1
|
Alam KA, Svalastoga P, Martinez A, Glennon JC, Haavik J. Potassium channels in behavioral brain disorders. Molecular mechanisms and therapeutic potential: A narrative review. Neurosci Biobehav Rev 2023; 152:105301. [PMID: 37414376 DOI: 10.1016/j.neubiorev.2023.105301] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
Potassium channels (K+-channels) selectively control the passive flow of potassium ions across biological membranes and thereby also regulate membrane excitability. Genetic variants affecting many of the human K+-channels are well known causes of Mendelian disorders within cardiology, neurology, and endocrinology. K+-channels are also primary targets of many natural toxins from poisonous organisms and drugs used within cardiology and metabolism. As genetic tools are improving and larger clinical samples are being investigated, the spectrum of clinical phenotypes implicated in K+-channels dysfunction is rapidly expanding, notably within immunology, neurosciences, and metabolism. K+-channels that previously were considered to be expressed in only a few organs and to have discrete physiological functions, have recently been found in multiple tissues and with new, unexpected functions. The pleiotropic functions and patterns of expression of K+-channels may provide additional therapeutic opportunities, along with new emerging challenges from off-target effects. Here we review the functions and therapeutic potential of K+-channels, with an emphasis on the nervous system, roles in neuropsychiatric disorders and their involvement in other organ systems and diseases.
Collapse
Affiliation(s)
| | - Pernille Svalastoga
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway; Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway
| | | | - Jeffrey Colm Glennon
- Conway Institute for Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin, Ireland.
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Norway; Division of Psychiatry, Haukeland University Hospital, Norway.
| |
Collapse
|
2
|
Ortega-Contreras B, Armella A, Appel J, Mennickent D, Araya J, González M, Castro E, Obregón AM, Lamperti L, Gutiérrez J, Guzmán-Gutiérrez E. Pathophysiological Role of Genetic Factors Associated With Gestational Diabetes Mellitus. Front Physiol 2022; 13:769924. [PMID: 35450164 PMCID: PMC9016477 DOI: 10.3389/fphys.2022.769924] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Gestational Diabetes Mellitus (GDM) is a highly prevalent maternal pathology characterized by maternal glucose intolerance during pregnancy that is, associated with severe complications for both mother and offspring. Several risk factors have been related to GDM; one of the most important among them is genetic predisposition. Numerous single nucleotide polymorphisms (SNPs) in genes that act at different levels on various tissues, could cause changes in the expression levels and activity of proteins, which result in glucose and insulin metabolism dysfunction. In this review, we describe various SNPs; which according to literature, increase the risk of developing GDM. These SNPs include: (1) those associated with transcription factors that regulate insulin production and excretion, such as rs7903146 (TCF7L2) and rs5015480 (HHEX); (2) others that cause a decrease in protective hormones against insulin resistance such as rs2241766 (ADIPOQ) and rs6257 (SHBG); (3) SNPs that cause modifications in membrane proteins, generating dysfunction in insulin signaling or cell transport in the case of rs5443 (GNB3) and rs2237892 (KCNQ1); (4) those associated with enzymes such as rs225014 (DIO2) and rs9939609 (FTO) which cause an impaired metabolism, resulting in an insulin resistance state; and (5) other polymorphisms, those are associated with growth factors such as rs2146323 (VEGFA) and rs755622 (MIF) which could cause changes in the expression levels of these proteins, producing endothelial dysfunction and an increase of pro-inflammatory cytokines, characteristic on GDM. While the pathophysiological mechanism is unclear, this review describes various potential effects of these polymorphisms on the predisposition to develop GDM.
Collapse
Affiliation(s)
- B. Ortega-Contreras
- Pregnancy Diseases Laboratory, Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, Universidad de Concepción, Concepción, Chile
| | - A. Armella
- Pregnancy Diseases Laboratory, Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, Universidad de Concepción, Concepción, Chile
| | - J. Appel
- Pregnancy Diseases Laboratory, Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, Universidad de Concepción, Concepción, Chile
| | - D. Mennickent
- Pregnancy Diseases Laboratory, Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, Universidad de Concepción, Concepción, Chile
- Department of Instrumental Analysis, Faculty of Pharmacy, Universidad de Concepción, Concepción, Chile
| | - J. Araya
- Department of Instrumental Analysis, Faculty of Pharmacy, Universidad de Concepción, Concepción, Chile
| | - M. González
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universidad de Concepción, Concepción, Chile
| | - E. Castro
- Departamento de Obstetricia y Puericultura, Facultad de Ciencias de la Salud, Universidad de Atacama, Copiapó, Chile
| | - A. M. Obregón
- Faculty of Health Care, Universidad San Sebastián, Concepción, Chile
| | - L. Lamperti
- Pregnancy Diseases Laboratory, Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, Universidad de Concepción, Concepción, Chile
| | - J. Gutiérrez
- Faculty of Health Sciences, Universidad San Sebastián, Santiago,Chile
| | - E. Guzmán-Gutiérrez
- Pregnancy Diseases Laboratory, Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, Universidad de Concepción, Concepción, Chile
- *Correspondence: E. Guzmán-Gutiérrez,
| |
Collapse
|
3
|
Xu J, Zhang W, Song W, Cui J, Tian Y, Chen H, Huang P, Yang S, Wang L, He X, Wang L, Shi B, Cui W. Relationship Between KCNQ1 Polymorphism and Type 2 Diabetes Risk in Northwestern China. Pharmgenomics Pers Med 2022; 14:1731-1751. [PMID: 35002291 PMCID: PMC8725845 DOI: 10.2147/pgpm.s340813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/10/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose This study aimed to explore the relationship between KCNQ1 polymorphism and type 2 diabetes mellitus (T2DM) risk in the population of Northwest China. Patients and Methods Case-control strategy was used to reveal the correlation between KCNQ1 polymorphism and T2DM risk, and MDR analysis clarified the influence of KCNQ1 polymorphism interaction on T2DM risk. The related proteins, functions, and signal pathways of KCNQ1 were further explored through bioinformatics methods. PCR was used to explore the relative expression of KCNQ1 in T2DM patients and the controls. Results Studies showed that rs163177, rs163184, rs2237895 and rs2283228 on the KCNQ1 gene are closely related to the risk of T2DM in Northwest China. MDR results showed that the three-locus model is the best model for T2DM risk assessment, which increases the risk of T2DM. The bioinformatics results showed that KCNQ1 closely-acted proteins are mainly involved in signal pathways such as gastric acid secretion and renin secretion. The PCR results showed that, compared with the controls, the expression of KCNQ1 was up-regulated in T2DM patients. Conclusion The results revealed that KCNQ1 polymorphism is related to the risk of T2DM in the population of Northwest China and provide a scientific basis for the early screening and prevention of T2DM high-risk populations.
Collapse
Affiliation(s)
- Jing Xu
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Wei Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Wei Song
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Jiaqi Cui
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yanni Tian
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Huan Chen
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Pan Huang
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Shujun Yang
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Lu Wang
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Xin He
- Department of Endocrinology, Xi'an Aerospace General Hospital, Xi'an, Shaanxi, 710000, People's Republic of China
| | - Lin Wang
- Department of Endocrinology, Xi'an Gaoxin Hospital, Xi'an, Shaanxi, 710075, People's Republic of China
| | - Bingyin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Wei Cui
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| |
Collapse
|
4
|
Hu F, Zhang Y, Qin P, Zhao Y, Liu D, Zhou Q, Tian G, Li Q, Guo C, Wu X, Qie R, Huang S, Han M, Li Y, Zhang M, Hu D. Integrated analysis of probability of type 2 diabetes mellitus with polymorphisms and methylation of KCNQ1 gene: A nested case-control study. J Diabetes 2021; 13:975-986. [PMID: 34260825 DOI: 10.1111/1753-0407.13212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 06/17/2021] [Accepted: 07/07/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND To estimate the associations between single-nucleotide polymorphisms (SNPs) and methylation of KCNQ1 gene and type 2 diabetes mellitus (T2DM) risk and the interactions among SNPs, methylation, and environmental factors on T2DM risk. METHODS We genotyped five SNPs and tested methylation at 39 CpG loci of KCNQ1 in 290 T2DM cases and 290 matched controls nested in the Rural Chinese Cohort Study. Conditional logistic regression model was used to estimate the associations between SNPs and KCNQ1 methylation and T2DM risk. Multifactor dimensionality reduction (MDR) analysis was used to estimate the effect of the interactions SNPs-SNPs, SNPs-methylation, methylation-methylation and SNPs, and methylation-environment on T2DM risk. RESULTS Probability of T2DM was decreased with rs2283228 of KCNQ1 (CA vs AA, odds ratio [OR] = 0.65, 95% confidence interval [CI] 0.42-0.99). T2DM probability was significantly increased with rs2237895 combined with hypertriglyceridemia (OReg = 2.76, 95% CI 1.35-5.62), with hypertension (OReg = 2.23, 95% CI 1.25-3.98), and with body mass index (BMI; OReg = 1.93, 95% CI 1.12-3.34). T2DM probability was associated with methylation of CG11 and CG41 (OR = 1.89, 95% CI 1.23-2.89, P = .003). It was significantly associated with the interaction between BMI, hypertriglyceridemia, and CG5 methylation (P = .028 and .028), and the combined effects of CG11 with hypertriglyceridemia and hypertension. On MDR analysis, no significant interaction was observed. CONCLUSION T2DM probability was reduced 35% with rs2283228 polymorphism. It was associated with rs2237895 combined with hypertension, with BMI and with hypertriglyceridemia. The methylation at two CpG loci of KCNQ1 significantly increased T2DM risk by 89%.
Collapse
Affiliation(s)
- Fulan Hu
- Study Team of Shenzhen's Sanming Project, The Affiliated Luohu Hospital of Shenzhen University Health Science Center, Shenzhen, China
- School of Public Health, Shenzhen University Health Science Center, Shenzhen, China
| | - Yanyan Zhang
- School of Public Health, Shenzhen University Health Science Center, Shenzhen, China
| | - Pei Qin
- School of Public Health, Shenzhen University Health Science Center, Shenzhen, China
| | - Yang Zhao
- Department of Epidemiology and Health Statistics, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Dechen Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Qionggui Zhou
- School of Public Health, Shenzhen University Health Science Center, Shenzhen, China
| | - Gang Tian
- Department of Epidemiology and Health Statistics, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Quanman Li
- Department of Epidemiology and Health Statistics, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Chunmei Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaoyan Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Ranran Qie
- Department of Epidemiology and Health Statistics, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shengbing Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Minghui Han
- Department of Epidemiology and Health Statistics, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yang Li
- School of Public Health, Shenzhen University Health Science Center, Shenzhen, China
| | - Ming Zhang
- School of Public Health, Shenzhen University Health Science Center, Shenzhen, China
| | - Dongsheng Hu
- Study Team of Shenzhen's Sanming Project, The Affiliated Luohu Hospital of Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
5
|
Yu XX, Liao MQ, Zeng YF, Gao XP, Liu YH, Sun W, Zhu S, Zeng FF, Ye YB. Associations of KCNQ1 Polymorphisms with the Risk of Type 2 Diabetes Mellitus: An Updated Meta-Analysis with Trial Sequential Analysis. J Diabetes Res 2020; 2020:7145139. [PMID: 32695830 PMCID: PMC7362295 DOI: 10.1155/2020/7145139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 04/10/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Previous studies have examined the role of the KQT-like subfamily Q member1 (KCNQ1) gene polymorphisms on the risk of type 2 diabetes mellitus (T2DM), but the findings are inconclusive. OBJECTIVE To examine the association between the KCNQ1 gene polymorphisms and the risk of T2DM using an updated meta-analysis with an almost tripled number of studies. METHODS Five electronic databases, such as PubMed and Embase, were searched thoroughly for relevant studies on the associations between seven most studied KCNQ1 gene polymorphisms, including rs2237892, rs2237897, rs2237895, rs2283228, rs231362, rs151290, and rs2074196, and T2DM risk up to September 14, 2019. The summary odds ratios (ORs) with their 95% confidence intervals (CIs) were applied to assess the strength of associations in the random-effects models. We used the trial sequential analysis (TSA) to measure the robustness of the evidence. RESULTS 49 publications including 55 case-control studies (68,378 cases and 66,673 controls) were finally enrolled. In overall analyses, generally, increased T2DM risk was detected for rs2237892, rs2237895, rs2283228, rs151290, and rs2074196, but not for rs231362 under all genetic models. The ORs and 95% CIs for allelic comparison were 1.23 (1.14-1.33) for rs2237892, 1.21 (1.16-1.27) for rs2237895, 1.27 (1.11-1.46) for rs2237897, 1.25 (1.09-1.42) for rs2283228, 1.14 (1.03-1.27) for rs151290, 1.31 (1.23-1.39) for rs2074196, and 1.16 (0.83, 1.61) for rs231362. Stratified analyses showed that associations for rs2237892, rs2237895, rs2283228, and rs151290 were more evident among Asians than Caucasians. TSA demonstrated that the evidence was sufficient for all polymorphisms in this study. The genotypes of the three SNPs (rs2237892, rs2283228, and rs231362) were significantly correlated with altered KCNQ1 gene expression. CONCLUSION This meta-analysis suggested that KCNQ1 gene polymorphisms (rs2237892, rs2283228, rs2237895, rs151290, and rs2074196) might be the susceptible factors for T2DM, especially among Asian population.
Collapse
Affiliation(s)
- Xiao-xuan Yu
- Department of Epidemiology, School of Medicine, Jinan University, No. 601 Huangpu Road West, Guangzhou, 510632 Guangdong, China
| | - Min-qi Liao
- Department of Epidemiology, School of Medicine, Jinan University, No. 601 Huangpu Road West, Guangzhou, 510632 Guangdong, China
| | - Yu-fei Zeng
- Department of Obstetrics and Gynecology, Shangrao Fifth People's Hospital, Shangrao, Jiangxi 334000, China
| | - Xu-ping Gao
- Department of Epidemiology, School of Medicine, Jinan University, No. 601 Huangpu Road West, Guangzhou, 510632 Guangdong, China
| | - Yan-hua Liu
- The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou, 450052 Henan, China
| | - Wei Sun
- Customs Comprehensive Laboratory, Baiyun International Airport Customs, Hengyi Road, Guangzhou, 510080 Guangdong, China
| | - Sui Zhu
- Department of Medical Statistics, School of Medicine, Jinan University, No. 601 Huangpu Road West, Guangzhou, 510632 Guangdong, China
| | - Fang-fang Zeng
- Department of Epidemiology, School of Medicine, Jinan University, No. 601 Huangpu Road West, Guangzhou, 510632 Guangdong, China
| | - Yan-bin Ye
- Department of Nutrition, The First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Road 2, Guangzhou, 510080 Guangdong, China
| |
Collapse
|
6
|
Khan IA, Jahan P, Hasan Q, Rao P. Genetic confirmation of T2DM meta-analysis variants studied in gestational diabetes mellitus in an Indian population. Diabetes Metab Syndr 2019; 13:688-694. [PMID: 30641791 DOI: 10.1016/j.dsx.2018.11.035] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/11/2018] [Indexed: 01/25/2023]
Abstract
BACKGROUND Meta-analysis is useful for combining the results of different studies statistically to confirm genuine associations in genetics. Based on earlier reports, we aimed to investigate the association between type 2 diabetes mellitus (T2DM) genetic variants identified in a previous meta-analysis in gestational diabetes mellitus (GDM) in an Indian woman. MATERIAL AND METHODS In this study, 137 pregnant women with GDM and 150 pregnant women were selected on the basis of their serum glucose levels. The six single nucleotide polymorphisms (SNPs) of different genes studied had known involvement in pancreatic β-cell function, particular pathways linked to T2DM, and other biological functions. Genomic DNA was isolated from the 287 women for polymerase chain reaction and restriction fragment length polymorphism analyses. RESULTS The rs7903146, rs13266634, rs2283228, rs5210 and rs179881 SNPs were found to be positively associated with GDM when calculated for genotype and allele frequencies (p < 0.05), but rs680 (ApaI) variant did not show statistically significant association (p = 0.31). The rs7903146, rs2283228, rs5210 and rs680 variants showed a strong association with oral glucose tolerance test values. CONCLUSION The SNPs studied in this GDM had the same role as those identified in a previous T2DM meta-analysis, and showed positive association in the Indian women. Meta-analyses should be implemented to assess the IGF2 gene in GDM subjects.
Collapse
Affiliation(s)
- Imran Ali Khan
- Department of Genetics and Molecular Medicine, Kamineni Hospitals, LB Nagar, Hyderabad, India; Department of Genetics, Vasavi Medical and Research Centre, Khairathabad, Hyderabad, India; Department of Genetics and Biotechnology, Osmania University, Tarnaka, Hyderabad, India
| | - Parveen Jahan
- Department of Genetics and Biotechnology, Osmania University, Tarnaka, Hyderabad, India
| | - Qurratulain Hasan
- Department of Genetics and Molecular Medicine, Kamineni Hospitals, LB Nagar, Hyderabad, India; Department of Genetics, Vasavi Medical and Research Centre, Khairathabad, Hyderabad, India
| | - Pragna Rao
- Department of Biochemistry, Kasturba Medical College, Manipal University, Manipal, Karnataka, India.
| |
Collapse
|
7
|
Hypermethylated KCNQ1 acts as a tumor suppressor in hepatocellular carcinoma. Biochem Biophys Res Commun 2018; 503:3100-3107. [PMID: 30144972 DOI: 10.1016/j.bbrc.2018.08.099] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 08/13/2018] [Indexed: 12/12/2022]
Abstract
Potassium (K+) channels are dysregulated in tumor tissues and functionally these channels contribute significantly to the malignant phenotypes of the cancer cells, including cell apoptosis, chemo- and radio-resistance, proliferation, and migration. However, little is known about the potential implications of K+ channels in hepatocellular carcinoma (HCC). The aim of the current study was to investigate the expression profile of KCNQ1 in HCC and assess its possible cellular implications as well as mechanism to disease progression. Using real-time qPCR and western blotting technique, we found that KCNQ1 was frequently down-regulated in HCC cell lines and tissues, and HCC patients with lower KCNQ1 expression had a poor prognosis. Specifically, DNA hypermethylation of KCNQ1 promoter resulted in its downregulation in HCC. Bioinformatic analysis indicated a regulatory role of KCNQ1 in the epithelial-to-mesenchymal transition process. Gain-of-function study showed that KCNQ1 exhibited remarkable inhibitory roles on tumor metastasis in vitro and in vivo. Mechanistically, KCNQ1 can interact with β-catenin to affect its subcellular distribution and subsequently reduce the activity of Wnt/β-catenin signaling, which further blocks the expression of its downstream targets, including c-Myc, MMP7, and CCND1. Restoration of β-catenin activity largely compromised the tumor-suppressive roles of KCNQ1 in the invasive capacity of HCC cells. In conclusion, KCNQ1 is down-regulated in HCC and may suppress HCC metastasis, which could represent a prognostic marker and promising therapeutic target for HCC.
Collapse
|
8
|
Kuruma S, Egawa N, Kurata M, Honda G, Kamisawa T, Ueda J, Ishii H, Ueno M, Nakao H, Mori M, Matsuo K, Hosono S, Ohkawa S, Wakai K, Nakamura K, Tamakoshi A, Nojima M, Takahashi M, Shimada K, Nishiyama T, Kikuchi S, Lin Y. Case-control study of diabetes-related genetic variants and pancreatic cancer risk in Japan. World J Gastroenterol 2014; 20:17456-17462. [PMID: 25516658 PMCID: PMC4265605 DOI: 10.3748/wjg.v20.i46.17456] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/18/2014] [Accepted: 07/25/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To examine whether diabetes-related genetic variants are associated with pancreatic cancer risk.
METHODS: We genotyped 7 single-nucleotide polymorphisms (SNPs) in PPARG2 (rs1801282), ADIPOQ (rs1501299), ADRB3 (rs4994), KCNQ1 (rs2237895), KCNJ11 (rs5219), TCF7L2 (rs7903146), and CDKAL1 (rs2206734), and examined their associations with pancreatic cancer risk in a multi-institute case-control study including 360 cases and 400 controls in Japan. A self-administered questionnaire was used to collect detailed information on lifestyle factors. Genotyping was performed using Fluidigm SNPtype assays. Unconditional logistic regression methods were used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for the association between these diabetes-associated variants and pancreatic cancer risk.
RESULTS: With the exception of rs1501299 in the ADIPOQ gene (P = 0.09), no apparent differences in genotype frequencies were observed between cases and controls. Rs1501299 in the ADPIOQ gene was positively associated with pancreatic cancer risk; compared with individuals with the AA genotype, the age- and sex-adjusted OR was 1.79 (95%CI: 0.98-3.25) among those with the AC genotype and 1.86 (95%CI: 1.03-3.38) among those with the CC genotype. The ORs remained similar after additional adjustment for body mass index and cigarette smoking. In contrast, rs2237895 in the KCNQ1 gene was inversely related to pancreatic cancer risk, with a multivariable-adjusted OR of 0.62 (0.37-1.04) among individuals with the CC genotype compared with the AA genotype. No significant associations were noted for other 5 SNPs.
CONCLUSION: Our case-control study indicates that rs1501299 in the ADIPOQ gene may be associated with pancreatic cancer risk. These findings should be replicated in additional studies.
Collapse
|