1
|
Wang SZ, E GX, Zeng Y, Han YG, Huang YF, Na RS. Three SNPs within exons of INHA and ACVR2B genes are significantly associated with litter size in Dazu black goats. Reprod Domest Anim 2021; 56:936-941. [PMID: 33720451 DOI: 10.1111/rda.13927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 03/12/2021] [Indexed: 11/26/2022]
Abstract
The aim of this study was to analyse the association between single-nucleotide polymorphisms within INHA and ACVR2B and litter size in Dazu black goats. In total, twenty-two SNPs were genotyped in 190 individuals by SNaPshot and resequencing. The results showed that three SNPs (SNP_1, SNP_12 and SNP_13 in this study) were detected to have significant additive genetic effect on the recorded goat litter size (p < .05). The SNP_1 (NC_030809.1), a non-synonymous substitution of G for T at chr2-g. 28314990 in the exon 2 of INHA gene (NM_001285606.1), resulted in homozygote 2 (HOM2) contributed 0.25 and heterozygote (HET) contributed 0.12 larger litter than homozygote 1 (HOM1). Meanwhile, SNP_12 (Chr22-g. 11721225 A > T) and SNP_13 (Chr22-g. 11721227 A > C) (NC_030829.1) simultaneously mutated at the first and third position of a triplet AAA (lysine, K) in the exon 4 of ACVR2B gene (XM_018066623.1) had estimated genetic effects of HOM1 (0.00) and HOM2 (0.03) larger than HET (-0.12). In conclusion, one SNPs (chr2-g. 28314990 T > G) within the exon 2 of INHA and two SNPs (Chr22-g. 11721225 A > T and Chr22-g. 11721227 A > C) in the exon 4 of ACVR2B gene were highly recommended as candidate markers of litter size in Dazu black goats. A large-scale association study to assess the impact of these variants on litter size is still necessary.
Collapse
Affiliation(s)
- Shi-Zhi Wang
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Guang-Xin E
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yan Zeng
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yan-Guo Han
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yong-Fu Huang
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Ri-Su Na
- College of Animal Science and Technology, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Tang Q, Zhang Y, Yang Y, Hu H, Lan X, Pan C. The KMT2A gene: mRNA differential expression in the ovary and a novel 13-nt nucleotide sequence variant associated with litter size in cashmere goats. Domest Anim Endocrinol 2021; 74:106538. [PMID: 32896800 DOI: 10.1016/j.domaniend.2020.106538] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 12/16/2022]
Abstract
A genome-wide association study had shown that lysine methyltransferase 2A (KMT2A), which encodes the histone 3 lysine 4 methyltransferase and reportedly can regulate gametogenesis, steroidogenesis, and development as well as other biological processes, is a potential candidate gene influencing litter size in the dairy goat, suggesting its key function in animal reproduction. Here, we aimed to explore the genetic effects of the KMT2A gene on litter size in females of the Chinese indigenous cashmere goat, using a large sample size (n > 1,000), based on their levels of RNA transcription and DNA variation. First, mRNA expression levels of this gene in ovarian tissues between the low-prolific group (first-born litter size = 1) and high-prolific group (first-born litter size ≥2) were significantly different, revealing the potential functioning of KMT2A in goat prolific. Moreover, a novel 13-nt nucleotide sequence variant was identified in Shaanbei white cashmere goats (n = 1,616). In accordance with the independent chi-square (χ2) analysis, the distribution of genotypes (P = 2.57 × 10-9) and allelotypes (P = 3.00 × 10-7) between the low- and high-prolific groups differed significantly, indicating the 13-nt mutation was associated with litter size. Further analysis showed that the insertion/insertion (II) genotype was significantly different with insertion/deletion (ID) (P = 1.76 × 10-9) and deletion/deletion (DD) (P = 7.00 × 10-6), with goats having the DD genotype producing an average litter size larger than the other genotypes. Taken together, these findings suggest KMT2A can serve as a candidate gene for breeding goats, which may have implications for improving the future development of the goat industry.
Collapse
Affiliation(s)
- Q Tang
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Key Laboratory of Animal Biotechnology, Ministry of Agriculture, No. 22 Xinong Road, Yangling, Shaanxi, 712100, PR China
| | - Y Zhang
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Key Laboratory of Animal Biotechnology, Ministry of Agriculture, No. 22 Xinong Road, Yangling, Shaanxi, 712100, PR China
| | - Y Yang
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Key Laboratory of Animal Biotechnology, Ministry of Agriculture, No. 22 Xinong Road, Yangling, Shaanxi, 712100, PR China
| | - H Hu
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Key Laboratory of Animal Biotechnology, Ministry of Agriculture, No. 22 Xinong Road, Yangling, Shaanxi, 712100, PR China
| | - X Lan
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Key Laboratory of Animal Biotechnology, Ministry of Agriculture, No. 22 Xinong Road, Yangling, Shaanxi, 712100, PR China
| | - C Pan
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Key Laboratory of Animal Biotechnology, Ministry of Agriculture, No. 22 Xinong Road, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
3
|
Han YG, Zeng Y, Huang YF, Huang DL, Peng P, Na RS. A nonsynonymous SNP within the AMH gene is associated with litter size in Dazu black goats. Anim Biotechnol 2020; 33:992-996. [PMID: 33151107 DOI: 10.1080/10495398.2020.1842750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AMH, KISS1R and GDF9 genes play a vital role in human and animal reproduction and might be used as the genetic markers for the reproduction traits selection. The aim of this study was to screen the single nucleotide polymorphisms (SNPs) within the AMH, KISS1R and GDF9 genes and to determine the correlations between these SNPs and the litter size in goats. Nine single SNPs within these genes were used for genotyping of the 190 Dazu black goat populations by SNaPshot technique. The polymorphisms of nine SNPs within these genes were detected in Dazu black goats. The significant correlation was observed between one SNP (g.89172108A > C) within the AMH gene and the litter size of second born in Dazu black goats (p < 0.05). The SNP was located in exon 4 (XM_018050765.1) of the AMH gene and was one nonsynonymous substitution, which resulted in a change of an amino acid from Glutamine to Proline (Gln38Pro). These results suggested that the nonsynonymous SNP g.89172108A > C of AMH gene could be used as a potential genetic marker for Marker-assisted selection (MAS) in goats breeding programs.
Collapse
Affiliation(s)
- Yan-Guo Han
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Chongqing, China
| | - Yan Zeng
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Chongqing, China
| | - Yong-Fu Huang
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Chongqing, China
| | - De-Li Huang
- Chongqing Tengda Animal Husbandry Co., Ltd., Chongqing, China
| | - Peng Peng
- Chongqing Tengda Animal Husbandry Co., Ltd., Chongqing, China
| | - Ri-Su Na
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Chongqing, China
| |
Collapse
|
4
|
E GX, Zhu YB, Basang WD, Na RS, Han YG, Zeng Y. Comparative and selection sweep analysis of CNV was associated to litter size in Dazu black goats. Anim Biotechnol 2020; 32:792-797. [PMID: 32293982 DOI: 10.1080/10495398.2020.1753756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
This study aims to identify the relative Copy number variation (CNV) associated with the litter size of Dazu black goats based on the unpublished CNV analytical results of our previously published sequencing data, in which the litter-size groups were classified into extreme low- and high-yield groups. Firstly, to compare the existence of valuable CNV in Dazu black goats with different fertility levels with mixed pools. We obtained 4992 and 4888 CNVs from the HY and LY, which overlapping 1461 genes, and classified on the original CNV type. Three genes [LOC108633278, PPP1R12A, and YIPF4] were observed in the intersection between the HY deletion and the LY duplication groups. Secondly, on individuals level, we identified a novel candidate CNV (Chr1_50215501, FST = 0.148, VST = 0.347) from 214 autosomal credible CNVs to be significant with litter size in the Dazu black goat, which located in the CBLB gene. This finding indicates the CBLB gene may affect the litter size of the Dazu black goats through structural variations, and Chr1_50215501 can be an effective genetic marker for marker-assisted selection breeding, and this study was also helps understand the molecular mechanism related to the goat litter size.
Collapse
Affiliation(s)
- Guang-Xin E
- College of Animal Science and Technology, Southwest University, Chongqing, China.,State Key Laboratory of Barley and Yak Germplasm Resources and Genetic Improvement, Tibet Academy of Agricultural and Animal Husbandry Science (TAAAS), Lhasa, China
| | - Yan-Bin Zhu
- State Key Laboratory of Barley and Yak Germplasm Resources and Genetic Improvement, Tibet Academy of Agricultural and Animal Husbandry Science (TAAAS), Lhasa, China
| | - Wang-Dui Basang
- State Key Laboratory of Barley and Yak Germplasm Resources and Genetic Improvement, Tibet Academy of Agricultural and Animal Husbandry Science (TAAAS), Lhasa, China
| | - Ri-Su Na
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yan-Guo Han
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yan Zeng
- College of Animal Science and Technology, Southwest University, Chongqing, China
| |
Collapse
|
5
|
Bi Y, Feng B, Wang Z, Zhu H, Qu L, Lan X, Pan C, Song X. Myostatin (MSTN) Gene Indel Variation and Its Associations with Body Traits in Shaanbei White Cashmere Goat. Animals (Basel) 2020; 10:E168. [PMID: 31963797 PMCID: PMC7022945 DOI: 10.3390/ani10010168] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 12/21/2022] Open
Abstract
Myostatin (MSTN) gene, also known as growth differentiation factor 8 (GDF8), is a member of the transforming growth factor-beta super-family and plays a negative role in muscle development. It acts as key points during pre- and post-natal life of amniotes that ultimately determine the overall muscle mass of animals. There are several studies that concentrate on the effect of a 5 bp insertion/deletion (indel) within the 5' untranslated region (5' UTR) of goat MSTN gene in goats. However, almost all sample sizes were below 150 individuals. Only in Boer goats, the sample sizes reached 482. Hence, whether the 5 bp indel was still associated with the growth traits of goats in large sample sizes which were more reliable is not clear. To find an effective and dependable DNA marker for goat rearing, we first enlarged the sample sizes (n = 1074, Shaanbei White Cashmere goat) which would enhance the robustness of the analysis and did the association analyses between the 5 bp indel and growth traits. Results uncovered that the 5 bp indel was significantly related to body height, height at hip cross, and chest width index (p < 0.05). In addition, individuals with DD genotype had a superior growing performance than those with the ID genotype. These findings suggested that the 5 bp indel in MSTN gene are significantly associated with growth traits and the specific genotype might be promising for maker-assisted selection (MAS) of goats.
Collapse
Affiliation(s)
- Yi Bi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.B.); (B.F.); (Z.W.); (X.L.)
| | - Bo Feng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.B.); (B.F.); (Z.W.); (X.L.)
| | - Zhen Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.B.); (B.F.); (Z.W.); (X.L.)
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China; (H.Z.); (L.Q.)
- Life Science Research Center, Yulin University, Yulin 719000, China
| | - Haijing Zhu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China; (H.Z.); (L.Q.)
- Life Science Research Center, Yulin University, Yulin 719000, China
| | - Lei Qu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China; (H.Z.); (L.Q.)
- Life Science Research Center, Yulin University, Yulin 719000, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.B.); (B.F.); (Z.W.); (X.L.)
| | - Chuanying Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.B.); (B.F.); (Z.W.); (X.L.)
| | - Xiaoyue Song
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China; (H.Z.); (L.Q.)
- Life Science Research Center, Yulin University, Yulin 719000, China
| |
Collapse
|