1
|
Shaker N, Shaker N, Abid A, Shah S, Shakra RA, Sangueza OP. Muir-Torre syndrome and recent updates on screening guidelines: The link between colorectal tumors and sebaceous adenomas in unusual locations. J Surg Oncol 2023; 128:1380-1384. [PMID: 37706607 DOI: 10.1002/jso.27440] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/28/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND Muir-Torre syndrome (MTS) is a rare genetic disorder that is caused by mismatch repair (MMR) protein mutations. MTS increases the risk of developing skin and gastrointestinal tumors such as sebaceous adenomas (SAs), sebaceous carcinomas, colorectal cancer, endometrial cancer, and ovarian cancer. The risk of developing these types of tumors varies depending on the involved mutation and the individual's family history risk. CASE PRESENTATION A 47-year-old male presented with multiple skin lesions on the scalp, face, flank, and back. The examination revealed well-circumscribed, dome-shaped papules with a yellowish appearance with white oily material in the center. Histopathologic examination showed a well-circumscribed sebaceous neoplasm consistent with a mixture of basaloid cells and lobules of bland-appearing mature adipocytes that communicate directly to the surface epithelium. Focal cystic changes and peritumoral lymphocytic infiltrate were noted. Increased mitotic figures were seen in the basaloid cell component. The overall findings were consistent with the diagnosis of SAs. MMR staining showed preserved expression in MLH1 and PMS2 proteins, while MSH2 and MSH6 staining showed loss of protein expression. A screening colonoscopy showed numerous colon and rectal tumors, prompting concerns about the likelihood of MTS. Surgical intervention was pursued for complete resection. Histology revealed a diagnosis of mucinous adenocarcinoma/adenocarcinoma with mucinous features of the colon. The diagnosis of MTS was supported by molecular testing that revealed MSH2 germline mutation. The increased likelihood of MTS was attributed to the occurrence of SAs in unusual locations of the head and neck regions, unlike typical cases. CONCLUSION MTS is a rare clinical condition that necessitates prompt thorough evaluation and periodic surveillance. When SA is encountered in atypical locations, it is important to consider additional testing supported by immunohistochemical staining, molecular testing, and regular screening to exclude the likelihood of MTS.
Collapse
Affiliation(s)
- Nada Shaker
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Nuha Shaker
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Abdul Abid
- Department of Pathology, University of Virginia Health, Charlottesville, Virginia, USA
| | - Sahrish Shah
- Department of Pathology, Geisenger Medical Center, Mechanicsville, Pennsylvania, USA
| | - Rafat Abu Shakra
- Department of Pathology, International Medical Center Hospital, Al-Ruwais, Jeddah, Saudi Arabia
| | - Omar P Sangueza
- Departments of Dermatology and Dermatopathology, Wake Forest University, School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, USA
| |
Collapse
|
2
|
Walker R, Mahmood K, Joo JE, Clendenning M, Georgeson P, Como J, Joseland S, Preston SG, Antill Y, Austin R, Boussioutas A, Bowman M, Burke J, Campbell A, Daneshvar S, Edwards E, Gleeson M, Goodwin A, Harris MT, Henderson A, Higgins M, Hopper JL, Hutchinson RA, Ip E, Isbister J, Kasem K, Marfan H, Milnes D, Ng A, Nichols C, O'Connell S, Pachter N, Pope BJ, Poplawski N, Ragunathan A, Smyth C, Spigelman A, Storey K, Susman R, Taylor JA, Warwick L, Wilding M, Williams R, Win AK, Walsh MD, Macrae FA, Jenkins MA, Rosty C, Winship IM, Buchanan DD. A tumor focused approach to resolving the etiology of DNA mismatch repair deficient tumors classified as suspected Lynch syndrome. J Transl Med 2023; 21:282. [PMID: 37101184 PMCID: PMC10134620 DOI: 10.1186/s12967-023-04143-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/19/2023] [Indexed: 04/28/2023] Open
Abstract
Routine screening of tumors for DNA mismatch repair (MMR) deficiency (dMMR) in colorectal (CRC), endometrial (EC) and sebaceous skin (SST) tumors leads to a significant proportion of unresolved cases classified as suspected Lynch syndrome (SLS). SLS cases (n = 135) were recruited from Family Cancer Clinics across Australia and New Zealand. Targeted panel sequencing was performed on tumor (n = 137; 80×CRCs, 33×ECs and 24xSSTs) and matched blood-derived DNA to assess for microsatellite instability status, tumor mutation burden, COSMIC tumor mutational signatures and to identify germline and somatic MMR gene variants. MMR immunohistochemistry (IHC) and MLH1 promoter methylation were repeated. In total, 86.9% of the 137 SLS tumors could be resolved into established subtypes. For 22.6% of these resolved SLS cases, primary MLH1 epimutations (2.2%) as well as previously undetected germline MMR pathogenic variants (1.5%), tumor MLH1 methylation (13.1%) or false positive dMMR IHC (5.8%) results were identified. Double somatic MMR gene mutations were the major cause of dMMR identified across each tumor type (73.9% of resolved cases, 64.2% overall, 70% of CRC, 45.5% of ECs and 70.8% of SSTs). The unresolved SLS tumors (13.1%) comprised tumors with only a single somatic (7.3%) or no somatic (5.8%) MMR gene mutations. A tumor-focused testing approach reclassified 86.9% of SLS into Lynch syndrome, sporadic dMMR or MMR-proficient cases. These findings support the incorporation of tumor sequencing and alternate MLH1 methylation assays into clinical diagnostics to reduce the number of SLS patients and provide more appropriate surveillance and screening recommendations.
Collapse
Affiliation(s)
- Romy Walker
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Parkville, VIC, 3010, Australia
| | - Khalid Mahmood
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Parkville, VIC, 3010, Australia
- Melbourne Bioinformatics, The University of Melbourne, Melbourne, VIC, 3051, Australia
| | - Jihoon E Joo
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Parkville, VIC, 3010, Australia
| | - Mark Clendenning
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Parkville, VIC, 3010, Australia
| | - Peter Georgeson
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Parkville, VIC, 3010, Australia
| | - Julia Como
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Parkville, VIC, 3010, Australia
| | - Sharelle Joseland
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Parkville, VIC, 3010, Australia
| | - Susan G Preston
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Parkville, VIC, 3010, Australia
| | - Yoland Antill
- Familial Cancer Centre, Royal Melbourne Hospital, Parkville, VIC, 3050, Australia
- Familial Cancer Centre, Cabrini Health, Malvern, VIC, 3144, Australia
- Familial Cancer Centre, Monash Health, Clayton, VIC, 3168, Australia
- Faculty of Medicine, Dentistry and Health Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - Rachel Austin
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, QLD, 4029, Australia
| | - Alex Boussioutas
- Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
- Department of Gastroenterology, The Alfred Hospital, Melbourne, VIC, 3004, Australia
- Department of Medicine, The Royal Melbourne Hospital, Melbourne, VIC, 3010, Australia
- Familial Cancer Centre, Peter MacCallum Cancer Centre, Parkville, VIC, 3000, Australia
| | - Michelle Bowman
- Familial Cancer Service, Westmead Hospital, Sydney, NSW, 2145, Australia
| | - Jo Burke
- Tasmanian Clinical Genetics Service, Royal Hobart Hospital, Hobart, TAS, 7000, Australia
- School of Medicine, University of Tasmania, Sandy Bay, TAS, 7005, Australia
| | - Ainsley Campbell
- Clinical Genetics Unit, Austin Health, Melbourne, VIC, 3084, Australia
| | - Simin Daneshvar
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Parkville, VIC, 3010, Australia
| | - Emma Edwards
- Familial Cancer Service, Westmead Hospital, Sydney, NSW, 2145, Australia
| | | | - Annabel Goodwin
- Cancer Genetics Department, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
- University of Sydney, Sydney, NSW, 2050, Australia
| | - Marion T Harris
- Monash Health Familial Cancer Centre, Clayton, VIC, 3168, Australia
| | - Alex Henderson
- Genetic Health Service, Wellington, Greater Wellington, 6242, New Zealand
- Wellington Hospital, Newtown, Greater Wellington, 6021, New Zealand
| | - Megan Higgins
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, QLD, 4029, Australia
- University of Queensland, St Lucia, QLD, 4067, Australia
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Ryan A Hutchinson
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Parkville, VIC, 3010, Australia
| | - Emilia Ip
- Cancer Genetics Service, Liverpool Hospital, Liverpool, NSW, 2170, Australia
| | - Joanne Isbister
- Genomic Medicine and Familial Cancer Centre, Royal Melbourne Hospital, Parkville, VIC, 3000, Australia
- Department of Medicine, The University of Melbourne, Melbourne, VIC, 3000, Australia
- Parkville Familial Cancer Centre, Peter McCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Kais Kasem
- Department of Clinical Pathology, Medicine Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Helen Marfan
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, QLD, 4029, Australia
| | - Di Milnes
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, QLD, 4029, Australia
- Royal Brisbane and Women's Hospital, Herston, QLD, 4029, Australia
| | - Annabelle Ng
- Cancer Genetics Department, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
| | - Cassandra Nichols
- Genetic Services of Western Australia, King Edward Memorial Hospital, Perth, WA, 6008, Australia
| | - Shona O'Connell
- Monash Health Familial Cancer Centre, Clayton, VIC, 3168, Australia
| | - Nicholas Pachter
- Genetic Services of Western Australia, King Edward Memorial Hospital, Perth, WA, 6008, Australia
- Medical School, University of Western Australia, Perth, WA, 6009, Australia
- School of Medicine, Curtin University, Perth, WA, 6845, Australia
| | - Bernard J Pope
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia
- Melbourne Bioinformatics, The University of Melbourne, Melbourne, VIC, 3051, Australia
| | - Nicola Poplawski
- Adult Genetics Unit, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Abiramy Ragunathan
- Familial Cancer Service, Westmead Hospital, Sydney, NSW, 2145, Australia
| | - Courtney Smyth
- Familial Cancer Centre, Monash Health, Clayton, VIC, 3168, Australia
| | - Allan Spigelman
- Hunter Family Cancer Service, Newcastle, NSW, 2298, Australia
- St Vincent's Cancer Genetics Unit, Sydney, NSW, 2290, Australia
- Surgical Professorial Unit, UNSW Clinical School of Clinical Medicine, Sydney, NSW, 2052, Australia
| | - Kirsty Storey
- Parkville Familial Cancer Centre, Peter McCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Rachel Susman
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, QLD, 4029, Australia
| | - Jessica A Taylor
- Genomic Medicine and Familial Cancer Centre, Royal Melbourne Hospital, Parkville, VIC, 3000, Australia
| | - Linda Warwick
- ACT Genetic Service, The Canberra Hospital, Woden, ACT, 2606, Australia
| | - Mathilda Wilding
- Familial Cancer Service, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| | - Rachel Williams
- Prince of Wales Clinical School, UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, 2052, Australia
- Prince of Wales Hereditary Cancer Centre, Prince of Wales Hospital, Randwick, NSW, 2031, Australia
| | - Aung K Win
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Parkville, VIC, 3010, Australia
- Centre for Epidemiology and Biostatistics, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Genomic Medicine and Familial Cancer Centre, Royal Melbourne Hospital, Parkville, VIC, 3000, Australia
| | - Michael D Walsh
- Sullivan Nicolaides Pathology, Bowen Hills, QLD, 4006, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, 4072, Australia
| | - Finlay A Macrae
- Genomic Medicine and Familial Cancer Centre, Royal Melbourne Hospital, Parkville, VIC, 3000, Australia
- Colorectal Medicine and Genetics, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Mark A Jenkins
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Parkville, VIC, 3010, Australia
- Centre for Epidemiology and Biostatistics, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Christophe Rosty
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Parkville, VIC, 3010, Australia
- Envoi Specialist Pathologists, Brisbane, QLD, 4059, Australia
- University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ingrid M Winship
- Genomic Medicine and Familial Cancer Centre, Royal Melbourne Hospital, Parkville, VIC, 3000, Australia
- Department of Medicine, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia.
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Parkville, VIC, 3010, Australia.
- Genomic Medicine and Familial Cancer Centre, Royal Melbourne Hospital, Parkville, VIC, 3000, Australia.
| |
Collapse
|
3
|
Walker R, Mahmood K, Joo JE, Clendenning M, Georgeson P, Como J, Joseland S, Preston SG, Antill Y, Austin R, Boussioutas A, Bowman M, Burke J, Campbell A, Daneshvar S, Edwards E, Gleeson M, Goodwin A, Harris MT, Henderson A, Higgins M, Hopper JL, Hutchinson RA, Ip E, Isbister J, Kasem K, Marfan H, Milnes D, Ng A, Nichols C, O’Connell S, Pachter N, Pope BJ, Poplawski N, Ragunathan A, Smyth C, Spigelman A, Storey K, Susman R, Taylor JA, Warwick L, Wilding M, Williams R, Win AK, Walsh MD, Macrae FA, Jenkins MA, Rosty C, Winship IM, Buchanan DD. A tumor focused approach to resolving the etiology of DNA mismatch repair deficient tumors classified as suspected Lynch syndrome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.27.23285541. [PMID: 36909643 PMCID: PMC10002795 DOI: 10.1101/2023.02.27.23285541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Routine screening of tumors for DNA mismatch repair (MMR) deficiency (dMMR) in colorectal (CRC), endometrial (EC) and sebaceous skin (SST) tumors leads to a significant proportion of unresolved cases classified as suspected Lynch syndrome (SLS). SLS cases (n=135) were recruited from Family Cancer Clinics across Australia and New Zealand. Targeted panel sequencing was performed on tumor (n=137; 80xCRCs, 33xECs and 24xSSTs) and matched blood-derived DNA to assess for microsatellite instability status, tumor mutation burden, COSMIC tumor mutational signatures and to identify germline and somatic MMR gene variants. MMR immunohistochemistry (IHC) and MLH1 promoter methylation were repeated. In total, 86.9% of the 137 SLS tumors could be resolved into established subtypes. For 22.6% of these resolved SLS cases, primary MLH1 epimutations (2.2%) as well as previously undetected germline MMR pathogenic variants (1.5%), tumor MLH1 methylation (13.1%) or false positive dMMR IHC (5.8%) results were identified. Double somatic MMR gene mutations were the major cause of dMMR identified across each tumor type (73.9% of resolved cases, 64.2% overall, 70% of CRC, 45.5% of ECs and 70.8% of SSTs). The unresolved SLS tumors (13.1%) comprised tumors with only a single somatic (7.3%) or no somatic (5.8%) MMR gene mutations. A tumor-focused testing approach reclassified 86.9% of SLS into Lynch syndrome, sporadic dMMR or MMR-proficient cases. These findings support the incorporation of tumor sequencing and alternate MLH1 methylation assays into clinical diagnostics to reduce the number of SLS patients and provide more appropriate surveillance and screening recommendations.
Collapse
Affiliation(s)
- Romy Walker
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, VIC 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC 3010, Australia
| | - Khalid Mahmood
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, VIC 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC 3010, Australia
- Melbourne Bioinformatics, The University of Melbourne, Melbourne, VIC 3051, Australia
| | - Jihoon E. Joo
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, VIC 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC 3010, Australia
| | - Mark Clendenning
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, VIC 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC 3010, Australia
| | - Peter Georgeson
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, VIC 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC 3010, Australia
| | - Julia Como
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, VIC 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC 3010, Australia
| | - Sharelle Joseland
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, VIC 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC 3010, Australia
| | - Susan G. Preston
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, VIC 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC 3010, Australia
| | - Yoland Antill
- Familial Cancer Centre, Royal Melbourne Hospital, Parkville, VIC 3050, Australia
- Familial Cancer Centre, Cabrini Health, Malvern, VIC 3144, Australia
- Familial Cancer Centre, Monash Health, Clayton, VIC 3168, Australia
- Faculty of Medicine, Dentistry and Health Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Rachel Austin
- Genetic Health Queensland, Royal Brisbane and Women’s Hospital, Brisbane, QLD 4029, Australia
| | - Alex Boussioutas
- Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Department of Gastroenterology, The Alfred Hospital, Melbourne, VIC 3004, Australia
- Department of Medicine, The Royal Melbourne Hospital, Melbourne, VIC 3010, Australia
- Familial Cancer Centre, Peter MacCallum Cancer Centre, Parkville, VIC 3000, Australia
| | - Michelle Bowman
- Familial Cancer Service, Westmead Hospital, Sydney, NSW 2145, Australia
| | - Jo Burke
- Tasmanian Clinical Genetics Service, Royal Hobart Hospital, Hobart, TAS 7000, Australia
- School of Medicine, University of Tasmania, Sandy Bay, TAS 7005 Australia
| | - Ainsley Campbell
- Clinical Genetics Unit, Austin Health, Melbourne, VIC 3084, Australia
| | - Simin Daneshvar
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, VIC 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC 3010, Australia
| | - Emma Edwards
- Familial Cancer Service, Westmead Hospital, Sydney, NSW 2145, Australia
| | | | - Annabel Goodwin
- Cancer Genetics Department, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
- University of Sydney, Sydney, NSW 2050, Australia
| | - Marion T. Harris
- Monash Health Familial Cancer Centre, Clayton, VIC 3168, Australia
| | - Alex Henderson
- Genetic Health Service, Wellington, Greater Wellington, 6242, New Zealand
- Wellington Hospital, Newtown, Greater Wellington 6021, New Zealand
| | - Megan Higgins
- Genetic Health Queensland, Royal Brisbane and Women’s Hospital, Brisbane, QLD 4029, Australia
- University of Queensland, St Lucia, QLD 4067, Australia
| | - John L. Hopper
- Centre for Epidemiology and Biostatistics, The University of Melbourne, Parkville, Melbourne, Victoria, 3010, Australia
| | - Ryan A. Hutchinson
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, VIC 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC 3010, Australia
| | - Emilia Ip
- Cancer Genetics service, Liverpool Hospital, Liverpool, NSW 2170, Australia
| | - Joanne Isbister
- Genomic Medicine and Familial Cancer Centre, Royal Melbourne Hospital, Parkville, VIC 3000, Australia
- Department of Medicine, The University of Melbourne, VIC 3000, Australia
- Parkville Familial Cancer Centre, Peter McCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Kais Kasem
- Department of Clinical Pathology, Medicine Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Helen Marfan
- Genetic Health Queensland, Royal Brisbane and Women’s Hospital, Brisbane, QLD 4029, Australia
| | - Di Milnes
- Genetic Health Queensland, Royal Brisbane and Women’s Hospital, Brisbane, QLD 4029, Australia
- Royal Brisbane and Women’s Hospital, Herston, QLD 4029, Australia
| | - Annabelle Ng
- Cancer Genetics Department, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - Cassandra Nichols
- Genetic Services of Western Australia, King Edward Memorial Hospital, Perth, WA 6008, Australia
| | - Shona O’Connell
- Monash Health Familial Cancer Centre, Clayton, VIC 3168, Australia
| | - Nicholas Pachter
- Genetic Services of Western Australia, King Edward Memorial Hospital, Perth, WA 6008, Australia
- Medical School, University of Western Australia, Perth, WA 6009, Australia
- School of Medicine, Curtin University, Perth, WA 6845, Australia
| | - Bernard J. Pope
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, VIC 3010, Australia
- Melbourne Bioinformatics, The University of Melbourne, Melbourne, VIC 3051, Australia
| | - Nicola Poplawski
- Adult Genetics Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia
| | | | - Courtney Smyth
- Familial Cancer Centre, Monash Health, Clayton, VIC 3168, Australia
| | - Allan Spigelman
- Hunter Family Cancer Service, Newcastle, NSW 2298, Australia
- St Vincent’s Cancer Genetics Unit, Sydney, NSW 2290, Australia
- Surgical Professorial Unit, UNSW Clinical School of Clinical Medicine, Sydney, NSW 2052, Australia
| | - Kirsty Storey
- Parkville Familial Cancer Centre, Peter McCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Rachel Susman
- Genetic Health Queensland, Royal Brisbane and Women’s Hospital, Brisbane, QLD 4029, Australia
| | - Jessica A. Taylor
- Genomic Medicine and Familial Cancer Centre, Royal Melbourne Hospital, Parkville, VIC 3000, Australia
| | - Linda Warwick
- ACT Genetic Service, The Canberra Hospital, Woden, ACT 2606, Australia
| | - Mathilda Wilding
- Familial Cancer Service, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | - Rachel Williams
- Prince of Wales Clinical School, UNSW Medicine and Health, UNSW Sydney, Kensington, NSW 2052, Australia
- Prince of Wales Hereditary Cancer Centre, Prince of Wales Hospital, Randwick, NSW 2031, Australia
| | - Aung K. Win
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC 3010, Australia
- Centre for Epidemiology and Biostatistics, The University of Melbourne, Parkville, Melbourne, Victoria, 3010, Australia
- Genomic Medicine and Familial Cancer Centre, Royal Melbourne Hospital, Parkville, VIC 3000, Australia
| | - Michael D. Walsh
- Sullivan Nicolaides Pathology, Bowen Hills, QLD 4006, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4072, Australia
| | - Finlay A. Macrae
- Genomic Medicine and Familial Cancer Centre, Royal Melbourne Hospital, Parkville, VIC 3000, Australia
- Colorectal Medicine and Genetics, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Mark A. Jenkins
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC 3010, Australia
- Centre for Epidemiology and Biostatistics, The University of Melbourne, Parkville, Melbourne, Victoria, 3010, Australia
| | - Christophe Rosty
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, VIC 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC 3010, Australia
- Envoi Specialist Pathologists, Brisbane, QLD 4059, Australia
- University of Queensland, Brisbane, QLD 4072, Australia
| | - Ingrid M. Winship
- Genomic Medicine and Familial Cancer Centre, Royal Melbourne Hospital, Parkville, VIC 3000, Australia
- Department of Medicine, The University of Melbourne, VIC 3000, Australia
| | - Daniel D. Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, VIC 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC 3010, Australia
- Genomic Medicine and Familial Cancer Centre, Royal Melbourne Hospital, Parkville, VIC 3000, Australia
| | | |
Collapse
|
4
|
Walker R, Georgeson P, Mahmood K, Joo JE, Makalic E, Clendenning M, Como J, Preston S, Joseland S, Pope BJ, Hutchinson RA, Kasem K, Walsh MD, Macrae FA, Win AK, Hopper JL, Mouradov D, Gibbs P, Sieber OM, O'Sullivan DE, Brenner DR, Gallinger S, Jenkins MA, Rosty C, Winship IM, Buchanan DD. Evaluating Multiple Next-Generation Sequencing-Derived Tumor Features to Accurately Predict DNA Mismatch Repair Status. J Mol Diagn 2023; 25:94-109. [PMID: 36396080 PMCID: PMC10424255 DOI: 10.1016/j.jmoldx.2022.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/27/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022] Open
Abstract
Identifying tumor DNA mismatch repair deficiency (dMMR) is important for precision medicine. Tumor features, individually and in combination, derived from whole-exome sequenced (WES) colorectal cancers (CRCs) and panel-sequenced CRCs, endometrial cancers (ECs), and sebaceous skin tumors (SSTs) were assessed for their accuracy in detecting dMMR. CRCs (n = 300) with WES, where mismatch repair status was determined by immunohistochemistry, were assessed for microsatellite instability (MSMuTect, MANTIS, MSIseq, and MSISensor), Catalogue of Somatic Mutations in Cancer tumor mutational signatures, and somatic mutation counts. A 10-fold cross-validation approach (100 repeats) evaluated the dMMR prediction accuracy for i) individual features, ii) Lasso statistical model, and iii) an additive feature combination approach. Panel-sequenced tumors (29 CRCs, 22 ECs, and 20 SSTs) were assessed for the top performing dMMR predicting features/models using these three approaches. For WES CRCs, 10 features provided >80% dMMR prediction accuracy, with MSMuTect, MSIseq, and MANTIS achieving ≥99% accuracy. The Lasso model achieved 98.3% accuracy. The additive feature approach, with three or more of six of MSMuTect, MANTIS, MSIseq, MSISensor, insertion-deletion count, or tumor mutational signature small insertion/deletion 2 + small insertion/deletion 7 achieved 99.7% accuracy. For the panel-sequenced tumors, the additive feature combination approach of three or more of six achieved accuracies of 100%, 95.5%, and 100% for CRCs, ECs, and SSTs, respectively. The microsatellite instability calling tools performed well in WES CRCs; however, an approach combining tumor features may improve dMMR prediction in both WES and panel-sequenced data across tissue types.
Collapse
Affiliation(s)
- Romy Walker
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Peter Georgeson
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Khalid Mahmood
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; Melbourne Bioinformatics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jihoon E Joo
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Enes Makalic
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Carlton, Victoria, Australia
| | - Mark Clendenning
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Julia Como
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Susan Preston
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Sharelle Joseland
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Bernard J Pope
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; Melbourne Bioinformatics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ryan A Hutchinson
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Kais Kasem
- Department of Clinical Pathology, Medicine Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Michael D Walsh
- Sullivan Nicolaides Pathology, Bowen Hills, Queensland, Australia
| | - Finlay A Macrae
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Melbourne, Victoria, Australia; Colorectal Medicine and Genetics, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Aung K Win
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Carlton, Victoria, Australia
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Carlton, Victoria, Australia
| | - Dmitri Mouradov
- Personalized Oncology Division, The Walter and Eliza Hall Institute of Medial Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Peter Gibbs
- Personalized Oncology Division, The Walter and Eliza Hall Institute of Medial Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia; Department of Medical Oncology, Western Health, Melbourne, Victoria, Australia
| | - Oliver M Sieber
- Personalized Oncology Division, The Walter and Eliza Hall Institute of Medial Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia; Department of Surgery, The University of Melbourne, Parkville, Victoria, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Dylan E O'Sullivan
- Department of Oncology, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Darren R Brenner
- Department of Oncology, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada; Department of Cancer Epidemiology and Prevention Research, Alberta Health Services, Calgary, Alberta, Canada
| | - Steven Gallinger
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Mark A Jenkins
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Carlton, Victoria, Australia
| | - Christophe Rosty
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; Envoi Specialist Pathologists, Brisbane, Queensland, Australia; University of Queensland, Brisbane, Queensland, Australia
| | - Ingrid M Winship
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Melbourne, Victoria, Australia; Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Melbourne, Victoria, Australia.
| |
Collapse
|
5
|
A retrospective cohort study of genetic referral and diagnosis of lynch syndrome in patients with cutaneous sebaceous lesions. Fam Cancer 2022:10.1007/s10689-022-00322-z. [PMID: 36437392 DOI: 10.1007/s10689-022-00322-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/20/2022] [Indexed: 11/29/2022]
Abstract
Immunohistochemistry (IHC) of cutaneous sebaceous lesions (SL) can be used to screen patients for Lynch syndrome (LS). There is little data on rates of genetic referral and outcomes of genetic testing for patients with SL. This single-center retrospective study characterizes 400 + patients with SL, including IHC results, genetics referrals, and outcomes of genetic testing. Retrospective chart reviews were performed for patients with a pathology-confirmed diagnosis of SL at the University of Michigan between January 2009 and December 2019. 447 patients with 473 SL were identified. Excluding 20 patients with known LS, IHC was conducted in 173 (41%) patients. 92/173 (53%) patients had abnormal results. 69 of these 92 (75%) patients were referred to genetics. 32 additional patients were referred with normal IHC (n = 22) or without IHC (n = 10). Of 101 patients referred, 65 (64%) were seen and 47 (47%) completed genetic testing. 7/47 (15%) had pathogenic variants associated with LS, six with concordant abnormal IHC and one without IHC. Cancer genetics referral of patients with SL, particularly for lesions with abnormal IHC, yields a significant rate of LS diagnosis. Providers should consider genetics referral for patients with SL.
Collapse
|
6
|
Wei XL, Liu Q, Zeng QL, Zhou H. Primary or metastatic lung cancer? Sebaceous carcinoma of the thigh: A case report. World J Clin Cases 2022; 10:4586-4593. [PMID: 35663089 PMCID: PMC9125262 DOI: 10.12998/wjcc.v10.i14.4586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/23/2021] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Sebaceous carcinoma (SC), a malignancy primarily characterized by aggressive growth, affects cutaneous tissues of the periocular region. Extraocular SC is extremely rare, especially in the extremities, as evidenced by only a handful of reported cases. CASE SUMMARY A 65-year-old man presented with a rapidly enlarging swelling on the left inner thigh, which was initially misdiagnosed as a subcutaneous abscess. The lesion had appeared two months prior to admission. Clinical examination revealed a cauliflower-like swollen content, with an ulcerated and infected mass located on his left thigh. At the same time, we observed solitary nodular lesions in his lungs and brain, with biopsy pathology of the lung lesions found to be consistent with the mass in the thigh. The patient received chemotherapy comprising cis-platinum with fluorouracil, followed by targeted therapy with anlotinib hydrochloride and chemotherapy with vinorelbine, implantation of iodine-125 seeds in the thigh and pulmonary tumor. The initial stage intervention achieved partial remission. The efficacy of maintenance treatment was evaluated as stable disease after the first 5 cycles; however, the patient developed a new brain lesion after the sixth cycle of treatment, which resulted in progressive disease and he received whole brain gamma knife radiotherapy. CONCLUSION We analyzed the clinical presentation, imaging features, pathology and treatment of a rare case of lung, brain and lymph node metastasis of SC located in the thigh. It is evident that cis-platinum combined with fluorouracil, vinorelbine combined with anlotinib hydrochloride may be an effective therapeutic regimen in advanced SC. However, brain metastatic lesions should receive early radiotherapy.
Collapse
Affiliation(s)
- Xiao-Lin Wei
- Department of Respirology, Taikang Sichuan Southwest Hospital Company Limited, Chengdu 610095, Sichuan Province, China
| | - Qing Liu
- Department of Abdominal Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610000, Sichuan Province, China
| | - Qiang-Lin Zeng
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Chengdu University School of Clinical Medicine, Chengdu University, Chengdu 610081, Sichuan Province, China
| | - Hui Zhou
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Chengdu University School of Clinical Medicine, Chengdu University, Chengdu 610081, Sichuan Province, China
| |
Collapse
|
7
|
El Hajj R, Saliba M, Shaheen M, Abbas FI, Bashir S, Sheikh UN, Loya A, Khalifeh I. Microsatellite Instability in Near East Sebaceous Neoplasms: Toward Improved Prediction. Appl Immunohistochem Mol Morphol 2022; 30:204-208. [PMID: 34799502 DOI: 10.1097/pai.0000000000000987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 10/04/2021] [Indexed: 11/25/2022]
Abstract
Sebaceous neoplasms (SN) comprise a heterogeneous spectrum of tumors with different biological behaviors. In the Near-East Region (NER), microsatellite instability (MSI) in SN's development, and its correlation with the clinicopathologic features of tumors is not well elucidated. A cohort of 225 SN patients (40 benign SNs and 185 sebaceous carcinomas) from the NER was retrospectively reviewed. Clinical variables and available follow-up information were recorded. MSI proteins (MLH1, MSH2, MSH6, and PMS2) as well as P53, P16, EMA, CD8, and PDL-1 expressions were examined by immunohistochemistry. Detection of human papilloma virus was determined by polymerase chain reaction. Microscopic features such as mitotic count and tumor-infiltrating lymphocytes were documented. A minority of SNs from benign (n=2) or malignant (n=3) tumors in the NER exhibit MSI (2.2%). MSI is exclusively found in patients with extraocular lesions (back, n=5) and presented a poor outcome. Among these, PMS2 protein was mostly lost (average=80%, n=4). SN with MSI exhibited a significant increase in p53 expression, (average=62.10%, P=0.002). There was no significant correlation between MSI status and any of the following: PD-L1, CD8, p16, and human papilloma virus infection. Microscopically, SN with MSI show significantly higher mitotic count, cystic changes and increased tumor-infiltrating lymphocytes. MSI is rarely found in NER's SN. When detected, it is exclusively in extraocular SNs with minimal predicative microscopic features and worse outcome.
Collapse
Affiliation(s)
- Rana El Hajj
- Department of Biological Sciences, Beirut Arab University
| | - Maelle Saliba
- Department of Pathology and Laboratory Medicine, American University Medical Center
| | - Muhammad Shaheen
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Fatmeh I Abbas
- Department of Pathology and Laboratory Medicine, American University Medical Center
| | - Shaarif Bashir
- Department of Pathology, Temple University Hospital, Philadelphia, PA
| | - Umer N Sheikh
- Department of Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Pakistan
| | - Asif Loya
- Department of Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Pakistan
| | - Ibrahim Khalifeh
- Pathology Consultant, Greater Cincinnati Pathologists,The Christ Hospital, Cincinnati, OH
| |
Collapse
|
8
|
Takayama E, Yoshioka A, Takai T, Goto K. A case of Muir-Torre syndrome with a keratoacanthoma and sebaceous neoplasms: Clinicopathological features and a speculation on the pathogenesis of cutaneous tumor type. J Dermatol 2021; 48:690-694. [PMID: 33523490 DOI: 10.1111/1346-8138.15772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/21/2020] [Accepted: 01/10/2021] [Indexed: 11/26/2022]
Abstract
Muir-Torre syndrome is a hereditary condition characterized by occurrence of sebaceous neoplasms or keratoacanthomas and visceral tumors. The most common mechanism for this syndrome is a constitutional defect in the mismatch repair genes. We report the case of a 67-year-old woman with a mutator L homologue 1 (MLH1) mutation. She had a history of endometrial and colorectal cancers. The patient presented with a typical keratoacanthoma on the right cheek and numerous sebaceous neoplasms on the face and trunk. Seven sebaceous adenomas and a low-grade sebaceous carcinoma were excised. Most sebaceous adenomas showed dermoscopic features such as some yellow comedo-like globules and curved vessels in creamy-white areas. Moreover, they revealed pathological features such as keratoacanthoma-like architecture and peritumoral or intratumoral lymphocytes. One of these sebaceous adenomas indicated histopathologically spontaneous regression and another was continuous with the hair follicle. Immunohistochemical staining for mismatch repair proteins revealed loss of expression for MLH1 and postmeiotic segregation increased 2 (PMS2) proteins in tumor cells nuclei in both keratoacanthoma and sebaceous adenoma. Nuclei in overhanging epithelial lips of the keratoacanthoma were also negative. These findings suggest that the type of Muir-Torre syndrome-related cutaneous tumor may have been affected by mismatch repair protein deficient sites in the pilosebaceous unit.
Collapse
Affiliation(s)
- Eriko Takayama
- Department of Dermatology, Konan Medical Center, Kobe, Japan
| | - Akiko Yoshioka
- Department of Dermatology, Konan Medical Center, Kobe, Japan
| | - Toshihiro Takai
- Department of Dermatology, Hyogo Cancer Center, Akashi, Japan
| | - Keisuke Goto
- Department of Dermatology, Hyogo Cancer Center, Akashi, Japan.,Department of Pathology, Itabashi Central Clinical Laboratory, Tokyo, Japan.,Department of Pathology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan.,Department of Diagnostic Pathology, Shizuoka Cancer Center Hospital, Nagaizumi, Japan.,Department of Diagnostic Pathology and Cytology, Osaka International Cancer Institute, Osaka, Japan
| |
Collapse
|
9
|
Diagnosis of Lynch Syndrome and Strategies to Distinguish Lynch-Related Tumors from Sporadic MSI/dMMR Tumors. Cancers (Basel) 2021; 13:cancers13030467. [PMID: 33530449 PMCID: PMC7865821 DOI: 10.3390/cancers13030467] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Microsatellite instability (MSI) is a hallmark of Lynch syndrome (LS)-related tumors but is not specific, as most of MSI/mismatch repair-deficient (dMMR) tumors are sporadic. Therefore, the identification of MSI/dMMR requires additional diagnostic tools to identify LS. In this review, we address the hallmarks of LS and present recent advances in diagnostic and screening strategies to identify LS patients. We also discuss the pitfalls associated with current strategies, which should be taken into account in order to improve the diagnosis of LS. Abstract Microsatellite instability (MSI) is a hallmark of Lynch syndrome (LS)-related tumors but is not specific to it, as approximately 80% of MSI/mismatch repair-deficient (dMMR) tumors are sporadic. Methods leading to the diagnosis of LS have considerably evolved in recent years and so have tumoral tests for LS screening and for the discrimination of LS-related to MSI-sporadic tumors. In this review, we address the hallmarks of LS, including the clinical, histopathological, and molecular features. We present recent advances in diagnostic and screening strategies to identify LS patients. We also discuss the pitfalls associated with the current strategies, which should be taken into account to improve the diagnosis of LS and avoid inappropriate clinical management.
Collapse
|
10
|
Gallon R, Gawthorpe P, Phelps RL, Hayes C, Borthwick GM, Santibanez-Koref M, Jackson MS, Burn J. How Should We Test for Lynch Syndrome? A Review of Current Guidelines and Future Strategies. Cancers (Basel) 2021; 13:406. [PMID: 33499123 PMCID: PMC7865939 DOI: 10.3390/cancers13030406] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022] Open
Abstract
International guidelines for the diagnosis of Lynch syndrome (LS) recommend molecular screening of colorectal cancers (CRCs) to identify patients for germline mismatch repair (MMR) gene testing. As our understanding of the LS phenotype and diagnostic technologies have advanced, there is a need to review these guidelines and new screening opportunities. We discuss the barriers to implementation of current guidelines, as well as guideline limitations, and highlight new technologies and knowledge that may address these. We also discuss alternative screening strategies to increase the rate of LS diagnoses. In particular, the focus of current guidance on CRCs means that approximately half of Lynch-spectrum tumours occurring in unknown male LS carriers, and only one-third in female LS carriers, will trigger testing for LS. There is increasing pressure to expand guidelines to include molecular screening of endometrial cancers, the most frequent cancer in female LS carriers. Furthermore, we collate the evidence to support MMR deficiency testing of other Lynch-spectrum tumours to screen for LS. However, a reliance on tumour tissue limits preoperative testing and, therefore, diagnosis prior to malignancy. The recent successes of functional assays to detect microsatellite instability or MMR deficiency in non-neoplastic tissues suggest that future diagnostic pipelines could become independent of tumour tissue.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - John Burn
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK; (P.G.); (R.L.P.); (C.H.); (G.M.B.); (M.S.-K.); (M.S.J.)
| |
Collapse
|
11
|
Shanks A, Laun J, Holstein A, Varshney S, Messina J, Cruse CW. A rare concurrence of Muir-Torre-associated sebaceous carcinoma in the setting of a lipedematous scalp. CASE REPORTS IN PLASTIC SURGERY AND HAND SURGERY 2020; 7:124-129. [PMID: 33178881 PMCID: PMC7594736 DOI: 10.1080/23320885.2020.1833334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Muir-Torre syndrome (MTS) a genetic disorder characterized by predisposition to cutaneous neoplasms. Lipedematous scalp is characterized by the presentation of a thick, sponge-like scalp due to the altered and increased deposition of adipose tissue. We present a case of Muir-Torre-associated sebaceous carcinoma of the scalp consistent with a lipedematous scalp.
Collapse
Affiliation(s)
- Allison Shanks
- Department of Plastic Surgery, University of South Florida, Tampa, FL, USA
| | - Jake Laun
- Department of Plastic Surgery, University of South Florida, Tampa, FL, USA
| | - Amanda Holstein
- Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Saksham Varshney
- Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Jane Messina
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.,Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Carl Wayne Cruse
- Department of Plastic Surgery, University of South Florida, Tampa, FL, USA.,Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
12
|
Immunohistochemical evaluation of mismatch repair proteins and p53 expression in extrauterine carcinosarcoma/sarcomatoid carcinoma. Contemp Oncol (Pozn) 2020; 24:1-4. [PMID: 32514231 PMCID: PMC7265955 DOI: 10.5114/wo.2020.94718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/14/2020] [Indexed: 02/08/2023] Open
Abstract
Introduction Carcinosarcoma (CS) is a tumor with components: epithelial (carcinomatous) and mesenchymal (sarcomatous), developing in the mechanism of epithelial-mesenchymal transition. It is known that the p53 defect is a frequent finding in a carcinosarcoma in different anatomical locations, additionally, in a subgroup of uterine CS MMR defect plays a role in the pathogenesis. The aim of this paper was to investigate the frequency of MMR and p53 aberrations in extrauterine CS. Material and methods Twenty eight extrauterine CS from the lung (n = 8), breast (n = 6), head and neck (n = 5), ovary (n = 3), urinary bladder (n = 3), adrenal gland (n = 1), skin (n = 1), and stomach (n = 1) were stained for hMLH1, PMS2, hMSH2, hMSH6 and p53. The pattern of expression was evaluated separately in carcinomatous and sarcomatous component. Results Immunostainings for hMLH1, PMS2, hMSH2 and hMSH6 were positive in all tumors. p53 defect was observed in 19 out of 28 samples (67.85%). In all cases except one (96.42%) there was a concordance between sarcomatoid and carcinomatous components. Conclusions MMR deficiency does not seem to play a role in the pathogenesis of extrauterine CS. p53 aberrant expression is frequent and almost always consistent in carcinomatous and sarcomatous component.
Collapse
|