1
|
Liu D, Li X, Wang L, Pei Q, Zhao J, Sun D, Ren Q, Tian D, Han B, Jiang H, Zhang W, Wang S, Tian F, Liu S, Zhao K. Genome-wide association studies of body size traits in Tibetan sheep. BMC Genomics 2024; 25:739. [PMID: 39080522 PMCID: PMC11290296 DOI: 10.1186/s12864-024-10633-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Elucidating the genetic variation underlying phenotypic diversity will facilitate improving production performance in livestock species. The Tibetan sheep breed in China holds significant historical importance, serving as a fundamental pillar of Qinghai's animal husbandry sector. The Plateau-type Tibetan sheep, comprising 90% of the province's population, are characterized by their tall stature and serve as the primary breed among Tibetan sheep. In contrast, Zhashijia sheep exhibit larger size and superior meat quality. These two species provide an excellent model for elucidating the genetic basis of body size variation. Therefore, this study aims to conduct a comprehensive genome-wide association study on these two Tibetan sheep breeds to identify single nucleotide polymorphism loci and regulatory genes that influence body size traits in Tibetan sheep. RESULT In this study, the phenotypic traits of body weight, body length, body height, chest circumference, chest depth, chest width, waist angle width, and pipe circumference were evaluated in two Tibetan sheep breeds: Plateau-type sheep and Zhashijia Tibetan sheep. Whole genome sequencing generated 48,215,130 high-quality SNPs for genome-wide association study. Four methods were applied and identified 623 SNPs significantly associated with body size traits. The significantly associated single nucleotide polymorphisms identified in this study are located near or within 111 candidate genes. These genes exhibit enrichment in the cAMP and Rap1 signaling pathways, significantly affecting animal growth, and body size. Specifically, the following genes were associated: ASAP1, CDK6, FRYL, NAV2, PTPRM, GPC6, PTPRG, KANK1, NTRK2 and ADCY8. CONCLUSION By genome-wide association study, we identified 16 SNPs and 10 candidate genes associated with body size traits in Tibetan sheep, which hold potential for application in genomic selection breeding programs in sheep. Identifying these candidate genes will establish a solid foundation for applying molecular marker-assisted selection in sheep breeding and improve our understanding of body size control in farmed animals.
Collapse
Affiliation(s)
- Dehui Liu
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xinning Road, Xining, Qinghai, 810001, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar, 161005, China
| | - Xue Li
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xinning Road, Xining, Qinghai, 810001, China
| | - Lei Wang
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha, Qinghai, 812300, China
| | - Quanbang Pei
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha, Qinghai, 812300, China
| | - Jincai Zhao
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha, Qinghai, 812300, China
| | - De Sun
- Animal Husbandry and Veterinary Station of Huzhu County of Qinghai Province, Huzhu, Qinghai, 810500, China
| | - Qianben Ren
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha, Qinghai, 812300, China
| | - Dehong Tian
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xinning Road, Xining, Qinghai, 810001, China
| | - Buying Han
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xinning Road, Xining, Qinghai, 810001, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hanjing Jiang
- Qinghai Livestock and Poultry Genetic Resources Protection and Utilization Center, Xining, 810000, China
| | - Wenkui Zhang
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha, Qinghai, 812300, China
| | - Song Wang
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xinning Road, Xining, Qinghai, 810001, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Tian
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xinning Road, Xining, Qinghai, 810001, China
| | - Sijia Liu
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xinning Road, Xining, Qinghai, 810001, China
| | - Kai Zhao
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xinning Road, Xining, Qinghai, 810001, China.
| |
Collapse
|
2
|
Yuan Z, Ge L, Su P, Gu Y, Chen W, Cao X, Wang S, Lv X, Getachew T, Mwacharo JM, Haile A, Sun W. NCAPG Regulates Myogenesis in Sheep, and SNPs Located in Its Putative Promoter Region Are Associated with Growth and Development Traits. Animals (Basel) 2023; 13:3173. [PMID: 37893897 PMCID: PMC10603679 DOI: 10.3390/ani13203173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/02/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Previously, NCAPG was identified as a candidate gene associated with sheep growth traits. This study aimed to investigate the direct role of NCAPG in regulating myogenesis in embryonic myoblast cells and to investigate the association between single-nucleotide polymorphisms (SNPs) in its promoter region and sheep growth traits. The function of NCAPG in myoblast proliferation and differentiation was detected after small interfering RNAs (siRNAs) knocked down the expression of NCAPG. Cell proliferation was detected using CCK-8 assay, EdU proliferation assay, and flow cytometry cell cycle analysis. Cell differentiation was detected via cell immunofluorescence and the quantification of myogenic regulatory factors (MRFs). SNPs in the promoter region were detected using Sanger sequencing and genotyped using the improved multiplex ligation detection reaction (iMLDR®) technique. As a result, a notable decrease (p < 0.01) in the percentage of EdU-positive cells in the siRNA-694-treated group was observed. A significant decrease (p < 0.01) in cell viability after treatment with siRNA-694 for 48 h and 72 h was detected using the CCK-8 method. The quantity of S-phase cells in the siRNA-694 treatment group was significantly decreased (p < 0.01). After interfering with NCAPG in myoblasts during induced differentiation, the relative expression levels of MRFs were markedly (p < 0.05 or p < 0.01) reduced compared with the control group on days 5-7. The myoblast differentiation in the siRNA-694 treatment group was obviously suppressed compared with the control group. SNP1, SNP2, SNP3, and SNP4 were significantly (p < 0.05) associated with all traits except body weight measured at birth and one month of age. SNP5 was significantly (p < 0.05) associated with body weight, body height, and body length in six-month-old sheep. In conclusion, interfering with NCAPG can inhibit the proliferation and differentiation of ovine embryonic myoblasts. SNPs in its promoter region can serve as potential useful markers for selecting sheep growth traits.
Collapse
Affiliation(s)
- Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.Y.); (L.G.); (P.S.); (Y.G.); (W.C.); (X.C.); (S.W.); (X.L.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Ling Ge
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.Y.); (L.G.); (P.S.); (Y.G.); (W.C.); (X.C.); (S.W.); (X.L.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Pengwei Su
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.Y.); (L.G.); (P.S.); (Y.G.); (W.C.); (X.C.); (S.W.); (X.L.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yifei Gu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.Y.); (L.G.); (P.S.); (Y.G.); (W.C.); (X.C.); (S.W.); (X.L.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Weihao Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.Y.); (L.G.); (P.S.); (Y.G.); (W.C.); (X.C.); (S.W.); (X.L.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiukai Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.Y.); (L.G.); (P.S.); (Y.G.); (W.C.); (X.C.); (S.W.); (X.L.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Shanhe Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.Y.); (L.G.); (P.S.); (Y.G.); (W.C.); (X.C.); (S.W.); (X.L.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyang Lv
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.Y.); (L.G.); (P.S.); (Y.G.); (W.C.); (X.C.); (S.W.); (X.L.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Tesfaye Getachew
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia; (T.G.); (J.M.M.); (A.H.)
| | - Joram M. Mwacharo
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia; (T.G.); (J.M.M.); (A.H.)
| | - Aynalem Haile
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia; (T.G.); (J.M.M.); (A.H.)
| | - Wei Sun
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.Y.); (L.G.); (P.S.); (Y.G.); (W.C.); (X.C.); (S.W.); (X.L.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- “Innovative China” “Belt and Road” International Agricultural Technology Innovation Institute for Evaluation, Protection, and Improvement on Sheep Genetic Resource, Yangzhou 225009, China
| |
Collapse
|
3
|
Li Y, Yang H, Guo J, Yang Y, Yu Q, Guo Y, Zhang C, Wang Z, Zuo P. Uncovering the candidate genes related to sheep body weight using multi-trait genome-wide association analysis. Front Vet Sci 2023; 10:1206383. [PMID: 37662987 PMCID: PMC10469697 DOI: 10.3389/fvets.2023.1206383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023] Open
Abstract
In sheep, body weight is an economically important trait. This study sought to map genetic loci related to weaning weight and yearling weight. To this end, a single-trait and multi-trait genome-wide association study (GWAS) was performed using a high-density 600 K single nucleotide polymorphism (SNP) chip. The results showed that 43 and 56 SNPs were significantly associated with weaning weight and yearling weight, respectively. A region associated with both weaning and yearling traits (OARX: 6.74-7.04 Mb) was identified, suggesting that the same genes could play a role in regulating both these traits. This region was found to contain three genes (TBL1X, SHROOM2 and GPR143). The most significant SNP was Affx-281066395, located at 6.94 Mb (p = 1.70 × 10-17), corresponding to the SHROOM2 gene. We also identified 93 novel SNPs elated to sheep weight using multi-trait GWAS analysis. A new genomic region (OAR10: 76.04-77.23 Mb) with 22 significant SNPs were discovered. Combining transcriptomic data from multiple tissues and genomic data in sheep, we found the HINT1, ASB11 and GPR143 genes may involve in sheep body weight. So, multi-omic anlaysis is a valuable strategy identifying candidate genes related to body weight.
Collapse
Affiliation(s)
- Yunna Li
- College of Animal Science and Technology, Northeast Agricultural University,, Harbin, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science,, Shihezi, China
| | - Hua Yang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science,, Shihezi, China
| | - Jing Guo
- College of Animal Science and Technology, Northeast Agricultural University,, Harbin, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science,, Shihezi, China
| | - Yonglin Yang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science,, Shihezi, China
| | - Qian Yu
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science,, Shihezi, China
| | - Yuanyuan Guo
- College of Animal Science and Technology, Northeast Agricultural University,, Harbin, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science,, Shihezi, China
| | - Chaoxin Zhang
- College of Animal Science and Technology, Northeast Agricultural University,, Harbin, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science,, Shihezi, China
| | - Zhipeng Wang
- College of Animal Science and Technology, Northeast Agricultural University,, Harbin, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science,, Shihezi, China
| | - Peng Zuo
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science,, Shihezi, China
- College of Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
4
|
Zhao Y, He S, Huang J, Liu M. Genome-Wide Association Analysis of Muscle pH in Texel Sheep × Altay Sheep F 2 Resource Population. Animals (Basel) 2023; 13:2162. [PMID: 37443959 DOI: 10.3390/ani13132162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/29/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
pH was one of the important meat quality traits, which was an important factor affecting the storage/shelf life and quality of meat in meat production. In order to find a way to extend the storage/shelf life, the pH values (pH45min, pH24h, pH48h and pH72h) of the longissimus dorsi muscles in F2 individuals of 462 Texel sheep × Altay sheep were determined, genotyping was performed using Illumina Ovine SNP 600 K BeadChip and whole genome resequencing technology, a genome-wide association analysis (GWAS) was used to screen the candidate genes and molecular markers for pH values related to the quality traits of mutton, and the effects of population stratification were detected by Q-Q plots. The results showed that the pH population stratification analysis did not find significant systemic bias, and there was no obvious population stratification effect. The results of the association analysis showed that 28 SNPs significantly associated with pH reached the level of genomic significance. The candidate gene associated with pH45min was identified as the CCDC92 gene by gene annotation and a search of the literature. Candidate genes related to pH24h were KDM4C, TGFB2 and GOT2 genes. The candidate genes related to pH48h were MMP12 and MMP13 genes. The candidate genes related to pH72h were HILPDA and FAT1 genes. Further bioinformatics analyses showed 24 gene ontology terms and five signaling pathways that were significantly enriched (p ≤ 0.05). Many terms and pathways were related to cellular components, processes of protein modification, the activity of protein dimerization and hydrolase activity. These identified SNPs and genes could provide useful information about meat and the storage/shelf life of meat, thereby extending the storage/shelf life and quality of meat.
Collapse
Affiliation(s)
- Yilong Zhao
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
- College of Animal Science and Technology, Xinjiang Agricultural Vocational and Technical College, Changji 831100, China
| | - Sangang He
- Biotechnology Institute, Xinjiang Academy of Animal Science, Urumqi 830013, China
| | | | - Mingjun Liu
- Biotechnology Institute, Xinjiang Academy of Animal Science, Urumqi 830013, China
| |
Collapse
|
5
|
Hu M, Jiang H, Lai W, Shi L, Yi W, Sun H, Chen C, Yuan B, Yan S, Zhang J. Assessing Genomic Diversity and Signatures of Selection in Chinese Red Steppe Cattle Using High-Density SNP Array. Animals (Basel) 2023; 13:ani13101717. [PMID: 37238146 DOI: 10.3390/ani13101717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/13/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Chinese Red Steppe Cattle (CRS), a composite cattle breed, is well known for its milk production, high slaughter rate, carcass traits, and meat quality. Nowadays, it is widely bred in Jilin and Hebei Province and the Inner Mongolia Autonomous region. However, the population structure and the genetic basis of prominent characteristics of CRS are still unknown. In this study, we systematically describe their population structure, genetic diversity, and selection signature based on genotyping data from 61 CRS individuals with GGP Bovine 100 K chip. The results showed that CRS cattle had low inbreeding levels and had formed a unique genetic structure feature. Using two complementary methods (including comprehensive haplotype score and complex likelihood ratio), we identified 1291 and 1285 potentially selected genes, respectively. There were 141 genes annotated in common 106 overlapping genomic regions covered 5.62 Mb, including PLAG1, PRKG2, DGAT1, PARP10, TONSL, ADCK5, and BMP3, most of which were enriched in pathways related to muscle growth and differentiation, milk production, and lipid metabolism. This study will contribute to understanding the genetic mechanism behind artificial selection and give an extensive reference for subsequent breeding.
Collapse
Affiliation(s)
- Mingyue Hu
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Hao Jiang
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Weining Lai
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Lulu Shi
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Wenfeng Yi
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Hao Sun
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Chengzhen Chen
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Bao Yuan
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Shouqing Yan
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Jiabao Zhang
- College of Animal Science, Jilin University, Changchun 130062, China
| |
Collapse
|
6
|
Jiang H, Chai ZX, Cao HW, Zhang CF, Zhu Y, Zhang Q, Xin JW. Genome-wide identification of SNPs associated with body weight in yak. BMC Genomics 2022; 23:833. [PMID: 36522700 PMCID: PMC9756674 DOI: 10.1186/s12864-022-09077-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The yak is the most important livestock in the Qinghai-Tibet Plateau, and body weight directly affects the economic values of yak. Up to date, the genome-wide profiling of single-nucleotide polymorphisms (SNPs) associating with body weight has not been reported in yak. In the present study, the SNPs in 480 yaks from three breeds were analyzed using the commercial high-density (600 K) yak SNP chips. RESULTS The results identified 12 and 4 SNPs potentially associated with body weight in male and female yaks, respectively. Among them, 9 and 2 SNPs showed significant difference in yak body weight between different genotypes at each locus in male and female yaks, respectively. Further exploration found 33 coding genes within the 100 kbp upstream or downstream to the SNP loci, which might be potentially affected by the variation of SNPs. Among them, G protein-coupled receptor kinase 4 (GRK4) might be potentially affected by the SNP AX-174555047, which has been reported to affect the functioning of two body-weight associated hormones (parathyroid hormone, PTH, and adrenomedullin, ADM). Determination of PTH and ADM levels in yak revealed positive relationship between PTH level and body weight, negative relationship between ADM level and body weight along with the variation of AX-174555047 mutation. CONCLUSIONS These results suggested that the SNP AX-174555047 might potentially affect body weight through mediating GRK4 expression and then PTH and ADM functioning. Thus, the SNP AX-174555047 might be used as a biomarker for molecular breeding of yak. More investigations are required to validate this point.
Collapse
Affiliation(s)
- Hui Jiang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, 850000 Tibet China ,grid.464485.f0000 0004 1777 7975Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary (TAAAS), Lhasa, 850009 Tibet China
| | - Zhi-Xin Chai
- grid.412723.10000 0004 0604 889XKey Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041 Sichuan China
| | - Han-Wen Cao
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, 850000 Tibet China ,grid.464485.f0000 0004 1777 7975Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary (TAAAS), Lhasa, 850009 Tibet China
| | - Cheng-Fu Zhang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, 850000 Tibet China ,grid.464485.f0000 0004 1777 7975Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary (TAAAS), Lhasa, 850009 Tibet China
| | - Yong Zhu
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, 850000 Tibet China ,grid.464485.f0000 0004 1777 7975Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary (TAAAS), Lhasa, 850009 Tibet China
| | - Qiang Zhang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, 850000 Tibet China ,grid.464485.f0000 0004 1777 7975Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary (TAAAS), Lhasa, 850009 Tibet China
| | - Jin-Wei Xin
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, 850000 Tibet China ,grid.464485.f0000 0004 1777 7975Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary (TAAAS), Lhasa, 850009 Tibet China
| |
Collapse
|
7
|
Cheng J, Zhang X, Zhang D, Zhang Y, Li X, Zhao Y, Xu D, Zhao L, Li W, Wang J, Zhou B, Lin C, Yang X, Zhai R, Cui P, Zeng X, Huang Y, Ma Z, Liu J, Wang W. Sheep fecal transplantation affects growth performance in mouse models by altering gut microbiota. J Anim Sci 2022; 100:skac303. [PMID: 36075210 PMCID: PMC9667978 DOI: 10.1093/jas/skac303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Animal growth traits are important and complex traits that determine the productivity of animal husbandry. There are many factors that affect growth traits, among which diet digestion is the key factor. In the process of animal digestion and absorption, the role of gastrointestinal microbes is essential. In this study, we transplanted two groups of sheep intestinal microorganisms with different body weights into the intestines of mice of the same age to observe the effect of fecal bacteria transplantation on the growth characteristics of the mouse model. The results showed that receiving fecal microbiota transplantation (FMT) had an effect on the growth traits of recipient mice (P < 0.05). Interestingly, only mice receiving high-weight donor microorganisms showed differences. Use 16S rDNA sequencing technology to analyze the stool microorganisms of sheep and mice. The microbial analysis of mouse feces showed that receiving FMT could improve the diversity and richness of microorganisms (P < 0.05), and the microbial composition of mouse feces receiving low-weight donor microorganisms was similar to that of the control group, which was consistent with the change trend of growth traits. The feces of high-weight sheep may have higher colonization ability. The same five biomarkers were identified in the donor and recipient, all belonging to Firmicutes, and were positively correlated with the body weight of mice at each stage. These results suggest that FMT affects the growth traits of receptors by remodeling their gut microflora.
Collapse
Affiliation(s)
- Jiangbo Cheng
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Deyin Zhang
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Yukun Zhang
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Xiaolong Li
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Yuan Zhao
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Dan Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Liming Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Wenxin Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Jianghui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Bubo Zhou
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Changchun Lin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Xiaobin Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Rui Zhai
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Panpan Cui
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Xiwen Zeng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Yongliang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Zongwu Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Jia Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Weimin Wang
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| |
Collapse
|
8
|
Easa AA, Selionova M, Aibazov M, Mamontova T, Sermyagin A, Belous A, Abdelmanova A, Deniskova T, Zinovieva N. Identification of Genomic Regions and Candidate Genes Associated with Body Weight and Body Conformation Traits in Karachai Goats. Genes (Basel) 2022; 13:genes13101773. [PMID: 36292658 PMCID: PMC9601913 DOI: 10.3390/genes13101773] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 11/04/2022] Open
Abstract
The objective of this study was to identify the SNPs and candidate genes related to body weight and seven body conformation traits at the age of 8 months in the Russian aboriginal Karachai goats (n = 269) by conducting genome-wide association studies (GWAS), using genotypes generated by Goat SNP BeadChip (Illumina Inc., USA). We identified 241 SNPs, which were significantly associated with the studied traits, including 47 genome-wide SNPs (p < 10−5) and 194 suggestive SNPs (p < 10−4), distributed among all goat autosomes except for autosome 23. Fifty-six SNPs were common for two and more traits (1 SNP for six traits, 2 SNPs for five traits, 12 SNPs for four traits, 20 SNPs for three traits, and 21 SNPs for two traits), while 185 SNPs were associated with single traits. Structural annotation within a window of 0.4 Mb (±0.2 Mb from causal SNPs) revealed 238 candidate genes. The largest number of candidate genes was identified at Chr13 (33 candidate genes for the five traits). The genes identified in our study were previously reported to be associated with growth-related traits in different livestock species. The most significant genes for body weight were CRADD, HMGA2, MSRB3, MAX, HACL1 and RAB15, which regulate growth processes, body sizes, fat deposition, and average daily gains. Among them, the HMGA2 gene is a well-known candidate for prenatal and early postnatal development, and the MSRB3 gene is proposed as a candidate gene affecting the growth performance. APOB, PTPRK, BCAR1, AOAH and ASAH1 genes associated with withers height, rump height and body length, are involved in various metabolic processes, including fatty acid metabolism and lipopolysaccharide catabolism. In addition, WDR70, ZBTB24, ADIPOQ, and SORCS3 genes were linked to chest width. KCNG4 was associated with rump height, body length and chest perimeter. The identified candidate genes can be proposed as molecular markers for growth trait selection for genetic improvement in Karachai goats.
Collapse
Affiliation(s)
- Ahmed A. Easa
- Timiryazev Agricultural Academy, Russian State Agrarian University-Moscow, Timiryazevskaya Street, 41, Moscow 127550, Russia
- Department of Animal and Poultry Production, Faculty of Agriculture, Damanhour University, Damanhour 22511, Egypt
- Correspondence: (A.A.E.); (N.Z.)
| | - Marina Selionova
- Timiryazev Agricultural Academy, Russian State Agrarian University-Moscow, Timiryazevskaya Street, 41, Moscow 127550, Russia
| | - Magomet Aibazov
- Timiryazev Agricultural Academy, Russian State Agrarian University-Moscow, Timiryazevskaya Street, 41, Moscow 127550, Russia
| | - Tatiana Mamontova
- Timiryazev Agricultural Academy, Russian State Agrarian University-Moscow, Timiryazevskaya Street, 41, Moscow 127550, Russia
| | - Alexander Sermyagin
- L K Ernst Federal Research Center for Animal Husbandry, Dubrovitsy 60, Podolsk Municipal District, Moscow 142132, Russia
| | - Anna Belous
- L K Ernst Federal Research Center for Animal Husbandry, Dubrovitsy 60, Podolsk Municipal District, Moscow 142132, Russia
| | - Alexandra Abdelmanova
- L K Ernst Federal Research Center for Animal Husbandry, Dubrovitsy 60, Podolsk Municipal District, Moscow 142132, Russia
| | - Tatiana Deniskova
- L K Ernst Federal Research Center for Animal Husbandry, Dubrovitsy 60, Podolsk Municipal District, Moscow 142132, Russia
| | - Natalia Zinovieva
- L K Ernst Federal Research Center for Animal Husbandry, Dubrovitsy 60, Podolsk Municipal District, Moscow 142132, Russia
- Correspondence: (A.A.E.); (N.Z.)
| |
Collapse
|
9
|
Ge L, Su P, Wang S, Gu Y, Cao X, Lv X, Wang S, Getachew T, Mwacharo JM, Haile A, Yuan Z, Sun W. New Insight into the Role of the Leucine Aminopeptidase 3 ( LAP3) in Cell Proliferation and Myogenic Differentiation in Sheep Embryonic Myoblasts. Genes (Basel) 2022; 13:genes13081438. [PMID: 36011349 PMCID: PMC9408374 DOI: 10.3390/genes13081438] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022] Open
Abstract
Previous genome-wide association studies (GWAS) have found that LAP3 may have the potential function to impact sheep muscle development. In order to further explore whether LAP3 expression has an important role in the development of sheep embryonic myoblasts, we conducted the spatiotemporal expression profile analysis of LAP3 at the tissue and cellular level. Then we used small interfering RNA and eukaryotic recombinant vectors to perform gain/loss-of-function analysis of LAP3. CCK-8 detection, EdU staining, and flow cytometry were used to investigate the impact of LAP3 knockdown or overexpression on the proliferation of embryonic myoblasts. In addition, cell phenotype observation, MyHC indirect immunofluorescence, and quantitative detection of the expression changes of myogenic regulatory factors (MRFs) were used to explore the effect of LAP3 on myogenic differentiation. The results showed that the LAP3 expression level in muscle tissue of fetuses was significantly higher than that in newborn lambs and adult sheep, and its expression level on day 3 of differentiation was also significantly higher than that in the proliferation phase and other differentiation time points. LAP3 silencing could significantly increase cell viability and EdU-positive cells, as well as prolonging the length of S phase of myoblasts to promote proliferation, while the results were reversed when LAP3 was overexpressed. Moreover, LAP3 silencing significantly hindered myotube formation and down-regulated the expression levels of MRFs from day 5 to day 7 of terminal differentiation, while the results were reversed when LAP3 was highly expressed. Overall, our results suggested that the expression of LAP3 impacts on the development of sheep embryonic myoblasts which provides an important theoretical basis for molecular breeding of meat production in sheep.
Collapse
Affiliation(s)
- Ling Ge
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
| | - Pengwei Su
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
| | - Shan Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
| | - Yifei Gu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
| | - Xiukai Cao
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou 225000, China
| | - Xiaoyang Lv
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou 225000, China
| | - Shanhe Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
| | - Tesfaye Getachew
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia
| | - Joram M. Mwacharo
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia
| | - Aynalem Haile
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia
| | - Zehu Yuan
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou 225000, China
- Correspondence: (Z.Y.); (W.S.)
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou 225000, China
- Correspondence: (Z.Y.); (W.S.)
| |
Collapse
|
10
|
Liu Z, Tan X, Wang J, Jin Q, Meng X, Cai Z, Cui X, Wang K. Whole genome sequencing of Luxi Black Head sheep for screening selection signatures associated with important traits. Anim Biosci 2022; 35:1340-1350. [PMID: 35507856 PMCID: PMC9449392 DOI: 10.5713/ab.21.0533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 03/21/2022] [Indexed: 11/27/2022] Open
Abstract
Objective Luxi Black Head sheep (LBH) is the first crossbreed specialized for meat production and was developed by crossbreeding Black Head Dorper sheep (DP) and Small Tailed Han sheep (STH) in the farming areas of northern China. Research on the genomic variations and selection signatures of LBH caused by continuous artificial selection is of great significance for identifying the genetic mechanisms of important traits of sheep and for the continuous breeding of LBH. Methods We explored the genetic relationships of LBH, DP, and several Mongolian sheep breeds by constructing phylogenetic tree, principal component analysis and linkage disequilibrium analysis. In addition, we analysed 29 whole genomes of sheep. The genome-wide selection signatures have been scanned with four methods: heterozygosity (HP), fixation index (FST), cross-population extended haplotype homozygosity (XP-EHH) and the nucleotide diversity (θπ) ratio. Results The genetic relationships analysis showed that LBH appeared to be an independent cluster closer to DP. The candidate signatures of positive selection in sheep genome revealed candidate genes for developmental process (HoxA gene cluster, BCL2L11, TSHR), immunity (CXCL6, CXCL1, SKAP2, PTK6, MST1R), growth (PDGFD, FGF18, SRF, SOCS2), and reproduction (BCAS3, TRIM24, ASTL, FNDC3A). Moreover, two signalling pathways closely related to reproduction, the thyroid hormone signalling pathway and the oxytocin signalling pathway, were detected. Conclusion The selective sweep analysis of LBH genome revealed candidate genes and signalling pathways associated with developmental process, immunity, growth, and reproduction. Our findings provide a valuable resource for sheep breeding and insight into the mechanisms of artificial selection.
Collapse
|
11
|
Tao L, Liu YF, Zhang H, Li HZ, Zhao FP, Wang FY, Zhang RS, Di R, Chu MX. Genome-wide association study and inbreeding depression on body size traits in Qira black sheep (Ovis aries). Anim Genet 2021; 52:560-564. [PMID: 34096079 DOI: 10.1111/age.13099] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2021] [Indexed: 12/24/2022]
Abstract
Qira black sheep is a famous indigenous sheep breed in China. The objectives of this study are to identify candidate genes related to body size, and to estimate the level of inbreeding depression on body size based on runs of homozygosity in Qira black sheep. Here, 188 adult Qira black sheep were genotyped with a high density (630 K) SNP chip and genome-wide association study for body weight and body size traits (including withers height, body slanting length, tail length, chest girth, chest width, and chest depth) were performed using an additive linear model. In consequence, 12 genome- and chromosome-wide significant SNPs and, accordingly, six candidate genes involved in muscle differentiation, metabolism and cell processes were identified. Of them, ZNF704 (zinc finger protein 704) was identified for body weight; AK2 (adenylate kinase 2) and PARK2 (parkin RBR E3 ubiquitin protein ligase) for tail length; MOCOS (molybdenum cofactor sulfurase) and ELP2 (elongator acetyltransferase complex subunit 2) for chest width; and MFAP1 (microfibril associated protein 1) for chest girth. Additionally, inbreeding depressions on body size were observed in the current herd. These results will provide insightful understandings into the genetic mechanisms of adult body size, and into the conservation and utilization of Qira black sheep.
Collapse
Affiliation(s)
- L Tao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Y F Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,College of Life Science and Food Engineering, Hebei University of Engineering, Handan, 056038, China
| | - H Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,College of Life Science and Food Engineering, Hebei University of Engineering, Handan, 056038, China
| | - H Z Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - F P Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - F Y Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - R S Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - R Di
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - M X Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|