1
|
Yang SL, Tan HX, Niu TT, Li DJ, Wang HY, Li MQ. Kynurenine promotes the cytotoxicity of NK cells through aryl hydrocarbon receptor in early pregnancy. J Reprod Immunol 2021; 143:103270. [PMID: 33421663 DOI: 10.1016/j.jri.2020.103270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 11/25/2020] [Accepted: 12/27/2020] [Indexed: 12/31/2022]
Abstract
During early pregnancy, decidual NK (dNK) cells play indispensable roles in many processes including the decidualization, the implantation, and the maintenance of immune tolerance. Abnormal cytotoxic activity of NK cells can cause recurrent spontaneous abortion (RSA), while the regulatory mechanism of NK cytotoxicity remains to be unclear. In this study, we found that kynurenine in decidua and villus was in a comparable level between patients with RSA and normal pregnancy women. However, the aryl hydrocarbon receptor (AhR) in decidual NK cells was significantly increased in RSA. Compared with AhR- NK cells, cytotoxic activity-related molecules (NKP30, NKP46, NKG2D, perforin, granzyme B and IFN-γ) was highly expressed in both AhR+ peripheral and decidual NK cells, and kynurenine stimulation promoted the expression of killer receptors and the cytoplasmic granules in an AhR-dependent manner. Stimulation with TNF-α, IL-β and LPS upregulated the AhR expression in dNK cells in vitro. These results indicate that kyn/AhR signal enhances the cytotoxicity of NK cells, and increased expression of AhR may be an induction factor of RSA.
Collapse
Affiliation(s)
- Shao-Liang Yang
- Department of Gynecology of Integrated Traditional Chinese and Western Medicine, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, People's Republic of China; Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, People's Republic of China
| | - Hai-Xia Tan
- Department of Obstetrics and Gynecology, Zhangye People's Hospital of HeXi College, Zhangye, Gansu, 734000, People's Republic of China
| | - Tian-Tian Niu
- Department of Gynecology of Integrated Traditional Chinese and Western Medicine, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, People's Republic of China
| | - Da-Jin Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, People's Republic of China; Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, 200032, People's Republic of China
| | - Hai-Yan Wang
- Department of Gynecology of Integrated Traditional Chinese and Western Medicine, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, People's Republic of China; Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, People's Republic of China; Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, 200032, People's Republic of China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
2
|
Cattelan Souza L, de Brito MLO, Jesse CR, Boeira SP, de Gomes MG, Goes ATR, Fabbro LD, Machado FR, Prigol M, Nogueira CW. Involvement of kynurenine pathway in depressive-like behaviour induced by nandrolone decanoate in mice. Steroids 2020; 164:108727. [PMID: 32891681 DOI: 10.1016/j.steroids.2020.108727] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 08/24/2020] [Accepted: 08/30/2020] [Indexed: 11/17/2022]
Abstract
Nandrolone decanoate (ND) belongs to the class II of anabolic-androgenic steroids (AAS), which is composed of 19-nor-testosterone-derivatives. AAS represent a group of synthetic testosterone that is used in clinical treatment. However, these drugs are widely abused among individuals as a means of promoting muscle growth or enhancing athletic performance. AAS in general and ND in particular have been associated with several behavioral disturbances, such as anxiety, aggressiveness and depression. A factor that contributes to the development of depression is the brain activation of indoleamine 2,3-dioxygenase (IDO), the rate-limiting enzyme of kynurenine pathway (KP). In the present study, we examined the involvement of KP in depressive phenotype induced by a ND treatment (10 mg/kg/day/s.c., for 28 days) that mimics human abuse system (e.g. supraphysiological doses) in C57B/6J mice. Our results showed that ND caused depressive like-behavior in the tail suspension test and anhedonic-like state measured in the sucrose preference test. ND administration decreased the levels of brain-derived neurotrophic factor and neurotrophin-3 and reduced Na+,K+-ATPase activity in the hippocampus, striatum and prefrontal cortex. We also found that ND elicited KP activation, as reflected by the increase of IDO activity and kynurenine levels in these brain regions. Moreover, ND decreased serotonin levels and increased 5-hydroxyindoleacetic acid levels in the brain. Treatment with IDO inhibitor 1-methyl-dl-trypthophan (1 mg/kg/i.p.) reversed the behavioral and neurochemical alterations induced by ND. These results indicate for the first time that KP plays a key role in depressive-like behavior and neurotoxicity induced by supraphysiologicaldoses of ND in mice.
Collapse
Affiliation(s)
- Leandro Cattelan Souza
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, CEP 97650-000, Itaqui, RS, Brazil; Laboratory of Synthesis, Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogen Compounds, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil.
| | - Maicon Lenon Otenio de Brito
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, CEP 97650-000, Itaqui, RS, Brazil
| | - Cristiano Ricardo Jesse
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, CEP 97650-000, Itaqui, RS, Brazil
| | - Silvana Peterini Boeira
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, CEP 97650-000, Itaqui, RS, Brazil
| | - Marcelo Gomes de Gomes
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, CEP 97650-000, Itaqui, RS, Brazil
| | - André Tiago Rossito Goes
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, CEP 97650-000, Itaqui, RS, Brazil
| | - Lucian Del Fabbro
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, CEP 97650-000, Itaqui, RS, Brazil
| | - Franciele Romero Machado
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, CEP 97650-000, Itaqui, RS, Brazil
| | - Marina Prigol
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, CEP 97650-000, Itaqui, RS, Brazil
| | - Cristina Wayne Nogueira
- Laboratory of Synthesis, Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogen Compounds, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| |
Collapse
|
3
|
Dendritic Cells Treated with Exogenous Indoleamine 2,3-Dioxygenase Maintain an Immature Phenotype and Suppress Antigen-specific T cell Proliferation. ACTA ACUST UNITED AC 2019; 5. [PMID: 31788580 DOI: 10.1016/j.regen.2019.100015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Indoleamine 2,3-dioxygenase (IDO), an intracellular enzyme responsible for catalyzing the rate limiting step of tryptophan catabolism, plays a critical role in immune cell suppression and tolerance. Indoleamine 2,3-dioxygenase-mediated depletion of the essential amino acid tryptophan increases susceptibility of T cells to apoptosis, while kynurenine and its downstream metabolites, such as 3-hydroxyanthranilic acid and quinolinic acid, have a direct cytotoxic effect on conventional effector T cells. Additionally, IDO-expressing antigen presenting cells (APCs) induce proliferation of regulatory T cells. When expressed by an APC, the immunosuppressive effects of IDO may act directly on the APC as well as indirectly upon local T cells. One approach to elicit immune tolerance or reduce inflammation therefore is to promote expression of IDO. However, this approach is constrained by several factors including the potential for deleterious biologic effects of conventional IDO-inducing agents such as interferon gamma (IFNγ), and the potential limitations of constitutive gene transfection. Alternatively, direct action of recombinant IDO enzyme supplied exogenously as a potential therapeutic in the extracellular space has not been investigated previously, and is the focus of this work. Results indicate exogenous recombinant human IDO supplementation influences murine dendritic cell (DC) maturation and ability to suppress antigen specific T cell proliferation. Following treatment, DCs were refractory to maturation by LPS as defined by co-stimulatory molecule expression (CD80 and CD86) and major histocompatibility complex II (MHC-II) expression. Dendritic cells exhibited skewing toward an anti-inflammatory cytokine release profile, with reduced secretion of IL-12p70 and maintained basal level of secreted IL-10. Notably, IDO-treated DCs suppressed proliferation of ovalbumin (OVA) antigen-specific CD4+ and CD8+ T cells in the presence of cognate antigen presentation in a manner dependent on active enzyme, as introduction of IDO inhibitor 1-methyl-tryptophan, restored T cell proliferation. Defined media experiments indicate a cumulative role for both tryptophan depletion and kynurenine presence, in the suppressive programming of DCs. In sum, we report that exogenously supplied IDO maintains immunoregulatory function on DCs, suggesting that IDO may have potential as a therapeutic protein for suppressive programming with application toward inflammation and tolerance.
Collapse
|
4
|
Roomruangwong C, Kanchanatawan B, Carvalho AF, Sirivichayakul S, Duleu S, Geffard M, Maes M. Body image dissatisfaction in pregnant and non-pregnant females is strongly predicted by immune activation and mucosa-derived activation of the tryptophan catabolite (TRYCAT) pathway. World J Biol Psychiatry 2018; 19:200-209. [PMID: 27427239 DOI: 10.1080/15622975.2016.1213881] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVES The aim of the present study is to delineate the associations between body image dissatisfaction in pregnant women and immune-inflammatory biomarkers, i.e., C-reactive protein (CRP), zinc and IgA/IgM responses to tryptophan and tryptophan catabolites (TRYCATs). METHODS We assessed 49 pregnant and 24 non-pregnant females and assessed Body Image Satisfaction (BIS) scores at the end of term (T1), and 2-4 days (T2) and 4-6 weeks (T3) after delivery. Subjects were divided in those with a lowered BIS score (≤ 3) versus those with a higher score. RESULTS Logistic regression analysis showed that a lowered T1 BIS score was predicted by CRP levels and IgA responses to tryptophan (negative) and TRYCATs (positive), perinatal depression, body mass index (BMI) and age. The sum of quinolinic acid, kynurenine, 3-OH-kynurenine and 3-OH-anthranilic acid (reflecting brain quinolinic acid contents) was the single best predictor. In addition, a large part of the variance in the T1, T2 and T3 BIS scores was explained by IgA responses to tryptophan and TRYCATs, especially quinolinic acid. CONCLUSIONS Body image dissatisfaction is strongly associated with inflammation and mucosa-derived IDO activation independently from depression, pregnancy, BMI and age. IgA responses to peripheral TRYCATs, which determine brain quinolinic acid concentrations, also predict body image dissatisfaction.
Collapse
Affiliation(s)
- Chutima Roomruangwong
- a Department of Psychiatry, Faculty of Medicine , Chulalongkorn University , Bangkok , Thailand
| | - Buranee Kanchanatawan
- a Department of Psychiatry, Faculty of Medicine , Chulalongkorn University , Bangkok , Thailand
| | - André F Carvalho
- b Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine , Federal University of Ceará , Fortaleza , CE , Brazil
| | | | | | - Michel Geffard
- e GEMAC , Saint Jean d'Illac , France.,f IMPACT Strategic Research Center, Deakin University , Geelong , Australia
| | - Michael Maes
- a Department of Psychiatry, Faculty of Medicine , Chulalongkorn University , Bangkok , Thailand.,b Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine , Federal University of Ceará , Fortaleza , CE , Brazil.,g Department of Psychiatry, Faculty of Medicine , State University of Londrina , Londrina , Brazil.,h Revitalis , Waalre , The Netherlands.,i Department of Psychiatry , Medical University of Plovdiv , Plovdiv , Bulgaria
| |
Collapse
|