1
|
Deng L, Wu L, Gao R, Xu X, Chen C, Liu J. Non-Opioid Anesthetics Addiction: A Review of Current Situation and Mechanism. Brain Sci 2023; 13:1259. [PMID: 37759860 PMCID: PMC10526861 DOI: 10.3390/brainsci13091259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/15/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Drug addiction is one of the major worldwide health problems, which will have serious adverse consequences on human health and significantly burden the social economy and public health. Drug abuse is more common in anesthesiologists than in the general population because of their easier access to controlled substances. Although opioids have been generally considered the most commonly abused drugs among anesthesiologists and nurse anesthetists, the abuse of non-opioid anesthetics has been increasingly severe in recent years. The purpose of this review is to provide an overview of the clinical situation and potential molecular mechanisms of non-opioid anesthetics addiction. This review incorporates the clinical and biomolecular evidence supporting the abuse potential of non-opioid anesthetics and the foreseeable mechanism causing the non-opioid anesthetics addiction phenotypes, promoting a better understanding of its pathogenesis and helping to find effective preventive and curative strategies.
Collapse
Affiliation(s)
- Liyun Deng
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; (L.D.); (L.W.); (R.G.); (X.X.); (J.L.)
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lining Wu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; (L.D.); (L.W.); (R.G.); (X.X.); (J.L.)
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Rui Gao
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; (L.D.); (L.W.); (R.G.); (X.X.); (J.L.)
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaolin Xu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; (L.D.); (L.W.); (R.G.); (X.X.); (J.L.)
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chan Chen
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; (L.D.); (L.W.); (R.G.); (X.X.); (J.L.)
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; (L.D.); (L.W.); (R.G.); (X.X.); (J.L.)
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
2
|
Lv S, Yao K, Zhang Y, Zhu S. NMDA receptors as therapeutic targets for depression treatment: Evidence from clinical to basic research. Neuropharmacology 2023; 225:109378. [PMID: 36539011 DOI: 10.1016/j.neuropharm.2022.109378] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Ketamine, functioning as a channel blocker of the excitatory glutamate-gated N-methyl-d-aspartate (NMDA) receptors, displays compelling fast-acting and sustained antidepressant effects for treatment-resistant depression. Over the past decades, clinical and preclinical studies have implied that the pathology of depression is associated with dysfunction of glutamatergic transmission. In particular, the discovery of antidepressant agents modulating NMDA receptor function has prompted breakthroughs for depression treatment compared with conventional antidepressants targeting the monoaminergic system. In this review, we first summarized the signalling pathway of the ketamine-mediated antidepressant effects, based on the glutamate hypothesis of depression. Second, we reviewed the hypotheses of the synaptic mechanism and network of ketamine antidepressant effects within different brain areas and distinct subcellular localizations, including NMDA receptor antagonism on GABAergic interneurons, extrasynaptic and synaptic NMDA receptor-mediated antagonism, and ketamine blocking bursting activities in the lateral habenula. Third, we reviewed the different roles of NMDA receptor subunits in ketamine-mediated cognitive and psychiatric behaviours in genetically-manipulated rodent models. Finally, we summarized the structural basis of NMDA receptor channel blockers and discussed NMDA receptor modulators that have been reported to exert potential antidepressant effects in animal models or in clinical trials. Integrating the cutting-edge technologies of cryo-EM and artificial intelligence-based drug design (AIDD), we expect that the next generation of first-in-class rapid antidepressants targeting NMDA receptors would be an emerging direction for depression therapeutics. This article is part of the Special Issue on 'Ketamine and its Metabolites'.
Collapse
Affiliation(s)
- Shiyun Lv
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, China
| | - Kejie Yao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, China
| | - Youyi Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, China
| | - Shujia Zhu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Saez E, Erkoreka L, Moreno-Calle T, Berjano B, Gonzalez-Pinto A, Basterreche N, Arrue A. Genetic variables of the glutamatergic system associated with treatment-resistant depression: A review of the literature. World J Psychiatry 2022; 12:884-896. [PMID: 36051601 PMCID: PMC9331449 DOI: 10.5498/wjp.v12.i7.884] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/29/2022] [Accepted: 06/26/2022] [Indexed: 02/06/2023] Open
Abstract
Depression is a common, recurrent mental disorder and one of the leading causes of disability and global burden of disease worldwide. Up to 15%-40% of cases do not respond to diverse pharmacological treatments and, thus, can be defined as treatment-resistant depression (TRD). The development of biomarkers predictive of drug response could guide us towards personalized and earlier treatment. Growing evidence points to the involvement of the glutamatergic system in the pathogenesis of TRD. Specifically, the N-methyl-D-aspartic acid receptor (NMDAR) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR), which are targeted by ketamine and esketamine, are proposed as promising pathways. A literature search was performed to identify studies on the genetics of the glutamatergic system in depression, focused on variables related to NMDARs and AMPARs. Our review highlights GRIN2B, which encodes the NR2B subunit of NMDAR, as a candidate gene in the pathogenesis of TRD. In addition, several studies have associated genes encoding AMPAR subunits with symptomatic severity and suicidal ideation. These genes encoding glutamatergic receptors could, therefore, be candidate genes for understanding the etiopathogenesis of TRD, as well as for understanding the pharmacodynamic mechanisms and response to ketamine and esketamine treatment.
Collapse
Affiliation(s)
- Estela Saez
- Department of Psychiatry, Barrualde-Galdakao Integrated Health Organization, Osakidetza-Basque Health Service, Galdakao 48960, Spain
| | - Leire Erkoreka
- Department of Psychiatry, Barrualde-Galdakao Integrated Health Organization, Osakidetza-Basque Health Service, Galdakao 48960, Spain
- Mental Health Network Group, Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa 48940, Spain
| | - Teresa Moreno-Calle
- Department of Psychiatry, Barrualde-Galdakao Integrated Health Organization, Osakidetza-Basque Health Service, Galdakao 48960, Spain
- Mental Health Network Group, Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
| | - Belen Berjano
- Department of Psychiatry, Barrualde-Galdakao Integrated Health Organization, Osakidetza-Basque Health Service, Galdakao 48960, Spain
| | - Ana Gonzalez-Pinto
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa 48940, Spain
- Department of Psychiatry, Araba Integrated Health Organization, Osakidetza-Basque Health Service, CIBERSAM, Vitoria-Gasteiz 01004, Spain
- Severe Mental Disorders Group, Bioaraba Health Research Institute, Vitoria-Gasteiz 01009, Spain
| | - Nieves Basterreche
- Zamudio Hospital, Bizkaia Mental Health Network, Osakidetza-Basque Health Service, Zamudio 48170, Spain
- Integrative Research Group in Mental Health, Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
| | - Aurora Arrue
- Mental Health Network Group, Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
- Neurochemical Research Unit, Bizkaia Mental Health Network, Osakidetza-Basque Health Service, Barakaldo 48903, Spain
| |
Collapse
|
4
|
Therapeutic potential of ketamine for alcohol use disorder. Neurosci Biobehav Rev 2021; 126:573-589. [PMID: 33989669 DOI: 10.1016/j.neubiorev.2021.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/02/2021] [Accepted: 05/09/2021] [Indexed: 12/12/2022]
Abstract
Excessive alcohol consumption is involved in 1/10 of deaths of U.S. working-age adults and costs the country around $250,000,000 yearly. While Alcohol Use Disorder (AUD) pathology is complex and involves multiple neurotransmitter systems, changes in synaptic plasticity, hippocampal neurogenesis, and neural connectivity have been implicated in the behavioral characteristics of AUD. Depressed mood and stress are major determinants of relapse in AUD, and there is significant comorbidity between AUD, depression, and stress disorders, suggesting potential for overlap in their treatments. Disulfiram, naltrexone, and acamprosate are current pharmacotherapies for AUD, but these treatments have limitations, highlighting the need for novel therapeutics. Ketamine is a N-methyl-D-Aspartate receptor antagonist, historically used in anesthesia, but also affects other neurotransmitters systems, synaptic plasticity, neurogenesis, and neural connectivity. Currently under investigation for treating AUDs and other Substance Use Disorders (SUDs), ketamine has strong support for efficacy in treating clinical depression, recently receiving FDA approval. Ketamine's effect in treating depression and stress disorders, such as PTSD, and preliminary evidence for treating SUDs further suggests a role for treating AUDs. This review explores the behavioral and neural evidence for treating AUDs with ketamine and clinical data on ketamine therapy for AUDs and SUDs.
Collapse
|
5
|
Sherva R, Zhu C, Wetherill L, Edenberg HJ, Johnson E, Degenhardt L, Agrawal A, Martin NG, Nelson E, Kranzler HR, Gelernter J, Farrer LA. Genome-wide association study of phenotypes measuring progression from first cocaine or opioid use to dependence reveals novel risk genes. EXPLORATION OF MEDICINE 2021. [DOI: 10.37349/emed.2020.00032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Aim: Substance use disorders (SUD) result in substantial morbidity and mortality worldwide. Opioids, and to a lesser extent cocaine, contribute to a large percentage of this health burden. Despite their high heritability, few genetic risk loci have been identified for either opioid or cocaine dependence (OD or CD, respectively). A genome-wide association study of OD and CD related phenotypes reflecting the time between first self-reported use of these substances and a first DSM-IV dependence diagnosis was conducted.
Methods: Cox proportional hazards regression in a discovery sample of 6,188 African-Americans (AAs) and 6,835 European-Americans (EAs) participants in a genetic study of multiple substance dependence phenotypes were used to test for association between genetic variants and these outcomes. The top findings were tested for replication in two independent cohorts.
Results: In the discovery sample, three independent regions containing variants associated with time to dependence at P < 5 x 10-8 were identified, one (rs61835088 = 1.03 x 10-8) for cocaine in the combined EA-AA meta-analysis in the gene FAM78B on chromosome 1, and two for opioids in the AA portion of the sample in intergenic regions of chromosomes 4 (rs4860439, P = 1.37 x 10-8) and 9 (rs7032521, P = 3.30 x 10-8). After meta-analysis with data from the replication cohorts, the signal at rs61835088 improved (HR = 0.87, P = 3.71 x 10-9 and an intergenic SNP on chromosome 21 (rs2825295, HR = 1.14, P = 2.57 x 10-8) that missed the significance threshold in the AA discovery sample became genome-wide significant (GWS) for CD.
Conclusions: Although the two GWS variants are not in genes with obvious links to SUD biology and have modest effect sizes, they are statistically robust and show evidence for association in independent samples. These results may point to novel pathways contributing to disease progression and highlight the utility of related phenotypes to better understand the genetics of SUDs.
Collapse
Affiliation(s)
- Richard Sherva
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA 02118, USA
| | - Congcong Zhu
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA 02118, USA
| | - Leah Wetherill
- Department of Medical and Molecular Genetics and Biochemistry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Howard J. Edenberg
- Department of Medical and Molecular Genetics and Biochemistry, Indiana University School of Medicine, Indianapolis, IN 46202, USA 3Department of Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Emma Johnson
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Louisa Degenhardt
- National Drug and Alcohol Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Nicholas G. Martin
- Queensland Institute of Medical Research Berghofer, Brisbane, QLD 4006, Australia
| | - Elliot Nelson
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Henry R. Kranzler
- Perelman School of Medicine, University of Pennsylvania and VISN 4 MIRECC, Crescenz VAMC, Philadelphia, PA 19104, USA
| | - Joel Gelernter
- Departments of Psychiatry, Genetics and Neuroscience, Yale School of Medicine, New Haven, CT 06511, USA 9Department of Psychiatry, VA CT Healthcare Center, West Haven, CT 06516, USA
| | - Lindsay A. Farrer
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA 02118, USA;Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA 11Department of Ophthalmology, Boston University School of Medicine, Boston, MA 02118, USA 12Department of Epidemiology, Boston University School Public Health, Boston, MA 02118, USA 13Department of Biostatistics, Boston University School Public Health, Boston, MA 02118, USA
| |
Collapse
|
6
|
Sherva R, Zhu C, Wetherill L, Edenberg HJ, Johnson E, Degenhardt L, Agrawal A, Martin NG, Nelson E, Kranzler HR, Gelernter J, Farrer LA. Genome-wide association study of phenotypes measuring progression from first cocaine or opioid use to dependence reveals novel risk genes. EXPLORATION OF MEDICINE 2021; 2:60-73. [PMID: 34124712 PMCID: PMC8192073 DOI: 10.37349/emed.2021.00032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 02/03/2021] [Indexed: 12/21/2022] Open
Abstract
AIM Substance use disorders (SUD) result in substantial morbidity and mortality worldwide. Opioids, and to a lesser extent cocaine, contribute to a large percentage of this health burden. Despite their high heritability, few genetic risk loci have been identified for either opioid or cocaine dependence (OD or CD, respectively). A genome-wide association study of OD and CD related phenotypes reflecting the time between first self-reported use of these substances and a first DSM-IV dependence diagnosis was conducted. METHODS Cox proportional hazards regression in a discovery sample of 6,188 African-Americans (AAs) and 6,835 European-Americans (EAs) participants in a genetic study of multiple substance dependence phenotypes were used to test for association between genetic variants and these outcomes. The top findings were tested for replication in two independent cohorts. RESULTS In the discovery sample, three independent regions containing variants associated with time to dependence at P < 5 x 10-8 were identified, one (rs61835088 = 1.03 x 10-8) for cocaine in the combined EA-AA meta-analysis in the gene FAM78B on chromosome 1, and two for opioids in the AA portion of the sample in intergenic regions of chromosomes 4 (rs4860439, P = 1.37 x 10-8) and 9 (rs7032521, P = 3.30 x 10-8). After meta-analysis with data from the replication cohorts, the signal at rs61835088 improved (HR = 0.87, P = 3.71 x 10-9 and an intergenic SNP on chromosome 21 (rs2825295, HR = 1.14, P = 2.57 x 10-8) that missed the significance threshold in the AA discovery sample became genome-wide significant (GWS) for CD. CONCLUSIONS Although the two GWS variants are not in genes with obvious links to SUD biology and have modest effect sizes, they are statistically robust and show evidence for association in independent samples. These results may point to novel pathways contributing to disease progression and highlight the utility of related phenotypes to better understand the genetics of SUDs.
Collapse
Affiliation(s)
- Richard Sherva
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA 02118, USA
| | - Congcong Zhu
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA 02118, USA
| | - Leah Wetherill
- Department of Medical and Molecular Genetics and Biochemistry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Howard J. Edenberg
- Department of Medical and Molecular Genetics and Biochemistry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Emma Johnson
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Louisa Degenhardt
- National Drug and Alcohol Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Nicholas G. Martin
- Queensland Institute of Medical Research Berghofer, Brisbane, QLD 4006, Australia
| | - Elliot Nelson
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Henry R. Kranzler
- Perelman School of Medicine, University of Pennsylvania and VISN 4 MIRECC, Crescenz VAMC, Philadelphia, PA 19104, USA
| | - Joel Gelernter
- Departments of Psychiatry, Genetics and Neuroscience, Yale School of Medicine, New Haven, CT 06511, USA
- Department of Psychiatry, VA CT Healthcare Center, West Haven, CT 06516, USA
| | - Lindsay A. Farrer
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA 02118, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA 02118, USA
- Department of Epidemiology, Boston University School Public Health, Boston, MA 02118, USA
- Department of Biostatistics, Boston University School Public Health, Boston, MA 02118, USA
| |
Collapse
|
7
|
Chen MH, Kao CF, Tsai SJ, Li CT, Lin WC, Hong CJ, Bai YM, Tu PC, Su TP. Treatment response to low-dose ketamine infusion for treatment-resistant depression: A gene-based genome-wide association study. Genomics 2020; 113:507-514. [PMID: 33370585 DOI: 10.1016/j.ygeno.2020.12.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUNDS Evidence suggested the crucial roles of brain-derived neurotrophic factor (BDNF) and glutamate system functioning in the antidepressant mechanisms of low-dose ketamine infusion in treatment-resistant depression (TRD). METHODS 65 patients with TRD were genotyped for 684,616 single nucleotide polymorphisms (SNPs). Twelve ketamine-related genes were selected for the gene-based genome-wide association study on the antidepressant effect of ketamine infusion and the resulting serum ketamine and norketamine levels. RESULTS Specific SNPs and whole genes involved in BDNF-TrkB signaling (i.e., rs2049048 in BDNF and rs10217777 in NTRK2) and the glutamatergic and GABAergic systems (i.e., rs16966731 in GRIN2A) were associated with the rapid (within 240 min) and persistent (up to 2 weeks) antidepressant effect of low-dose ketamine infusion and with serum ketamine and norketamine levels. DISCUSSION Our findings confirmed the predictive roles of BDNF-TrkB signaling and glutamatergic and GABAergic systems in the underlying mechanisms of low-dose ketamine infusion for TRD treatment.
Collapse
Affiliation(s)
- Mu-Hong Chen
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Chung-Feng Kao
- Department of Agronomy, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan; Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan.
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan.
| | - Cheng-Ta Li
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Wei-Chen Lin
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Chen-Jee Hong
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Ya-Mei Bai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Pei-Chi Tu
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tung-Ping Su
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan; Department of Psychiatry, Cheng Hsin General Hospital, Taipei, Taiwan.
| |
Collapse
|