1
|
Soler-Agesta R, Moreno-Loshuertos R, Yim CY, Congenie MT, Ames TD, Johnson HL, Stossi F, Mancini MG, Mancini MA, Ripollés-Yuba C, Marco-Brualla J, Junquera C, Martínez-De-Mena R, Enríquez JA, Price MR, Jimeno J, Anel A. Cancer cell-selective induction of mitochondrial stress and immunogenic cell death by PT-112 in human prostate cell lines. J Transl Med 2024; 22:927. [PMID: 39394618 PMCID: PMC11470694 DOI: 10.1186/s12967-024-05739-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024] Open
Abstract
PT-112 is a novel immunogenic cell death (ICD)-inducing small molecule currently under Phase 2 clinical development, including in metastatic castration-resistant prostate cancer (mCRPC), an immunologically cold and heterogeneous disease state in need of novel therapeutic approaches. PT-112 has been shown to cause ribosome biogenesis inhibition and organelle stress followed by ICD in cancer cells, culminating in anticancer immunity. In addition, clinical evidence of PT-112-driven immune effects has been observed in patient immunoprofiling. Given the unmet need for immune-based therapies in prostate cancer, along with a Phase I study (NCT#02266745) showing PT-112 activity in mCRPC patients, we investigated PT-112 effects in a panel of human prostate cancer cell lines. PT-112 demonstrated cancer cell selectivity, inhibiting cell growth and leading to cell death in prostate cancer cells without affecting the non-tumorigenic epithelial prostate cell line RWPE-1 at the concentrations tested. PT-112 also caused caspase-3 activation, as well as stress features in mitochondria including ROS generation, compromised membrane integrity, altered respiration, and morphological changes. Moreover, PT-112 induced damage-associated molecular pattern (DAMP) release, the first demonstration of ICD in human cancer cell lines, in addition to autophagy initiation across the panel. Taken together, PT-112 caused selective stress, growth inhibition and death in human prostate cancer cell lines. Our data provide additional insight into mitochondrial stress and ICD in response to PT-112. PT-112 anticancer immunogenicity could have clinical applications and is currently under investigation in a Phase 2 mCRPC study.
Collapse
Affiliation(s)
- R Soler-Agesta
- Biochemistry and Molecular and Cell Biology, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, Zaragoza, Spain
| | - R Moreno-Loshuertos
- Biochemistry and Molecular and Cell Biology, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, Zaragoza, Spain.
| | - C Y Yim
- Promontory Therapeutics Inc, New York, NY, USA
| | | | - T D Ames
- Promontory Therapeutics Inc, New York, NY, USA
| | - H L Johnson
- Department of Molecular and Cellular Biology, Integrated Microscopy Core, Baylor College of Medicine, Houston, TX, USA
| | - F Stossi
- Department of Molecular and Cellular Biology, Integrated Microscopy Core, Baylor College of Medicine, Houston, TX, USA
| | - M G Mancini
- Department of Molecular and Cellular Biology, Integrated Microscopy Core, Baylor College of Medicine, Houston, TX, USA
| | - M A Mancini
- Department of Molecular and Cellular Biology, Integrated Microscopy Core, Baylor College of Medicine, Houston, TX, USA
| | - C Ripollés-Yuba
- Biochemistry and Molecular and Cell Biology, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, Zaragoza, Spain
| | - J Marco-Brualla
- Biochemistry and Molecular and Cell Biology, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, Zaragoza, Spain
| | - C Junquera
- Anatomy and Human Histology Department, Faculty of Medicine, University of Zaragoza/IIS-Aragón, Zaragoza, Spain
| | | | - J A Enríquez
- Carlos III National Center for Cardiovascular Research, Madrid, Spain
| | - M R Price
- Promontory Therapeutics Inc, New York, NY, USA
| | - J Jimeno
- Biochemistry and Molecular and Cell Biology, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, Zaragoza, Spain
- Promontory Therapeutics Inc, New York, NY, USA
| | - A Anel
- Biochemistry and Molecular and Cell Biology, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, Zaragoza, Spain.
| |
Collapse
|
3
|
Blas L, Shiota M, Tanegashima T, Kobayashi S, Matsumoto T, Eto M. Survival beyond cabazitaxel for metastatic castration-resistant prostate cancer. Int J Urol 2024; 31:829-831. [PMID: 38441353 DOI: 10.1111/iju.15449] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Affiliation(s)
- Leandro Blas
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tokiyoshi Tanegashima
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoshi Kobayashi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi Matsumoto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
4
|
Leaning D, Kaur G, Morgans AK, Ghouse R, Mirante O, Chowdhury S. Treatment landscape and burden of disease in metastatic castration-resistant prostate cancer: systematic and structured literature reviews. Front Oncol 2023; 13:1240864. [PMID: 37829336 PMCID: PMC10565658 DOI: 10.3389/fonc.2023.1240864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/09/2023] [Indexed: 10/14/2023] Open
Abstract
Purpose Metastatic castration-resistant prostate cancer (mCRPC) is a lethal disease that imposes a major burden on patients and healthcare systems. Three structured literature reviews (treatment guidelines, treatment landscape, and human/clinical/patient burden) and one systematic literature review (economic burden) were conducted to better understand the disease burden and unmet needs for patients with late-stage mCRPC, for whom optimal treatment options are unclear. Methods Embase®, MEDLINE®, MEDLINE® In-Process, the CENTRAL database (structured and systematic reviews), and the Centre for Reviews and Dissemination database (systematic review only) were searched for English-language records from 2009 to 2021 to identify mCRPC treatment guidelines and studies related to the treatment landscape and the humanistic/economic burden of mCRPC in adult men (aged ≥18 years) of any ethnicity. Results In total, six records were included for the treatment patterns review, 14 records for humanistic burden, nine records for economic burden, three records (two studies) for efficacy, and eight records for safety. Real-world treatment patterns were broadly aligned with treatment guidelines and provided no optimal treatment sequencing beyond second line other than palliative care. Current post-docetaxel treatments in mCRPC are associated with adverse events that cause relatively high rates of treatment discontinuation or disruption. The humanistic and economic burdens associated with mCRPC are high. Conclusion The findings highlight a lack of treatment options with novel mechanisms of action and more tolerable safety profiles that satisfy a risk-to-benefit ratio aligned with patient needs and preferences for patients with late-stage mCRPC. Treatment approaches that improve survival and health-related quality of life are needed, ideally while simultaneously reducing costs and healthcare resource utilization.
Collapse
Affiliation(s)
- Darren Leaning
- Department of Radiology and Oncology, James Cook University Hospital, South Tees NHS Trust, Middlesbrough, United Kingdom
| | - Gagandeep Kaur
- Parexel Access Consulting, Parexel International, Mohali, Punjab, India
| | - Alicia K. Morgans
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Ray Ghouse
- Advanced Accelerator Applications, a Novartis Company, Genève, Switzerland
| | - Osvaldo Mirante
- Advanced Accelerator Applications, a Novartis Company, Genève, Switzerland
| | - Simon Chowdhury
- Department of Urological Cancer, Guy’s, King’s, and St. Thomas’ Hospitals, and Sarah Cannon Research Institute, London, United Kingdom
| |
Collapse
|
5
|
Marchioni M, Marandino L, Amparore D, Berardinelli F, Matteo F, Campi R, Schips L, Mascitti M. Factors influencing survival in metastatic castration resistant prostate cancer therapy. Expert Rev Anticancer Ther 2022; 22:1061-1079. [PMID: 35982645 DOI: 10.1080/14737140.2022.2114458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The number of patients with metastatic castration resistant prostate cancer (mCRPC) is expecting to increase due to the long-life expectancy of those with advanced disease who are also more commonly diagnosed today because of stage migration. Several compounds are available for treating these patients. AREAS COVERED We reviewed currently available treatments for mCRPC, their mechanism of action and resistance and we explored possible predictors of treatment success useful to predict survival in mCRPC patients. EXPERT OPINION A combination of molecular, clinical, pathological, and imaging features is necessary to correctly estimate patients' risk of death. The combination of these biomarkers may allow clinicians to tailor treatments based on cancer history and patients' features. The search of predictive biomarkers remains an unmet medical need for most patients with mCRPC.
Collapse
Affiliation(s)
- Michele Marchioni
- Unit of Urology, Department of Medical, Oral and Biotechnological Sciences, SS. Annunziata Hospital, G. D'Annunzio University, Chieti, Italy
| | - Laura Marandino
- Division of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniele Amparore
- Department of Urology, San Luigi Gonzaga Hospital, University of Turin, Orbassano, Turin, Italy
| | - Francesco Berardinelli
- Unit of Urology, Department of Medical, Oral and Biotechnological Sciences, SS. Annunziata Hospital, G. D'Annunzio University, Chieti, Italy
| | - Ferro Matteo
- Division of Urology, European Institute of Oncology, IRCCS, Milan, Italy
| | - Riccardo Campi
- Unit of Urological Robotic Surgery and Renal Transplantation, University of Florence, Careggi Hospital, Florence, Italy
| | - Luigi Schips
- Unit of Urology, Department of Medical, Oral and Biotechnological Sciences, SS. Annunziata Hospital, G. D'Annunzio University, Chieti, Italy
| | - Marco Mascitti
- Unit of Urology, Department of Medical, Oral and Biotechnological Sciences, SS. Annunziata Hospital, G. D'Annunzio University, Chieti, Italy
| |
Collapse
|