1
|
Lai XJ, Peng S, Wang YL. Dynamic transcriptome analysis of ovarian follicles in artificial maturing Japanese eel (Anguilla japonica). Theriogenology 2021; 180:176-188. [PMID: 34990963 DOI: 10.1016/j.theriogenology.2021.12.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/18/2021] [Accepted: 12/27/2021] [Indexed: 12/29/2022]
Abstract
Inducing maturation of the ovaries to enable the production of good-quality eggs is critical for the successful artificial breeding of Anguilla japonica. During the spawning season, however, the ovaries of A. japonica have been found to develop into asynchronous clutches, impeding the success of artificial breeding on a commercial scale. The dynamic molecular regulation of follicular development in the same individual was assessed by transcriptome analysis of the five stages of follicles, the pre-vitellogenic, early vitellogenic, midvitellogenic, late vitellogenic, and migratory nucleus stages in artificial maturing A. japonica. Comparisons across these developmental stages identified a total of 19,298 differentially expressed transcripts (DETs). Short time-series expression miner analysis across these DETs revealed four significant expression profiles. Gene Ontology function and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses found that some of the significantly enriched biological processes and metabolic pathways included those related to steroid hormone biosynthesis (cyp11a1, cyp17a1, cyp17a2, hsd17b1, and hsd17b12), cargo receptor activity (vtgr and vldlr), meiosis and ovulation (pgrs and mPRγ), hydration (cts and aqp1), and egg coat formation (zp). These genes and pathways were associated with serum 17β-estradiol concentrations and morphological changes. The levels of hsd17b12 and mPRγ mRNAs were much higher during the migratory nucleus stage, suggesting their respective involvement in the biosynthesis and functional pathway of the maturation-inducing steroid 17α,20β-dihydroxy-4-pregnen-3-one. The gene subtypes aqp1b and ctsd may regulate water influx into oocytes and yolk protein proteolysis, respectively. To our knowledge, the present study is the first to describe combined transcriptome profiling of asynchronously developing follicles in the same individual. The findings suggest that steroid hormone synthesis and nutrient absorption in follicular somatic cells play important roles during follicular development and maturation, despite the same external physiological surroundings.
Collapse
Affiliation(s)
- Xiao Jian Lai
- Fisheries College, Jimei University, Xiamen, 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen, 361021, China; Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Xiamen, 361013, China.
| | - Shuai Peng
- Fisheries College, Jimei University, Xiamen, 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen, 361021, China
| | - Yi Lei Wang
- Fisheries College, Jimei University, Xiamen, 361021, China.
| |
Collapse
|
2
|
Medina A, Magro A, Paullada-Salmerón JA, Varela JL. An autofluorescence-based survey of late follicular atresia in ovaries of a teleost fish (Thunnus thynnus). JOURNAL OF FISH BIOLOGY 2021; 99:765-772. [PMID: 33861470 DOI: 10.1111/jfb.14756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 05/21/2023]
Abstract
In this study, the authors examined late atretic follicles in the ovaries of Atlantic bluefin tuna, Thunnus thynnus (Linnaeus 1758), at different times of the year using transmitted light and epifluorescence microscopy. Atresia (degeneration and resorption of developing ovarian follicles) is a natural process involved in fecundity downregulation in teleosts and is substantially enhanced in stressful conditions. Early (α and β) atretic stages of yolked oocytes have a relatively short duration in seasonally reproducing species, whereas later (γ and δ) atretic follicles (LAF) persist for longer time in the ovary, serving as a sign of previous vitellogenic activity. LAF can thus be used as reliable markers of maturity during non-reproductive periods. Lipofuscin granules accumulate in the cytoplasm of LAF cells as a result of lysosomal digestion of oocyte components. Taking advantage of the well-known autofluorescent properties of lipofuscins, LAF may be identified in unstained histological sections under fluorescence microscopy using appropriate excitation and emission wavelengths. The authors explore in this study the applicability of fluorescence microscopy to provide a fast and effective method to assess late atresia in fishes. This method may be particularly useful to determine sexual maturity in individuals sampled long after the spawning season, where LAF are difficult to detect in standard histological sections. Furthermore, LAF autofluorescence provides a rapid way to quantify late atresia in fishes using image analysis.
Collapse
Affiliation(s)
- Antonio Medina
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, Spain
| | - Ana Magro
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, Spain
| | | | - José Luis Varela
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, Spain
| |
Collapse
|
3
|
Li H, Jiang M, Zhao SY, Zhang SQ, Lu L, He X, Feng GX, Wu X, Fan SJ. Exosomes are involved in total body irradiation-induced intestinal injury in mice. Acta Pharmacol Sin 2021; 42:1111-1123. [PMID: 33637947 PMCID: PMC8209125 DOI: 10.1038/s41401-021-00615-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/15/2021] [Indexed: 12/16/2022] Open
Abstract
Ionizing radiation-induced intestinal injury is a catastrophic complication in patients receiving radiotherapy. Circulating exosomes from patients undergoing radiotherapy can mediate communication between cells and facilitate a variety of pathological processes in vivo, but its effects on ionizing radiation-induced intestinal damage are undetermined. In this study we investigated the roles of exosomes during total body irradiation (TBI)-induced intestinal injury in vivo and in vitro. We isolated exosomes from serum of donor mice 24 h after lethal dose (9 Gy) TBI (Exo-IR-24h), then intravenously injected the exosomes into receipt mice, and found that Exo-IR-24h injection not only exacerbated 9 Gy TBI-induced lethality and weight loss, but also promoted crypt-villus structural and functional injury of the small intestine in receipt mice. Moreover, Exo-IR-24h injection significantly enhanced the apoptosis and DNA damage of small intestine in receipt mice following TBI exposure. In murine intestinal epithelial MODE-K cells, treatment with Exo-IR-24h significantly promoted 4 Gy ionizing radiation-induced apoptosis, resulting in decreased cell vitality. We further demonstrated that Exo-IR-24h promoted the IR-induced injury in receipt mice partially through its DNA damage-promoting effects and attenuating Nrf2 antioxidant response in irradiated MODE-K cells. In addition, TBI-related miRNAs and their targets in the exosomes of mice were enriched functionally using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Finally, injection of GW4869 (an inhibitor of exosome biogenesis and release, 1.25 mg·kg-1·d-1, ip, for 5 consecutive days starting 3 days before radiation exposure) was able to rescue mice against 9 Gy TBI-induced lethality and intestinal damage. Collectively, this study reveals that exosomes are involved in TBI-induced intestinal injury in mice and provides a new target to protect patients against irradiation-induced intestinal injury during radiotherapy.
Collapse
Affiliation(s)
- Hang Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China.
| | - Mian Jiang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Shu-Ya Zhao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Shu-Qin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Lu Lu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Xin He
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Guo-Xing Feng
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Xin Wu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Sai-Jun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China.
| |
Collapse
|