1
|
Orlova A, Guseva D, Demina N, Polyakov A, Ryzhkova O. Spectrum of Mutations in PTPN11 in Russian Cohort. Genes (Basel) 2024; 15:345. [PMID: 38540404 PMCID: PMC10970286 DOI: 10.3390/genes15030345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 06/14/2024] Open
Abstract
Noonan syndrome is a group of diseases with a similar clinical picture, consisting of 16 diseases caused by mutations in 15 genes. According to the literature, approximately half of all cases are attributed to Noonan syndrome type 1, NSML, caused by mutations in the PTPN11 gene. We analyzed 456 unrelated probands using a gene panel NGS, and in 206 cases, the cause of the disease was identified. Approximately half of the cases (107) were caused by variants in the PTPN11 gene, including three previously undescribed variants, one of which was classified as VOUS, and the other two as LP causative complex alleles. Frequent variants of the PTPN11 gene characteristics for Russian patients were identified, accounting for more than 38% (c.922A>G p.Asn308Asp, c.417G>C p.Glu139Asp, c.1403C>T p.Thr468Met) of all cases with mutations in the PTPN11 gene. A comparative characterization of frequent variants of the PTPN11 gene in different populations is shown. The most common features of Noonan syndrome in the studied sample were facial dysmorphisms and cardiovascular system abnormalities. A lower representation of patients with growth delay was observed compared to previously described samples.
Collapse
Affiliation(s)
- Anna Orlova
- SRC «Genome», Research Centre for Medical Genetics, 115522 Moscow, Russia;
| | - Daria Guseva
- Counselling Unit, Research Centre for Medical Genetics, 115522 Moscow, Russia; (D.G.); (N.D.)
| | - Nina Demina
- Counselling Unit, Research Centre for Medical Genetics, 115522 Moscow, Russia; (D.G.); (N.D.)
| | - Aleksander Polyakov
- DNA-Diagnostics Laboratory, Research Centre for Medical Genetics, 115522 Moscow, Russia;
| | - Oksana Ryzhkova
- SRC «Genome», Research Centre for Medical Genetics, 115522 Moscow, Russia;
| |
Collapse
|
2
|
Mudau MM, Seymour H, Nevondwe P, Kerr R, Spencer C, Feben C, Lombard Z, Honey E, Krause A, Carstens N. A feasible molecular diagnostic strategy for rare genetic disorders within resource-constrained environments. J Community Genet 2024; 15:39-48. [PMID: 37815686 PMCID: PMC10858011 DOI: 10.1007/s12687-023-00674-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/19/2023] [Indexed: 10/11/2023] Open
Abstract
Timely and accurate diagnosis of rare genetic disorders is critical, as it enables improved patient management and prognosis. In a resource-constrained environment such as the South African State healthcare system, the challenge is to design appropriate and cost-effective assays that will enable accurate genetic diagnostic services in patients of African ancestry across a broad disease spectrum. Next-generation sequencing (NGS) has transformed testing approaches for many Mendelian disorders, but this technology is still relatively new in our setting and requires cost-effective ways to implement. As a proof of concept, we describe a feasible diagnostic strategy for genetic disorders frequently seen in our genetics clinics (RASopathies, Cornelia de Lange syndrome, Treacher Collins syndrome, and CHARGE syndrome). The custom-designed targeted NGS gene panel enabled concurrent variant screening for these disorders. Samples were batched during sequencing and analyzed selectively based on the clinical phenotype. The strategy employed in the current study was cost-effective, with sequencing and analysis done at USD849.68 per sample and achieving an overall detection rate of 54.5%. The strategy employed is cost-effective as it allows batching of samples from patients with different diseases in a single run, an approach that can be utilized with rare and less frequently ordered molecular diagnostic tests. The subsequent selective analysis pipeline allowed for timeous reporting back of patients results. This is feasible with a reasonable yield and can be employed for the molecular diagnosis of a wide range of rare monogenic disorders in a resource-constrained environment.
Collapse
Affiliation(s)
- Maria Mabyalwa Mudau
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Heather Seymour
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Patracia Nevondwe
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Robyn Kerr
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Careni Spencer
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Candice Feben
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Zané Lombard
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Engela Honey
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Amanda Krause
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nadia Carstens
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Genomics Platform, South African Medical Research Council, Cape Town, South Africa
| |
Collapse
|
3
|
Jian W, Yuan H, Liu Y, Sun J, Chen F, Li Y, Chen M. Prenatal diagnosis of Noonan syndrome in a set of monozygotic twins- a case report. BMC Pregnancy Childbirth 2023; 23:10. [PMID: 36609239 PMCID: PMC9825018 DOI: 10.1186/s12884-022-05323-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 12/20/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND We report a pair of dichorionic diamniotic (DCDA) twin pregnancy affected by Noonan syndrome (NS) with a novel mutation of LZTR1 determined by genetic analysis. CASE PRESENTATION A pregnant woman with monozygotic twins (DCDA) at 12 + 2 weeks gestation was referred to our center. This was her second pregnancy following a previous delivery of a healthy infant. Nuchal translucency of two fetuses was 11.2 mm (CRL 62.0 mm) and 6.9 mm (CRL 62.1 mm) respectively. Ultrasound examination indicated cystic hygroma and hypoplastic ear. The couple was not consanguineous, and both had normal phenotype. Familial hereditary disease was also excluded. Under ultrasound guidance, 30 mg of chorionic villi was obtained for karyotyping, quantitative fluorescent polymerase chain reaction (QF-PCR), chromosomal microarray analysis(CMA), and Trio-whole-exome sequencing(WES) examination. We used the "target region capture and sequencing" for WES, and the BWA (Burrows Wheeler Aligner) Multi-Vision software package for the data analysis. The results of all these tests were normal except WES detected a c.427 A > G mutation in the exonic region of the LZTR1 gene and a p. Asn143Asp novel heterozygous mutation associated with NS in this pair of twins. In addition, WES suggested that the mutation in the twin fetuses originated from the mother. When the mother got the genetic test report, she came to our fetal medicine department for genetic counseling and she declined the appointment with a clinical geneticist. The couple opted to terminate the pregnancy. Because the patient did not choose to terminate the pregnancy at our hospital, we were unable to take further examination. With the help of colleagues in another hospital, photos of the fetuses were taken. Compared with the prenatal ultrasound results, the appearance of the "cystic hygroma" and "hypoplastic ear" was consistent with the ultrasound. The couple were depressed after knowing this pathogenic result and although we advised the mother to take further investigation, they refused. CONCLUSION The mutant locus might be incompletely dominant, which led to an abnormal fetal phenotype such as cystic hygroma and hypoplastic ear.
Collapse
Affiliation(s)
- Wei Jian
- grid.417009.b0000 0004 1758 4591Department of Obstetrics and Gynecology, Department of Fetal Medicine and Prenatal Diagnosis, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huizhen Yuan
- grid.469571.80000 0004 5910 9561Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Guangzhou, China
| | - Yu Liu
- grid.417009.b0000 0004 1758 4591Department of Obstetrics and Gynecology, Department of Fetal Medicine and Prenatal Diagnosis, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jimei Sun
- grid.417009.b0000 0004 1758 4591Department of Obstetrics and Gynecology, Department of Fetal Medicine and Prenatal Diagnosis, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fei Chen
- grid.417009.b0000 0004 1758 4591Department of Obstetrics and Gynecology, Department of Fetal Medicine and Prenatal Diagnosis, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yufan Li
- grid.417009.b0000 0004 1758 4591Department of Obstetrics and Gynecology, Department of Fetal Medicine and Prenatal Diagnosis, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Min Chen
- grid.417009.b0000 0004 1758 4591Department of Obstetrics and Gynecology, Department of Fetal Medicine and Prenatal Diagnosis, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
4
|
Szczawińska-Popłonyk A, Popłonyk N, Niedziela M, Sowińska-Seidler A, Sztromwasser P, Jamsheer A, Obara-Moszyńska M. Case report: The cardio-facio-cutaneous syndrome due to a novel germline mutation in MAP2K1: A multifaceted disease with immunodeficiency and short stature. Front Pediatr 2022; 10:990111. [PMID: 36313893 PMCID: PMC9614356 DOI: 10.3389/fped.2022.990111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022] Open
Abstract
Cardio-facio-cutaneous syndrome (CFCS) belongs to the group of RASopathies, clinical disorders defined by disruptions in the RAS/MAPK signaling pathway. It is caused by heterozygous gain-of-function germline mutations in genes encoding protein kinases: BRAF, MAP2K1 (MEK1), MAP2K2 (MEK2), and in the GTPase-encoding gene KRAS. CFCS is characterized by craniofacial dysmorphic features, congenital heart defects, severe malnutrition, proportionate short stature, anomalies within the structure of skin and hair, and psychomotor disability. The pathophysiology of growth impairment is multifactorial with feeding difficulties, growth hormone deficiency, and insensitivity. Immunodeficiency has not been hitherto reported as an integral part of CFCS yet an increased activation of the RAS/MAPK signaling pathway may contribute to explaining the causal relationship between RASopathy and the dysfunctions within the B and T lymph cell compartments resulting in a deficiency in T cell costimulation and B cell maturation with impaired class switch recombination, somatic hypermutation, and high-affinity antibody production. We report on a boy born prematurely at 32 WGA, with the perinatal period complicated by pneumonia, respiratory distress syndrome, and valvular pulmonary stenosis. The boy suffered from recurrent pneumonia, obstructive bronchitis, sepsis, urinary tract infection, and recurrent fevers. He presented with severe hypotrophy, psychomotor disability, short stature, craniofacial dysmorphism, dental hypoplasia, sparse hair, and cryptorchidism. Whole genome sequencing showed a novel heterozygous pathogenic germline missense variant: c.364A > G; p.Asn122Asp in the MAP2K1 gene, supporting the diagnosis of CFCS. The immunological workup revealed hypogammaglobulinemia, IgG subclass, and specific antibody deficiency accompanied by decreased numbers of T helper cells and naive and memory B cells. Replacement immunoglobulin therapy with timely antibiotic prophylaxis were instituted. At the age of six years, growth hormone deficiency was diagnosed and the rGH therapy was started. The ever-increasing progress in genetic studies contributes to establishing the definitive CFCS diagnosis and sheds the light on the interrelated genotype-phenotype heterogeneity of RASopathies. Herein, we add new phenotypic features of predominating humoral immunodeficiency to the symptomatology of CFCS with a novel mutation in MAP2K1. While CFCS is a multifaceted disease, increased pediatricians' awareness is needed to prevent the delay in diagnostics and therapeutic interventions.
Collapse
Affiliation(s)
- Aleksandra Szczawińska-Popłonyk
- Department of Pediatric Pneumonology, Allergy and Clinical Immunology, Institute of Pediatrics, Poznań University of Medical Sciences, Poznań, Poland
| | - Natalia Popłonyk
- Student Scientific Society for Pediatric Endocrinology, Poznań University of Medical Sciences, Poznań, Poland
| | - Marek Niedziela
- Department of Pediatric Endocrinology and Rheumatology, Institute of Pediatrics, Poznań University of Medical Sciences, Poznań, Poland
| | - Anna Sowińska-Seidler
- Department of Medical Genetics, Poznań University of Medical Sciences, Poznań, Poland
| | - Paweł Sztromwasser
- Department of Biostatistics and Translational Medicine, Medical University of Łódź, Łódź, Poland.,MNM Diagnostics, Poznań, Poland
| | - Aleksander Jamsheer
- Department of Medical Genetics, Poznań University of Medical Sciences, Poznań, Poland
| | - Monika Obara-Moszyńska
- Department of Pediatric Endocrinology and Rheumatology, Institute of Pediatrics, Poznań University of Medical Sciences, Poznań, Poland
| |
Collapse
|
5
|
Van R, Cuevas-Navarro A, Castel P, McCormick F. The molecular functions of RIT1 and its contribution to human disease. Biochem J 2020; 477:2755-2770. [PMID: 32766847 PMCID: PMC7787054 DOI: 10.1042/bcj20200442] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/29/2022]
Abstract
RIT1 is a member of the Ras family of GTPases that direct broad cellular physiological responses through tightly controlled signaling networks. The canonical Ras GTPases are well-defined regulators of the RAF/MEK/ERK pathway and mutations in these are pathogenic in cancer and a class of developmental disorders termed RASopathies. Emerging clinical evidences have now demonstrated a role for RIT1 in RASopathies, namely Noonan syndrome, and various cancers including lung adenocarcinoma and myeloid malignancies. While RIT1 has been mostly described in the context of neuronal differentiation and survival, the mechanisms underlying aberrant RIT1-mediated signaling remain elusive. Here, we will review efforts undertaken to characterize the biochemical and functional properties of the RIT1 GTPase at the molecular, cellular, and organismal level, as well as provide a phenotypic overview of different human conditions caused by RIT1 mutations. Deeper understanding of RIT1 biological function and insight to its pathogenic mechanisms are imperative to developing effective therapeutic interventions for patients with RIT1-mutant Noonan syndrome and cancer.
Collapse
Affiliation(s)
- Richard Van
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, U.S.A
| | - Antonio Cuevas-Navarro
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, U.S.A
| | - Pau Castel
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, U.S.A
| | - Frank McCormick
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, U.S.A
| |
Collapse
|
6
|
Variants of SOS2 are a rare cause of Noonan syndrome with particular predisposition for lymphatic complications. Eur J Hum Genet 2020; 29:51-60. [PMID: 32788663 DOI: 10.1038/s41431-020-00708-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 11/09/2022] Open
Abstract
RASopathies are caused by variants in genes encoding components or modulators of the RAS/MAPK signaling pathway. Noonan syndrome is the most common entity among this group of disorders and is characterized by heart defects, short stature, variable developmental delay, and typical facial features. Heterozygous variants in SOS2, encoding a guanine nucleotide exchange factor for RAS, have recently been identified in patients with Noonan syndrome. The number of published cases with SOS2-related Noonan syndrome is still limited and little is known about genotype-phenotype correlations. We collected previously unpublished clinical and genotype data from 17 individuals carrying a disease-causing SOS2 variant. Most individuals had one of the previously reported dominant pathogenic variants; only four had novel changes at the established hotspots for variants that affect protein function. The overall phenotype of the 17 patients fits well into the spectrum of Noonan syndrome and is most similar to the phenotype observed in patients with SOS1-related Noonan syndrome, with ectodermal anomalies as common features and short stature and learning disabilities as relatively infrequent findings compared to the average Noonan syndrome phenotype. The spectrum of heart defects in SOS2-related Noonan syndrome was consistent with the known spectrum of cardiac anomalies in RASopathies, but no specific heart defect was particularly predominating. Notably, lymphatic anomalies were extraordinarily frequent, affecting more than half of the patients. We therefore conclude that SOS2-related Noonan syndrome is associated with a particularly high risk of lymphatic complications that may have a significant impact on morbidity and quality of life.
Collapse
|
7
|
Aly SA, Boyer KM, Muller BA, Marini D, Jones CH, Nguyen HH. Complicated ventricular arrhythmia and hematologic myeloproliferative disorder in RIT1-associated Noonan syndrome: Expanding the phenotype and review of the literature. Mol Genet Genomic Med 2020; 8:e1253. [PMID: 32396283 PMCID: PMC7336743 DOI: 10.1002/mgg3.1253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/20/2020] [Indexed: 12/22/2022] Open
Abstract
Background Noonan syndrome is an autosomal dominant disorder secondary to RASopathies, which are caused by germ‐line mutations in genes encoding components of the RAS mitogen‐activated protein kinase pathway. RIT1 (OMIM *609591) was recently reported as a disease gene for Noonan syndrome. Methods and Results We present a patient with RIT1‐associated Noonan syndrome, who in addition to the congenital heart defect, had monocytosis, myeloproliferative disorder, and accelerated idioventricular rhythm that was associated with severe hemodynamic instability. Noonan syndrome was suspected given the severe pulmonary stenosis, persistent monocytosis, and “left‐shifted” complete blood counts without any evidence of an infectious process. Genetic testing revealed that the patient had a heterozygous c.221 C>G (pAla74Gly) mutation in the RIT1. Conclusion We report a case of neonatal Noonan syndrome associated with RIT1 mutation. The clinical suspicion for Noonan syndrome was based only on the congenital heart defect, persistent monocytosis, and myeloproliferative process as the child lacked all other hallmarks characteristics of Noonan syndrome. However, the patient had an unusually malignant ventricular dysrhythmia that lead to his demise. The case highlights the fact that despite its heterogeneous presentation, RIT1‐associated Noonan syndrome can be extremely severe with poor outcome.
Collapse
Affiliation(s)
- Safwat A. Aly
- Department of PediatricsRush University Medical CollegeChicagoILUSA
- Division of CardiologyDepartment of PediatricsThe Hospital for Sick ChildrenUniversity of TorontoTorontoOntarioCanada
| | - Kenneth M. Boyer
- Department of PediatricsRush University Medical CollegeChicagoILUSA
| | | | - Davide Marini
- Division of CardiologyDepartment of PediatricsThe Hospital for Sick ChildrenUniversity of TorontoTorontoOntarioCanada
| | - Carolyn H. Jones
- Department of PediatricsRush University Medical CollegeChicagoILUSA
| | - Hoang H. Nguyen
- Department of PediatricsRush University Medical CollegeChicagoILUSA
| |
Collapse
|
8
|
Athota JP, Bhat M, Nampoothiri S, Gowrishankar K, Narayanachar SG, Puttamallesh V, Farooque MO, Shetty S. Molecular and clinical studies in 107 Noonan syndrome affected individuals with PTPN11 mutations. BMC MEDICAL GENETICS 2020; 21:50. [PMID: 32164556 PMCID: PMC7068896 DOI: 10.1186/s12881-020-0986-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/25/2020] [Indexed: 02/08/2023]
Abstract
Background Noonan syndrome (NS), an autosomal dominant developmental genetic disorder, is caused by germline mutations in genes associated with the RAS / mitogen-activated protein kinase (MAPK) pathway. In several studies PTPN11 is one of the genes with a significant number of pathogenic variants in NS-affected patients. Therefore, clinically diagnosed NS individuals are initially tested for pathogenic variants in PTPN11 gene to confirm the relationship before studying genotype–phenotype correlation. Methods Individuals (363) with clinically diagnosed NS from four hospitals in South India were recruited and the exons of PTPN11 gene were sequenced. Results Thirty-two previously described pathogenic variants in eight different exons in PTPN11 gene were detected in 107 patients, of whom 10 were familial cases. Exons 3, 8 and 13 had the highest number of pathogenic variants. The most commonly identified pathogenic variants in this series were in exon 8 (c.922A > G, c.923A > G), observed in 22 of the affected. Congenital cardiac anomalies were present in 84% of the mutation-positive cohort, the majority being defects in the right side of the heart. The most common facial features were downward-slanting palpebral fissures, hypertelorism and low-set posteriorly rotated ears. Other clinical features included short stature (40%), pectus excavatum (54%) and, in males, unilateral or bilateral cryptorchidism (44%). Conclusion The clinical features and mutational spectrum observed in our cohort are similar to those reported in other large studies done worldwide. This is the largest case series of NS-affected individuals with PTPN11 mutations described till date from India.
Collapse
Affiliation(s)
| | - Meenakshi Bhat
- Molecular Genetics, Centre for Human Genetics, Bengaluru, 560100, India.,Pediatric Genetics, Indira Gandhi Institute of Child Health, Bengaluru, 560029, India
| | - Sheela Nampoothiri
- Pediatric Genetics, Amrita Institute of Medical Sciences & Research Centre (AIMS), Kochi, 682041, India
| | | | | | | | | | - Swathi Shetty
- Molecular Genetics, Centre for Human Genetics, Bengaluru, 560100, India.
| |
Collapse
|
9
|
Dell'Edera D, Debellis L, Mitidieri A, Anna Epifania A, Cuscianna E, Allegretti A. Cardiofaciocutaneous syndrome with rare structural variant in DOCK8 gene associated with neurodevelopmental disorders. Clin Case Rep 2020; 8:539-544. [PMID: 32185055 PMCID: PMC7069886 DOI: 10.1002/ccr3.2729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 12/10/2019] [Accepted: 12/16/2019] [Indexed: 11/07/2022] Open
Abstract
We describe a girl with clinical signs of cardiofaciocutaneous syndrome who simultaneously presents a mutation in the BRAF gene and a 9p24.3 microduplication. This genetic condition has never been described in the literature and could explain the phenotypic variability observed in the girl.
Collapse
Affiliation(s)
- Domenico Dell'Edera
- Unit of Cytogenetic and Molecular Genetics“Madonna delle Grazie” HospitalMateraItaly
| | - Lucantonio Debellis
- Unit of Cytogenetic and Molecular Genetics“Madonna delle Grazie” HospitalMateraItaly
| | - Angela Mitidieri
- Unit of Cytogenetic and Molecular Genetics“Madonna delle Grazie” HospitalMateraItaly
| | | | - Eustachio Cuscianna
- Unit of Cytogenetic and Molecular Genetics“Madonna delle Grazie” HospitalMateraItaly
| | - Arianna Allegretti
- Unit of Cytogenetic and Molecular Genetics“Madonna delle Grazie” HospitalMateraItaly
| |
Collapse
|
10
|
Chinton J, Huckstadt V, Mucciolo M, Lepri F, Novelli A, Gravina LP, Obregon MG. Providing more evidence on LZTR1 variants in Noonan syndrome patients. Am J Med Genet A 2019; 182:409-414. [PMID: 31825158 DOI: 10.1002/ajmg.a.61445] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/21/2019] [Accepted: 11/26/2019] [Indexed: 12/17/2022]
Abstract
Noonan syndrome (NS, OMIM 163950) is a common autosomal dominant RASopathy caused mainly by gain-of-function germline pathogenic variants in genes involved in the RAS/MAPK signaling pathway. LZTR1 gene has been associated with both dominant and recessive NS. Here, we present seven patients with NS and variants in the LZTR1 gene from seven unrelated families, 14 individuals in total. The detection rAte of LZTR1 variants in our NS cohort was 4% similar to RAF1 and KRAS genes, indicating that variants in this gene might be frequent among our population. Three different variants were detected, c.742G>A (p.Gly248Arg), c.360C>A (p.His120Gln), and c.2245T>C (p.Tyr749His). The pathogenic variant c.742G>A (p.Gly248Arg) was found in five/seven patients. In our cohort 50% of patients presented heart defects and neurodevelopment delay or learning disabilities, short stature was present in 21% of them and one patient had acute lymphoblastic leukemia. This study broadens the spectrum of variants in the LZTR1 gene and provides increased knowledge of the clinical phenotypes observed in Argentinean NS patients.
Collapse
Affiliation(s)
- Josefina Chinton
- Laboratorio de Biología Molecular, Servicio de Genética, Hospital de Pediatría Garrahan, Buenos Aires, Argentina
| | - Victoria Huckstadt
- Servicio de Genética, Hospital de Pediatría Garrahan, Buenos Aires, Argentina
| | - Mafalda Mucciolo
- Medical Genetics Unit, Medical Genetics Laboratory, Bambino Gesù Children's Hospital, Rome, Italy
| | - Francesca Lepri
- Medical Genetics Unit, Medical Genetics Laboratory, Bambino Gesù Children's Hospital, Rome, Italy
| | - Antonio Novelli
- Medical Genetics Unit, Medical Genetics Laboratory, Bambino Gesù Children's Hospital, Rome, Italy
| | - Luis Pablo Gravina
- Laboratorio de Biología Molecular, Servicio de Genética, Hospital de Pediatría Garrahan, Buenos Aires, Argentina
| | | |
Collapse
|
11
|
Koh AL, Tan ES, Brett MS, Lai AHM, Jamuar SS, Ng I, Tan EC. The spectrum of genetic variants and phenotypic features of Southeast Asian patients with Noonan syndrome. Mol Genet Genomic Med 2019; 7:e00581. [PMID: 30784236 PMCID: PMC6465663 DOI: 10.1002/mgg3.581] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/18/2018] [Accepted: 12/31/2018] [Indexed: 12/28/2022] Open
Abstract
Background Noonan syndrome (NS) is an autosomal dominant disorder that belongs to a group of developmental disorders called RASopathies with overlapping features and multiple causative genes. The aim of the study was to identify mutations underlying this disorder in patients from Southeast Asia and characterize their clinical presentations. Methods Patients were identified from the hospital's Genetics clinics after assessment by attending clinical geneticists. A targeted gene panel was used for next‐generation sequencing on genomic DNA extracted from the blood samples of 17 patients. Results Heterozygous missense variants were identified in 13 patients: eight were in PTPN11, three in SOS1, and one each in RIT1 and KRAS. All are known variants that have been reported in patients with NS. Of the 13 patients with identified variants, 10 had short stature, the most common feature for NS. Four of the eight patients with PTPN11 variants had atrial septal defect. Only two had pulmonary stenosis which is reported to be common for PTPN11 mutation carriers. Another two had hypertrophic cardiomyopathy, a feature which is negatively associated with PTPN11 mutations. Conclusions Our study provides the mutation and phenotypic spectrum of NS from a new population group. The molecular testing yield of 76% is similar to other studies and shows that the targeted panel approach is useful for identifying genetic mutations in NS which has multiple causative genes. The molecular basis for the phenotypes of the remaining patients remains unknown and would need to be uncovered via sequencing of additional genes or other investigative methods.
Collapse
Affiliation(s)
- Ai-Ling Koh
- Department of Paediatrics, KK Women's & Children's Hospital, Singapore
| | - Ee-Shien Tan
- Genetics Service, Department of Paediatrics, KK Women's & Children's Hospital, Singapore.,Paediatrics Academic Clinical Programme, SingHealth Duke-NUS Graduate Medical School, Singapore
| | - Maggie S Brett
- Research Laboratory, KK Women's & Children's Hospital, Singapore
| | - Angeline H M Lai
- Genetics Service, Department of Paediatrics, KK Women's & Children's Hospital, Singapore.,Paediatrics Academic Clinical Programme, SingHealth Duke-NUS Graduate Medical School, Singapore
| | - Saumya Shekhar Jamuar
- Genetics Service, Department of Paediatrics, KK Women's & Children's Hospital, Singapore.,Paediatrics Academic Clinical Programme, SingHealth Duke-NUS Graduate Medical School, Singapore
| | - Ivy Ng
- Genetics Service, Department of Paediatrics, KK Women's & Children's Hospital, Singapore.,Paediatrics Academic Clinical Programme, SingHealth Duke-NUS Graduate Medical School, Singapore
| | - Ene-Choo Tan
- Genetics Service, Department of Paediatrics, KK Women's & Children's Hospital, Singapore.,Paediatrics Academic Clinical Programme, SingHealth Duke-NUS Graduate Medical School, Singapore.,Research Laboratory, KK Women's & Children's Hospital, Singapore
| |
Collapse
|
12
|
Ordan M, Pallara C, Maik-Rachline G, Hanoch T, Gervasio FL, Glaser F, Fernandez-Recio J, Seger R. Intrinsically active MEK variants are differentially regulated by proteinases and phosphatases. Sci Rep 2018; 8:11830. [PMID: 30087384 PMCID: PMC6081382 DOI: 10.1038/s41598-018-30202-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 07/25/2018] [Indexed: 12/14/2022] Open
Abstract
MAPK/ERK kinase (MEK) 1/2 are central signaling proteins that serve as specificity determinants of the MAPK/ERK cascade. More than twenty activating mutations have been reported for MEK1/2, and many of them are known to cause diseases such as cancers, arteriovenous malformation and RASopathies. Changes in their intrinsic activity do not seem to correlate with the severity of the diseases. Here we studied four MEK1/2 mutations using biochemical and molecular dynamic methods. Although the studied mutants elevated the activating phosphorylation of MEK they had no effect on the stimulated ERK1/2 phosphorylation. Studying the regulatory mechanism that may explain this lack of effect, we found that one type of mutation affects MEK stability and two types of mutations demonstrate a reduced sensitivity to PP2A. Together, our results indicate that some MEK mutations exert their function not only by their elevated intrinsic activity, but also by modulation of regulatory elements such as protein stability or dephosphorylation.
Collapse
Affiliation(s)
- Merav Ordan
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Chiara Pallara
- Life Sciences Department, Barcelona Supercomputing Center, Barcelona, Spain
| | - Galia Maik-Rachline
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Tamar Hanoch
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | | | - Fabian Glaser
- Bioinformatics Knowledge Unit, Technion, Haifa, Israel
| | - Juan Fernandez-Recio
- Life Sciences Department, Barcelona Supercomputing Center, Barcelona, Spain.,Institut de Biologia Molecular de Barcelona, CSIC, Barcelona, Spain
| | - Rony Seger
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
13
|
Al-Aama JY, Banaganapalli B, Aljeaid D, Bakhur K, Verma PK, Al-Ata J, Elango R, Shaik NA. Targeted Molecular Sequencing Revealed Allelic Heterogeneity of BRAF and PTPN11 Genes among Arab Noonan Syndrome Patients. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418080033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Meyer zum Büschenfelde U, Brandenstein LI, von Elsner L, Flato K, Holling T, Zenker M, Rosenberger G, Kutsche K. RIT1 controls actin dynamics via complex formation with RAC1/CDC42 and PAK1. PLoS Genet 2018; 14:e1007370. [PMID: 29734338 PMCID: PMC5937737 DOI: 10.1371/journal.pgen.1007370] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 04/18/2018] [Indexed: 12/12/2022] Open
Abstract
RIT1 belongs to the RAS family of small GTPases. Germline and somatic RIT1 mutations have been identified in Noonan syndrome (NS) and cancer, respectively. By using heterologous expression systems and purified recombinant proteins, we identified the p21-activated kinase 1 (PAK1) as novel direct effector of RIT1. We found RIT1 also to directly interact with the RHO GTPases CDC42 and RAC1, both of which are crucial regulators of actin dynamics upstream of PAK1. These interactions are independent of the guanine nucleotide bound to RIT1. Disease-causing RIT1 mutations enhance protein-protein interaction between RIT1 and PAK1, CDC42 or RAC1 and uncouple complex formation from serum and growth factors. We show that the RIT1-PAK1 complex regulates cytoskeletal rearrangements as expression of wild-type RIT1 and its mutant forms resulted in dissolution of stress fibers and reduction of mature paxillin-containing focal adhesions in COS7 cells. This effect was prevented by co-expression of RIT1 with dominant-negative CDC42 or RAC1 and kinase-dead PAK1. By using a transwell migration assay, we show that RIT1 wildtype and the disease-associated variants enhance cell motility. Our work demonstrates a new function for RIT1 in controlling actin dynamics via acting in a signaling module containing PAK1 and RAC1/CDC42, and highlights defects in cell adhesion and migration as possible disease mechanism underlying NS. Noonan syndrome (NS) belongs to the RASopathies, a group of developmental diseases caused by mutations in genes encoding RAS-MAPK pathway components. Germline mutations in RIT1 have been identified in NS. RIT1 belongs to the RAS superfamily, however, the cellular function of RIT1 remains elusive. We show that RIT1 binds p21-activated kinase 1 (PAK1), an effector of the RHO GTPases RAC1 and CDC42, which are important regulators of cytoskeletal dynamics. NS-associated RIT1 mutants enhance complex formation between RIT1, RAC1/CDC42 and PAK1. Expression of wild-type or mutant forms of RIT1 caused loss of stress fibers and mature focal adhesions and enhanced cell motility. Our data suggest that dysfunction in actin dynamics is a novel aspect in the pathophysiology of RASopathies.
Collapse
Affiliation(s)
| | | | - Leonie von Elsner
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kristina Flato
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tess Holling
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| | - Georg Rosenberger
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- * E-mail: (KK); (GR)
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- * E-mail: (KK); (GR)
| |
Collapse
|
15
|
Andrade AC, Jee YH, Nilsson O. New Genetic Diagnoses of Short Stature Provide Insights into Local Regulation of Childhood Growth
. Horm Res Paediatr 2018; 88:22-37. [PMID: 28334714 DOI: 10.1159/000455850] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/03/2017] [Indexed: 12/12/2022] Open
Abstract
Idiopathic short stature is a common condition with a heterogeneous etiology. Advances in genetic methods, including genome sequencing techniques and bioinformatics approaches, have emerged as important tools to identify the genetic defects in families with monogenic short stature. These findings have contributed to the understanding of growth regulation and indicate that growth plate chondrogenesis, and therefore linear growth, is governed by a large number of genes important for different signaling pathways and cellular functions, including genetic defects in hormonal regulation, paracrine signaling, cartilage matrix, and fundamental cellular processes. In addition, mutations in the same gene can cause a wide phenotypic spectrum depending on the severity and mode of inheritance of the mutation.
.
Collapse
Affiliation(s)
- Anenisia C Andrade
- Division of Pediatric Endocrinology, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Youn Hee Jee
- Section of Growth and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Ola Nilsson
- Division of Pediatric Endocrinology, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.,Department of Medical Sciences, Örebro University and University Hospital, Örebro, Sweden
| |
Collapse
|
16
|
Integrating Functional Analysis in the Next-Generation Sequencing Diagnostic Pipeline of RASopathies. Sci Rep 2018; 8:2421. [PMID: 29402968 PMCID: PMC5799236 DOI: 10.1038/s41598-018-20894-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/25/2018] [Indexed: 01/03/2023] Open
Abstract
RASopathies are a group of heterogeneous conditions caused by germline mutations in RAS/MAPK signalling pathway genes. With next-generation sequencing (NGS), sequencing capacity is no longer a limitation to molecular diagnosis. Instead, the rising number of variants of unknown significance (VUSs) poses challenges to clinical interpretation and genetic counselling. We investigated the potential of an integrated pipeline combining NGS and the functional assessment of variants for the diagnosis of RASopathies. We included 63 Chinese patients with RASopathies that had previously tested negative for PTPN11 and HRAS mutations. In these patients, we performed a genetic analysis of genes associated with RASopathies using a multigene NGS panel and Sanger sequencing. For the VUSs, we evaluated evidence from genetic, bioinformatic and functional data. Twenty disease-causing mutations were identified in the 63 patients, providing a primary diagnostic yield of 31.7%. Four VUSs were identified in five patients. The functional assessment supported the pathogenicity of the RAF1 and RIT1 VUSs, while the significance of two VUSs in A2ML1 remained unclear. In summary, functional analysis improved the diagnostic yield from 31.7% to 36.5%. Although technically demanding and time-consuming, a functional genetic diagnostic analysis can ease the clinical translation of these findings to aid bedside interpretation.
Collapse
|
17
|
Ramond F, Duband S, Croisille P, Cavé H, Teyssier G, Adouard V, Touraine R. Expanding the cardiac spectrum of Noonan syndrome with RIT1 variant: Left main coronary artery atresia causing sudden death. Eur J Med Genet 2017; 60:299-302. [DOI: 10.1016/j.ejmg.2017.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/07/2017] [Accepted: 03/22/2017] [Indexed: 10/19/2022]
|
18
|
Abstract
With the rapid evolution of next-generation DNA sequencing technologies, the cost of sequencing a human genome has plummeted, and genomics has started to pervade health care across all stages of life - from preconception to adult medicine. Challenges to fully embracing genomics in a clinical setting remain, but some approaches are starting to overcome these barriers, such as community-driven data sharing to improve the accuracy and efficiency of applying genomics to patient care.
Collapse
Affiliation(s)
- Heidi L Rehm
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA; at the Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts 02139, USA; and at The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
19
|
In vivo severity ranking of Ras pathway mutations associated with developmental disorders. Proc Natl Acad Sci U S A 2017; 114:510-515. [PMID: 28049852 DOI: 10.1073/pnas.1615651114] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Germ-line mutations in components of the Ras/MAPK pathway result in developmental disorders called RASopathies, affecting about 1/1,000 human births. Rapid advances in genome sequencing make it possible to identify multiple disease-related mutations, but there is currently no systematic framework for translating this information into patient-specific predictions of disease progression. As a first step toward addressing this issue, we developed a quantitative, inexpensive, and rapid framework that relies on the early zebrafish embryo to assess mutational effects on a common scale. Using this assay, we assessed 16 mutations reported in MEK1, a MAPK kinase, and provide a robust ranking of these mutations. We find that mutations found in cancer are more severe than those found in both RASopathies and cancer, which, in turn, are generally more severe than those found only in RASopathies. Moreover, this rank is conserved in other zebrafish embryonic assays and Drosophila-specific embryonic and adult assays, suggesting that our ranking reflects the intrinsic property of the mutant molecule. Furthermore, this rank is predictive of the drug dose needed to correct the defects. This assay can be readily used to test the strengths of existing and newly found mutations in MEK1 and other pathway components, providing the first step in the development of rational guidelines for patient-specific diagnostics and treatment of RASopathies.
Collapse
|
20
|
Erickson CA, Ray B, Wink LK, Bayon BL, Pedapati EV, Shaffer R, Schaefer TL, Lahiri DK. Initial analysis of peripheral lymphocytic extracellular signal related kinase activation in autism. J Psychiatr Res 2017; 84:153-160. [PMID: 27743527 PMCID: PMC5903443 DOI: 10.1016/j.jpsychires.2016.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 08/02/2016] [Accepted: 09/01/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND Dysregulation of extracellular signal-related kinase (ERK) activity has been potentially implicated in the pathophysiology of autistic disorder (autism). ERK is part of a central intracellular signaling cascade responsible for a myriad of cellular functions. ERK is expressed in peripheral blood lymphocytes, and measurement of activated (phosphorylated) lymphocytic ERK is commonly executed in many areas of medicine. We sought to conduct the first study of ERK activation in humans with autism by utilizing a lymphocytic ERK activation assay. We hypothesized that ERK activation would be enhanced in peripheral blood lymphocytes from persons with autism compared to those of neurotypical control subjects. METHOD We conducted an initial study of peripheral lymphocyte ERK activation in 45 subjects with autism and 26 age- and gender-matched control subjects (total n = 71). ERK activation was measured using a lymphocyte counting method (primary outcome expressed as lymphocytes staining positive for cytosolic phosphorylated ERK divided by total cells counted) and additional Western blot analysis of whole cell phosphorylated ERK adjusted for total ERK present in the lymphocyte lysate sample. RESULTS Cytosolic/nuclear localization of pERK activated cells were increased by almost two-fold in the autism subject group compared to matched neurotypical control subjects (cell count ratio of 0.064 ± 0.044 versus 0.034 ± 0.031; p = 0.002). Elevated phosphorylated ERK levels in whole cell lysates also showed increased activated ERK in the autism group compared to controls (n = 54 total) in Western blot analysis. CONCLUSIONS The results of this first in human ERK activation study are consistent with enhanced peripheral lymphocytic ERK activation in autism, as well as suggesting that cellular compartmentalization of activated ERK may be altered in this disorder. Future work will be required to explore the impact of concomitant medication use and other subject characteristics such as level of cognitive functioning on ERK activation. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Craig A Erickson
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Balmiki Ray
- Department of Psychiatry, Indiana University School of Medicine, Neuroscience Research Center, 320 West 15th Street, NB 200C, Indianapolis, IN 46202, USA.
| | - Logan K Wink
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Baindu L Bayon
- Department of Psychiatry, Indiana University School of Medicine, Neuroscience Research Center, 320 West 15th Street, NB 200C, Indianapolis, IN 46202, USA.
| | - Ernest V Pedapati
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Rebecca Shaffer
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Tori L Schaefer
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Debomoy K Lahiri
- Department of Psychiatry, Indiana University School of Medicine, Neuroscience Research Center, 320 West 15th Street, NB 200C, Indianapolis, IN 46202, USA.
| |
Collapse
|