1
|
Guan D, Sun W, Gao M, Chen Z, Ma X. Immunologic insights in recurrent spontaneous abortion: Molecular mechanisms and therapeutic interventions. Biomed Pharmacother 2024; 177:117082. [PMID: 38972152 DOI: 10.1016/j.biopha.2024.117082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/20/2024] [Accepted: 07/01/2024] [Indexed: 07/09/2024] Open
Abstract
Recurrent spontaneous abortion refers to the occurrence of two or more spontaneous abortions before or during the early stages of pregnancy. The immune system plays a crucial role in the maintenance of pregnancy and embryo implantation. Various immune cells, cytokines, and immune regulatory pathways are involved in the complex immune balance required for a stable pregnancy. Studies suggest that immune abnormalities may be associated with some recurrent spontaneous abortion cases, particularly those involving the dysregulation of immune cell function, autoimmune responses, and placental immunity. In terms of treatment, interventions targeting immune mechanisms are crucial. Various therapeutic approaches, including immunomodulatory drugs, immunoadsorption therapies, and immunocellular therapies, are continually being researched and developed. These approaches aim to restore the immune balance, enhance the success rate of pregnancies, and provide more effective treatment options for patients with recurrent spontaneous abortion.
Collapse
Affiliation(s)
- Defeng Guan
- The First Clinical Medical School of Lanzhou University, Lanzhou, China; The First Hospital of Lanzhou University, Lanzhou, China; Gansu key Laboratory of Reproductive Medicine and Embryology, Lanzhou, China
| | - Wenjie Sun
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
| | - Mingxia Gao
- The First Clinical Medical School of Lanzhou University, Lanzhou, China; The First Hospital of Lanzhou University, Lanzhou, China; Gansu key Laboratory of Reproductive Medicine and Embryology, Lanzhou, China
| | - Zhou Chen
- The First Clinical Medical School of Lanzhou University, Lanzhou, China; The First Hospital of Lanzhou University, Lanzhou, China.
| | - Xiaoling Ma
- The First Clinical Medical School of Lanzhou University, Lanzhou, China; The First Hospital of Lanzhou University, Lanzhou, China; Gansu key Laboratory of Reproductive Medicine and Embryology, Lanzhou, China.
| |
Collapse
|
2
|
Nie X, Dong X, Hu Y, Xu F, Hu C, Shu C. Coenzyme Q10 Stimulate Reproductive Vatality. Drug Des Devel Ther 2023; 17:2623-2637. [PMID: 37667786 PMCID: PMC10475284 DOI: 10.2147/dddt.s386974] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/15/2023] [Indexed: 09/06/2023] Open
Abstract
Female infertility and pregnancy maintenance are associate with various factors, including quantity and quality of oocytes, genital inflammation, endometriosis, and other diseases. Women are even diagnosed as unexplained infertility or unexplained recurrent spontaneous abortion when failed to achieve pregnancy with current treatment, which are urgent clinical issues need to be addressed. Coenzyme Q10 (CoQ10) is a lipid-soluble electron carrier in the mitochondrial electron transport chain. It is not only essential for the mitochondria to produce energy, but also function as an antioxidant to maintain redox homeostasis in the body. Recently, the capacity of CoQ10 to reduce oxidative stress (OS), enhance mitochondrial activity, regulate gene expression and inhibit inflammatory responses, has been discovered as a novel adjuvant in male reproductive performance enhancing in both animal and human studies. Furthermore, CoQ10 is also proved to regulate immune balance, antioxidant, promote glucose and lipid metabolism. These properties will bring highlight for ovarian dysfunction reversing, ovulation ameliorating, oocyte maturation/fertilization promoting, and embryonic development optimizing. In this review, we systematically discuss the pleiotropic effects of CoQ10 in female reproductive disorders to investigate the mechanism and therapeutic potential to provide a reference in subsequent studies.
Collapse
Affiliation(s)
- Xinyu Nie
- Obstetrics and Gynecology Center, First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
- Reproductive Medicine Center, Prenatal Diagnosis Center, First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Xinru Dong
- Obstetrics and Gynecology Center, First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
- Reproductive Medicine Center, Prenatal Diagnosis Center, First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Yuge Hu
- Obstetrics and Gynecology Center, First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
- Reproductive Medicine Center, Prenatal Diagnosis Center, First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Fangjun Xu
- Obstetrics and Gynecology Center, First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Cong Hu
- Reproductive Medicine Center, Prenatal Diagnosis Center, First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Chang Shu
- Obstetrics and Gynecology Center, First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| |
Collapse
|
3
|
Yousefzadeh Y, Soltani-Zangbar MS, Hemmatzadeh M, Shomali N, Mahmoodpoor A, Ahmadian Heris J, Yousefi M. Fetomaternal Immune Tolerance: Crucial Mechanisms of Tolerance for Successful Pregnancy in Humans. Immunol Invest 2021; 51:1108-1125. [PMID: 33830854 DOI: 10.1080/08820139.2021.1909061] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
For many years, the question of how the maternal immune system tolerates the foreign fetus has remained unanswered, and numerous studies have considerably attempted to elucidate underlying mechanisms for fetomaternal tolerance. This review aimed at discussing various significant mechanisms in fetomaternal compatibility. At the fetomaternal interface, in addition to having efficient control against infections, innate and adaptive maternal immune systems selectively prevent fetal rejection. In general, understanding the complex mechanisms of fetomaternal tolerance is critical for immunologic tolerance induction and spontaneous abortion prevention in high-risk populations. Different cells and molecules, such as regulatory T-cells, dendritic cells, decidua cells, IDO, Class I HLA molecules, TGF-β, and IL-10, induce maternal immune tolerance in the fetus in numerous ways. The findings on fetomaternal immune tolerance have remained controversial and require further research.
Collapse
Affiliation(s)
- Yousef Yousefzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Committee Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Sadegh Soltani-Zangbar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Hemmatzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Navid Shomali
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ata Mahmoodpoor
- Department of Anesthesiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Ahmadian Heris
- Department of Allergy and Clinical Immunology, Pediatric Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Wang W, Sung N, Gilman-Sachs A, Kwak-Kim J. T Helper (Th) Cell Profiles in Pregnancy and Recurrent Pregnancy Losses: Th1/Th2/Th9/Th17/Th22/Tfh Cells. Front Immunol 2020; 11:2025. [PMID: 32973809 PMCID: PMC7461801 DOI: 10.3389/fimmu.2020.02025] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/27/2020] [Indexed: 12/15/2022] Open
Abstract
During pregnancy, various immune effectors and molecules participating in the immune-microenvironment establish specific maternal tolerance toward the semi-allogeneic fetus. Activated maternal immune effectors by the trophoblast antigens, such as T helper (Th), T cytotoxic (Tc), T regulatory (Treg), and B cells, are involved in the regulation of adaptive immunity. Recognition of active signal through the T cell receptors stimulate the differentiation of naive CD3+CD4+ T cells into specific T cell subsets, such as Th1, Th2, Th9, Th17, Th22, and follicular Th cells (Tfh). Each of these subsets has a significant and distinct role in human pregnancy. Th1 immunity, characterized by immune-inflammatory responses, becomes dominant during the peri-implantation period, and the “controlled” Th1 immunity benefits the invading trophoblasts rather than harm. Quickly after the placental implantation, the early inflammatory Th1 immunity is shifted to the Th2 anti-inflammatory immune responses. The predominant Th2 immunity, which overrules the Th1 immunity at the placental implantation site, protects a fetus by balancing Th1 immunity and accommodate fetal and placental development. Moreover, Treg and Th9 cells regulate local inflammatory immune responses, potentially detrimental to the fetus. Th17 cells induce protective immunity against extracellular microbes during pregnancy. However, excessive Th17 immunity may induce uncontrolled neutrophil infiltration at the maternal-fetal interface. Other Th cell subsets such as Tfh cells, also contribute to pregnancy by setting up favorable humoral immunity during pregnancy. However, dysregulation of Th cell immunity during pregnancy may result in obstetrical complications, such as recurrent pregnancy losses (RPL) and preeclampsia (PE). With this review, we intend to deliver a comprehensive overview of CD4+ Th cell subsets, including Th1, Th2, Th9, Th17, Th22, and Tfh cells, in human pregnancy by reviewing their roles in normal and pathological pregnancies.
Collapse
Affiliation(s)
- Wenjuan Wang
- Reproductive Medicine and Immunology, Obstetrics and Gynecology, Department of Clinical Sciences, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States.,Reproductive Medicine Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Nayoung Sung
- Reproductive Medicine and Immunology, Obstetrics and Gynecology, Department of Clinical Sciences, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Alice Gilman-Sachs
- Center for Cancer Cell Biology, Immunology and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States.,Clinical Immunology Laboratory, Center for Cancer Cell Biology, Immunology and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Joanne Kwak-Kim
- Reproductive Medicine and Immunology, Obstetrics and Gynecology, Department of Clinical Sciences, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States.,Center for Cancer Cell Biology, Immunology and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
5
|
Talukdar A, Rai R, Aparna Sharma K, Rao D, Sharma A. Peripheral Gamma Delta T cells secrete inflammatory cytokines in women with idiopathic recurrent pregnancy loss. Cytokine 2018; 102:117-122. [DOI: 10.1016/j.cyto.2017.07.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/19/2017] [Accepted: 07/24/2017] [Indexed: 12/18/2022]
|
6
|
Li F, Dang J, Jiang M, He M, Yang M, Li J, Hao H, Zhou Y, Zuo W, Xie Y, Deng D. Upregulation of Tim-3 expression at feto-maternal interface may explain embryo survival in the CBAxDBA/2 model of abortion. Am J Reprod Immunol 2017; 79. [PMID: 29083087 DOI: 10.1111/aji.12775] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/02/2017] [Indexed: 01/08/2023] Open
Abstract
PROBLEM To understand the mechanisms of action of Tim-3 at the maternal-fetal interface and explore how Tim-3 might be involved in the pathogenesis of abortion by constructing an in vitro trophoblast-lymphocyte system. METHODS OF STUDY Female CBA/J × male DBA/2 matings were used as the abortion-prone model and CBA/J × male BALB/c matings as control. The expression of Tim-3 at the maternal-fetal interface and in the peripheral blood lymphocytes was measured by immunohistochemistry and Western blotting. The proliferation index of lymphocytes and levels of Th1/Th2-derived cytokines in peripheral blood and in the co-culture system were determined using CCK-8 assay and ELISA, respectively. RESULTS The expression level of Tim-3 was higher in abortion-prone matings than that of control (P < .05). A preponderance of Th1 was observed in the co-culture system in the abortion-prone mating group. Recombinant Tim-3 Ig reversed the imbalance of Th1/Th2 immunity of abortion-prone matings by suppressing the secretion of IFN-γ and IL-2 but had no direct effect on the generation of IL-4. CONCLUSION Tim-3 might contribute to successful pregnancy by restraining Th1 bias, and the maternal immune system might develop a strategy including upregulation of Tim-3 at the maternal-fetal interface and in peripheral blood so as to maintain moderate inflammatory responses against miscarriage.
Collapse
Affiliation(s)
- Fanfan Li
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Dang
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Min Jiang
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Gynecology and Obstetrics, Northern Jiangsu Province Hospital, Clinical Medical College, Yangzhou University, Jiangsu, China
| | - Mengzhou He
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meitao Yang
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Li
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Faculty of Reproductive Medical Center of the Third Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Haiyan Hao
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuan Zhou
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Reproductive Medical Center, Tangdu Hospital, The Fourth Military Medical University, xi'an, China
| | - Wei Zuo
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Faculty of Department of Orthopedics, Pu Ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yin Xie
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dongrui Deng
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|