1
|
Zhang ZY, Sun ZJ, Gao D, Hao YD, Lin H, Liu F. Excavation of gene markers associated with pancreatic ductal adenocarcinoma based on interrelationships of gene expression. IET Syst Biol 2024. [PMID: 38530028 DOI: 10.1049/syb2.12090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/06/2024] [Accepted: 03/10/2024] [Indexed: 03/27/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) accounts for 95% of all pancreatic cancer cases, posing grave challenges to its diagnosis and treatment. Timely diagnosis is pivotal for improving patient survival, necessitating the discovery of precise biomarkers. An innovative approach was introduced to identify gene markers for precision PDAC detection. The core idea of our method is to discover gene pairs that display consistent opposite relative expression and differential co-expression patterns between PDAC and normal samples. Reversal gene pair analysis and differential partial correlation analysis were performed to determine reversal differential partial correlation (RDC) gene pairs. Using incremental feature selection, the authors refined the selected gene set and constructed a machine-learning model for PDAC recognition. As a result, the approach identified 10 RDC gene pairs. And the model could achieve a remarkable accuracy of 96.1% during cross-validation, surpassing gene expression-based models. The experiment on independent validation data confirmed the model's performance. Enrichment analysis revealed the involvement of these genes in essential biological processes and shed light on their potential roles in PDAC pathogenesis. Overall, the findings highlight the potential of these 10 RDC gene pairs as effective diagnostic markers for early PDAC detection, bringing hope for improving patient prognosis and survival.
Collapse
Affiliation(s)
- Zhao-Yue Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, China
| | - Zi-Jie Sun
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Dong Gao
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu-Duo Hao
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Hao Lin
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Fen Liu
- Department of Radiation Oncology, Peking University Cancer Hospital (Inner Mongolia Campus), Affiliated Cancer Hospital of Inner Mongolia Medical University, Inner Mongolia Cancer Hospital, Hohhot, China
| |
Collapse
|
2
|
Chen H, Su Y, Yang L, Xi L, Li X, Lan B, Liu M, Xuan C. CBX8 promotes lung adenocarcinoma growth and metastasis through transcriptional repression of CDKN2C and SCEL. J Cell Physiol 2023; 238:2710-2723. [PMID: 37733753 DOI: 10.1002/jcp.31124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/28/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023]
Abstract
Dysregulation of polycomb group (PcG) proteins that mediate epigenetic gene silencing contributes to tumorigenesis. As core components of the polycomb repressive complex 1 (PRC1), chromobox (CBX) proteins recognize H3K27me3 to recruit PRC1 to maintain a repressive transcriptional state. However, the individual biological functions of these CBX proteins in tumorigenesis warrant in-depth investigation. In this study, we analyzed the mRNA expression of CBX family genes across multiple cancers using The Cancer Genome Atlas data and found different expression patterns of the five CBX genes in different types of cancer. This analyses together with the result of immunohistochemistry indicated that CBX8 expression was significantly higher in lung adenocarcinoma (LUAD) tissues compared to adjacent nontumor tissues. Overexpression approaches demonstrated that CBX8 facilitated LUAD cell proliferation and migration in vitro. Consistently, CBX8 knockdown reduced LUAD cell proliferation and migration in both cell culture and mouse models. RNA sequencing combined with real-time RT-PCR assays revealed CDKN2C and SCEL as target genes of CBX8. Furthermore, chromatin immunoprecipitation assays indicated that CBX8 directly bound to the promoters of CDKN2C and SCEL to establish H2AK119ub. CBX8 depletion reduced the enrichment of H2AK119ub on CDKN2C and SCEL promoters. Moreover, depletion of CDKN2C and SCEL restored the repressed growth and invasion ability of LUAD cells caused by CBX8 knockdown. These findings demonstrate that CBX8 promotes LUAD growth and metastasis through the transcriptional repression of CDKN2C and SCEL. Our study uncovers the oncogenic role of CBX8 in LUAD progression and provides a new target for the diagnosis and therapy of LUAD.
Collapse
Affiliation(s)
- Hao Chen
- Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
- Department of Biochemistry and Molecular Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Yijie Su
- Department of Biochemistry and Molecular Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Lihong Yang
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Lishan Xi
- Department of Biochemistry and Molecular Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Xuanyuan Li
- Department of Biochemistry and Molecular Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Bei Lan
- Department of Biochemistry and Molecular Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Min Liu
- Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
| | - Chenghao Xuan
- Department of Biochemistry and Molecular Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| |
Collapse
|
3
|
Song T, He N, Hao Z, Yang Y. Upregulation of ENKD1 disrupts cellular homeostasis to promote lymphoma development. J Cell Physiol 2023; 238:1308-1323. [PMID: 36960713 DOI: 10.1002/jcp.31012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/25/2023]
Abstract
Diffuse large B cell lymphoma (DLBCL) is a common and aggressive form of B cell lymphoma. Approximately 40% of DLBCL patients are incurable despite modern therapeutic approaches. To explore the molecular mechanisms driving the growth and progression of DLBCL, we analyzed genes with differential expression in DLBCL using the Gene Expression Profiling Interactive Analysis database. Enkurin domain-containing protein 1 (ENKD1), a centrosomal protein-encoding gene, was found to be highly expressed in DLBCL samples compared with normal samples. The phylogenetic analysis revealed that ENKD1 is evolutionarily conserved. Depletion of ENKD1 in cultured DLBCL cells induced apoptosis, suppressed cell proliferation, and blocked cell cycle progression in the G2/M phase. Moreover, ENKD1 expression positively correlates with the expression levels of a number of cellular homeostatic regulators, including Sperm-associated antigen 5, a gene encoding an important mitotic regulator. These findings thus demonstrate a critical function for ENKD1 in regulating the cellular homeostasis and suggest a potential value of targeting ENKD1 for the treatment of DLBCL.
Collapse
Affiliation(s)
- Ting Song
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, China
| | - Na He
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Ziqian Hao
- College of Artificial Intelligence and Big Data for Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yunfan Yang
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, China
| |
Collapse
|
4
|
Zhong T, Wu X, Xie W, Luo X, Song T, Sun S, Luo Y, Li D, Liu M, Xie S, Zhou J. ENKD1 promotes epidermal stratification by regulating spindle orientation in basal keratinocytes. Cell Death Differ 2022; 29:1719-1729. [PMID: 35197565 PMCID: PMC9433399 DOI: 10.1038/s41418-022-00958-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 11/09/2022] Open
Abstract
Stratification of the epidermis is essential for the barrier function of the skin. However, the molecular mechanisms governing epidermal stratification are not fully understood. Herein, we demonstrate that enkurin domain-containing protein 1 (ENKD1) contributes to epidermal stratification by modulating the cell-division orientation of basal keratinocytes. The epidermis of Enkd1 knockout mice is thinner than that of wild-type mice due to reduced generation of suprabasal cells from basal keratinocytes through asymmetric division. Depletion of ENKD1 impairs proper orientation of the mitotic spindle and delays mitotic progression in cultured cells. Mechanistic investigation further reveals that ENKD1 is a novel microtubule-binding protein that promotes the stability of astral microtubules. Introduction of the microtubule-binding domain of ENKD1 can largely rescue the spindle orientation defects in ENKD1-depleted cells. These findings establish ENKD1 as a critical regulator of astral microtubule stability and spindle orientation that stimulates epidermal stratification in mammalian cells.
Collapse
Affiliation(s)
- Tao Zhong
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, China
| | - Xiaofan Wu
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecology, Nankai University, Tianjin, 300071, China
| | - Wei Xie
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, China
| | - Xiangrui Luo
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, China
| | - Ting Song
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, China
| | - Shuang Sun
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, China
| | - Youguang Luo
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, China
| | - Dengwen Li
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecology, Nankai University, Tianjin, 300071, China
| | - Min Liu
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, China
| | - Songbo Xie
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, China.
| | - Jun Zhou
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, China.
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecology, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
5
|
He N, Ma D, Tan Y, Liu M. Upregulation of O-GlcNAc transferase is involved in the pathogenesis of acute myeloid leukemia. Asia Pac J Clin Oncol 2021; 18:e318-e328. [PMID: 34821067 DOI: 10.1111/ajco.13685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/23/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND Acute myeloid leukemia (AML) is the most common acute leukemia in adults. Patients have a low survival rate and a high recurrence rate, and AML is a highly heterogeneous disease without an effective and specific targeted therapy. AIMS Therefore, it is urgent to explore new AML markers to enable early diagnosis and find drug targets for individualized treatment. RESULTS Herein, we demonstrate that O-linked-N-acetylglucosamine transferase (OGT) is significantly upregulated in AML tissues compared with normal tissues. The high level of OGT expression is significantly related to poor overall survival (OS) in AML. Inhibition of OGT can inhibit AML cell proliferation and promote AML cell apoptosis. CONCLUSION These results suggest that OGT plays an important role in the pathogenesis of AML, and may become a potential biomarker and molecular drug target for precision therapy for AML.
Collapse
Affiliation(s)
- Na He
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China.,Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yanjie Tan
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Min Liu
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|