caprine 50K SNP chip. Additionally, we identified some positively selected SNPs by analyzing Fst and XP-EHH. The top 5% of SNPs had selection signatures. After gene annotation, 222 and 173 candidate genes were identified in Inner Mongolia and Liaoning cashmere goats, respectively. Several genes were related to hair follicle development, such as TRPS1, WDR74, LRRC14, SPTLC3, IGF1R, PADI2, FOXP1, WNT10A and CSN3. Gene enrichment analysis of these cashmere trait-associated genes related 67 enriched signaling pathways that mainly participate in hair follicle development and stem cell pluripotency regulation. Furthermore, we identified 20 overlapping genes that were selected in both cashmere goat breeds. Among these overlapping genes, WNT10A and CSN3, which are associated with hair follicle development, are potentially involved in cashmere production. These findings may improve molecular breeding of cashmere goats in the future.
Collapse
|